JPS61160719A - Liquid crystal display panel - Google Patents

Liquid crystal display panel

Info

Publication number
JPS61160719A
JPS61160719A JP245085A JP245085A JPS61160719A JP S61160719 A JPS61160719 A JP S61160719A JP 245085 A JP245085 A JP 245085A JP 245085 A JP245085 A JP 245085A JP S61160719 A JPS61160719 A JP S61160719A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
crystal display
spacer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP245085A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP245085A priority Critical patent/JPS61160719A/en
Publication of JPS61160719A publication Critical patent/JPS61160719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the specified spacing on a substrate side even if the transparent substrates themselves have some non-flatness owing to waving ruggedness by using the resilient substrate for one of the transparent substrates. CONSTITUTION:The hard glass substrate 1 is used for one of the two light transparent substrates, for example, glass substrates 1, 1' and a glass plate or org. resin 1' which is semi-hard to the extent of permitting bending when the spacing between the substrates is evacuated is used for the other. Prescribed electrodes for a liquid crystal are formed of light transparent conductive films 2, 2', for example, ITO or SnO2 on one side of the respective substrates. Polyimide resins 3, 3' are thinly formed atop said films and are subjected to an orientation treatment by a known rubbing treatment.

Description

【発明の詳細な説明】 「発明の利用分野j 本発明は液晶表示パネルまたはアクティブマトリックス
方式による液晶表示パネルに関するものであって、マイ
クロコンピュータ、ワードプロセッサまたはテレビ等の
表示部の薄型化を図る液晶表示装置に関する。
Detailed Description of the Invention Field of Application of the Invention The present invention relates to a liquid crystal display panel or an active matrix type liquid crystal display panel, and the present invention relates to a liquid crystal display panel or an active matrix type liquid crystal display panel, which is used to reduce the thickness of a display unit of a microcomputer, word processor, television, etc. Regarding equipment.

r従来の技術j 従来の液晶表示装置に関しては、2つの透明基板の内側
にそれぞれ透明導電膜、配向膜が設けられ、この間に液
晶を充填して、2つの電極間に印加される電圧の有無に
より「オン」 「オフ」を制御していた。そしてこの表
示により、文字、グラフまたは絵を表示したものである
rPrior art j Regarding a conventional liquid crystal display device, a transparent conductive film and an alignment film are provided on the inside of two transparent substrates, and liquid crystal is filled between the two transparent substrates to determine whether or not a voltage is applied between the two electrodes. ``On'' and ``Off'' were controlled by This display displays characters, graphs, or pictures.

しかしこの2つの透明電極間は約10μの薄さしかなく
、最近はこの薄さも5μ程度またはそれ以下が求められ
ていた。このわずかな間隙を隔て、大きな面積の電極ま
たは多数のドツト化されたアクティブマトリックス電極
を何等の電気的ショートもなく構成せしめることはきわ
めて困難であった。
However, the distance between these two transparent electrodes is only about 10 microns, and recently this thinness has been required to be about 5 microns or less. It has been extremely difficult to construct large-area electrodes or a large number of dotted active matrix electrodes without any electrical short-circuits, separated by such a small gap.

このため、この間隙を制御するスペーサが考えだされた
。即ちスペーサは一般に有機樹脂の球形を有する粒子で
あって、例えばミクロバール5P−210(平均粒径1
0,0±0.5μ)を用いている。このミクロパールは
ジビニルベンゼン系架橋重合体であり、透明な真珠微粒
子である。
For this reason, spacers were devised to control this gap. That is, the spacer is generally a spherical particle of organic resin, for example, Microvar 5P-210 (average particle size 1).
0.0±0.5μ) is used. These micropearls are divinylbenzene-based crosslinked polymers and are transparent pearl particles.

即ち、第1図に従来の液晶表示装置の縦断面図を示して
いる。図面において、液晶表示用の2つの透明基板(1
) 、 (1”)の周辺部には、液晶が外部にもれない
よう樹脂とスペーサ(7)とを混合したシール材(6)
が溜めてあり、2つの基板間の距離を周辺部において一
定に保っている。しかし表示部(lO)即ち液晶(5)
が充填された領域において、外部より透明基板の機械的
なストレスまたは基板の平坦性の厚さにより2つの透明
電極がショートまたは近接しやすい。その結果、液晶が
透光性でなくなったり、一部が黒化して不良が発生して
しまいやすかった。このため、液晶部に対しても他のス
ペーサ(4)を散在させてそれぞれの電極がショートし
ないよう一定の距離に保たせていた。
That is, FIG. 1 shows a vertical cross-sectional view of a conventional liquid crystal display device. In the drawing, two transparent substrates (1
), (1"), a sealing material (6) made of a mixture of resin and spacer (7) is placed around the area to prevent the liquid crystal from leaking to the outside.
is stored to keep the distance between the two substrates constant at the periphery. However, the display part (lO), that is, the liquid crystal (5)
In the region filled with , the two transparent electrodes tend to be short-circuited or come close to each other due to external mechanical stress on the transparent substrate or due to the flatness of the substrate. As a result, the liquid crystal loses its translucency or becomes partially black, which tends to cause defects. For this reason, other spacers (4) are also scattered around the liquid crystal section to keep the respective electrodes at a constant distance so as not to short-circuit.

「発明が解決しようとする問題点」 しかし実際に液晶表示装置を作らんとすると、2つの基
板をシール材で周辺の一部を除きシールしてしまった後
、この中を真空に保ち、毛細管現象を利用して液晶を充
賓している。しかしこの充填は必ずしも均一にゆかない
場合が見られた。特にスペーサをランダムに均一に散在
させんとしても、スペーサがきわめて小さいため凝集し
やすく、現実は一部に偏在してしまった。また、封止後
、表示装置の温度が上がると、液晶それ自体の熱膨張に
より基板がふくらみやすく、2つの電極間距離を一定に
保てなくなる。このため表示のコントラストは中央部と
周辺部で異なってしまう現象が見られてしまった。特に
表示装置が20c+++ X 30cmと大きなパネル
状になった時、不良が発生しやすかった。
``The problem that the invention aims to solve'' However, when trying to actually make a liquid crystal display device, after sealing the two substrates with a sealant except for a part of the periphery, the inside of the substrate is kept in a vacuum, and the capillary This phenomenon is used to charge the liquid crystal. However, it was observed that this filling was not always uniform. In particular, even if the spacers were to be randomly and uniformly scattered, they tend to aggregate because they are extremely small, and in reality they are unevenly distributed in some areas. Further, when the temperature of the display device increases after sealing, the substrate tends to swell due to thermal expansion of the liquid crystal itself, making it impossible to maintain a constant distance between the two electrodes. For this reason, a phenomenon has been observed in which the contrast of the display differs between the center and the periphery. Particularly when the display device was in the form of a large panel measuring 20 cm x 30 cm, defects were likely to occur.

r問題を解決するための手段」 このため本発明は、スペーサに球状を存せしめるのでは
なく、方形(好ましくはサイコロ状の立方体)を有せし
め、このスペーサと配向膜との接触を球スペーサの点接
触ではなく、方形スペーサの面接触とした。そして液晶
が球の時の配向膜近傍の未充填による局部不良の発生を
防いだ。
Therefore, in the present invention, the spacer does not have a spherical shape, but has a rectangular shape (preferably a dice-shaped cube), and the contact between the spacer and the alignment film is controlled by the spherical spacer. Instead of point contact, we used square spacer surface contact. Furthermore, when the liquid crystal is in the form of a sphere, the occurrence of local defects due to unfilling in the vicinity of the alignment film is prevented.

加えて、このスペーサの表面を配向膜と同一材料のポリ
イミド系樹脂で覆い、このスペーサと上側配向膜及び下
側配向膜とを同じポリイミドにより互いに密着(溶着ま
たは接着を含む)せしめたものである。
In addition, the surface of this spacer is covered with a polyimide resin made of the same material as the alignment film, and the spacer, upper alignment film, and lower alignment film are adhered to each other (including welding or adhesion) using the same polyimide. .

「作用」 かくすることにより、2つの基板は初期において、基板
自体がうねり的な凹凸による多少の非平坦性を有しても
、シール材で周辺部を封止後真空引きをした際、それぞ
れの基板側の間隙をスペーサの大きさく高さ)により一
定にさせることができる。そしてこの状態で、スペーサ
をコーティングしている樹脂によりこのスペーサと対抗
した配向膜とを互いに密着させて、その間隙を固体する
``Operation'' By doing this, even if the two substrates themselves have some unevenness due to undulations in the initial stage, when the peripheral parts are sealed with the sealing material and then vacuumed, each The gap on the substrate side can be made constant by increasing the size and height of the spacer. In this state, the spacer and the opposing alignment film are brought into close contact with each other by the resin coating the spacer, and the gap therebetween is solidified.

このため、この後真空をといてもスペーサによりそれぞ
れの基板が実質的に互いに密着しているため、もとの非
平坦の状態に戻らず、電極間の間隙が一定になって、最
終状態において、パネルの一部が広すぎる等の支障が発
生しない。またスペーサにより互いの基板を密着させた
ため、表示パネルそれ自体の機械的強度も1枚のみの強
度ではなく、合わせガラスに近い強い実質的に2枚の強
度に等しい強固さを有せしめることが可能となった。
For this reason, even if the vacuum is removed afterwards, the respective substrates are substantially in close contact with each other due to the spacers, so they do not return to their original non-flat state, and the gap between the electrodes becomes constant, resulting in the final state. , there will be no problems such as parts of the panel being too wide. In addition, because the substrates are brought into close contact with each other using spacers, the mechanical strength of the display panel itself is not as strong as that of only one panel, but is similar to that of laminated glass, making it possible to have a mechanical strength that is essentially equivalent to the strength of two panels. It became.

以下に実施例に従って本発明を記す。The present invention will be described below according to examples.

実施例1 第2図に本発明の液晶表示装置の縦断面図、また第3図
にその製造工程を示す縦断面図を示す。
Example 1 FIG. 2 is a vertical cross-sectional view of a liquid crystal display device of the present invention, and FIG. 3 is a vertical cross-sectional view showing the manufacturing process thereof.

図面において、2つの透光性基板、例えばガラス基板(
1) 、 (1’)、一方は固いガラス基板(1)、他
方は間隙を真空引きをした際、曲がり得る程度のセミハ
ードなガラス板または有機樹脂(1°)を用いた。
In the drawing, two transparent substrates, e.g. glass substrates (
1), (1') One was a hard glass substrate (1), and the other was a semi-hard glass plate or organic resin (1°) that could be bent when the gap was evacuated.

このそれぞれの基板の一方の面に所定の液晶用電極を透
光性導電膜(2) 、 (2°)、例えばTTOまたは
SnO□で形成した。この上面にポリイミド樹脂(3)
A predetermined liquid crystal electrode was formed on one surface of each of the substrates using a transparent conductive film (2) (2°) of, for example, TTO or SnO□. Polyimide resin (3) on this top surface
.

(3゛)を薄く形成し、公知のラビング処理により配向
処理を嗜テった。次に第3図(A)に示す如く、一方の
側の上面にスピナー、ロールコータ、スプレー法または
スクリーン印刷法により、多孔質の方形スペーサを分散
させた紫外線硬化型ポリイミド溶液(15)を塗布する
(3゛) was formed into a thin film, and the orientation treatment was removed by a known rubbing treatment. Next, as shown in FIG. 3(A), an ultraviolet curable polyimide solution (15) in which porous rectangular spacers are dispersed is applied to the upper surface of one side using a spinner, roll coater, spray method, or screen printing method. do.

このポリイミド溶液は全芳香族ポリイミド前駆体溶液で
あり、その−例として東し株式会社より販売されている
フォトニースを用いた。
This polyimide solution is a wholly aromatic polyimide precursor solution, and as an example, Photonice sold by Toshi Co., Ltd. was used.

また方形スペーサとしてはCaSnO2を用いた。この
化合物は多孔性の矩形状正方晶型を有し、その−辺の大
きさは1〜10μの範囲で任意に作ることができる。例
えば5μ±0.5μとした。
Further, CaSnO2 was used as the rectangular spacer. This compound has a porous rectangular tetragonal crystal type, and the size of the side thereof can be made arbitrarily within the range of 1 to 10 μm. For example, it was set to 5μ±0.5μ.

このスペーサの多孔内へのポリイミドの含浸は以下の如
くである。即ち、容器内にスペーサを入れ、この容器を
真空引きした。そして多孔内の気体を脱気した。さらに
この真空を保持したまま、前記したポリイミド溶液を容
器内に混合し、多孔内にもポリイミドの一部が含浸する
ようにした。
Impregnation of polyimide into the pores of this spacer is as follows. That is, a spacer was placed in the container, and the container was evacuated. Then, the gas inside the pores was degassed. Further, while maintaining this vacuum, the polyimide solution described above was mixed into the container so that a portion of the polyimide was impregnated into the pores.

この後、この容器を大気圧にして含浸させた。After this, the container was brought to atmospheric pressure and impregnated.

さらにこのスペーサが混入したポリイミド溶液を第3図
(A)に示す如く、塗布の後、プリベークを80’C,
60分間行った。
Furthermore, after applying the polyimide solution mixed with this spacer as shown in FIG. 3(A), prebaking was performed at 80'C.
It lasted 60 minutes.

この前駆体溶液を希釈することにより、スペーサを固着
させるのに必要なポリイミド溶液の量を節約することは
可能である。
By diluting this precursor solution, it is possible to save on the amount of polyimide solution needed to fix the spacer.

さらにこのプリベークの後、第3図(B)に示す如く、
マスク(16)を用いた。このマスクは一定の間隙、例
えば30μおきに100μ口程度の透光用窓(17)を
有する。その後、紫外光(20)をこのマスクを通して
露光(10mW/cmzの光を約30秒)した。マスク
は図面の如く下側からも、また基板の上側から行っても
よい。
Furthermore, after this prebaking, as shown in FIG. 3(B),
A mask (16) was used. This mask has light-transmitting windows (17) of about 100 μm at regular intervals, for example, every 30 μm. Thereafter, ultraviolet light (20) was exposed through this mask (10 mW/cmz light for about 30 seconds). The mask may be applied from below as shown in the drawings or from above the substrate.

すると、アクティブ素子の1つの液晶の電極が400μ
口であった場合、アクティブ素子のない領域であって、
各電極に設けられた30μOの領域に約1〜4個の割合
で方形状のスペーサを配設することが可能となる。
Then, the electrode of one liquid crystal of the active element is 400μ
If it is a mouth, it is an area without active elements,
It becomes possible to arrange approximately 1 to 4 rectangular spacers in an area of 30 μO provided on each electrode.

即ち、スペーサ間を実質的に所定の間隔としてスペーサ
を散在して配設させることが可能となる。
That is, it becomes possible to arrange the spacers in a scattered manner with substantially a predetermined interval between the spacers.

さらにこのマスクにより、アクティブ方式の液晶パネル
であった場合、配線、非線型素子またスイッチング素子
の存在する領域を意図的に避けることができる。即ちス
ペーサによりその後の使用に際し、機械応力等によりリ
ードが断線したり、また素子が不動作になる可能性を避
けることができる。
Further, with this mask, in the case of an active type liquid crystal panel, areas where wiring, non-linear elements, or switching elements are present can be intentionally avoided. That is, the spacer can prevent the possibility that the leads will break due to mechanical stress or the like, or that the element will become inoperable during subsequent use.

かかる後、現像を超音波現像法で25℃、25分、所定
のDV −140を用いて行った。さらにイソパロノー
ルにて超長波リンスを25℃、15秒間行った。
After this, development was carried out by an ultrasonic development method at 25° C. for 25 minutes using a specified DV-140. Furthermore, ultralong wave rinsing was performed with isoparonol at 25° C. for 15 seconds.

かくして第3図(C)に示した如く、透光性基板(1)
上の透光性導電膜とその上のポリイミド配向膜(3)上
に密着して外側にポリイミド樹脂(18)が残存する方
形のスペーサ(14)を概略所定の位置に配設すること
ができた。
Thus, as shown in FIG. 3(C), the transparent substrate (1)
A rectangular spacer (14) with the polyimide resin (18) remaining in close contact with the upper translucent conductive film and the polyimide alignment film (3) thereon can be disposed at approximately a predetermined position. Ta.

次に第2図に示す如く、透光性電極(2”)、配向膜(
3″)が内側に設けられた対向透光性ガラス(1”)の
周辺にシール材をコートした後、合わせプレスと同時に
間隙の真空引きも行った。この状態でポストベークを2
00〜300℃にて行った。するとスペーサが表面に残
存したポリイミドが対向するガラスのポリイミド配向膜
に密着し2枚のガラスをはりあわせることが可能となっ
た。
Next, as shown in Figure 2, a transparent electrode (2"), an alignment film (
After coating the periphery of the opposed translucent glass (1") with a glass plate (3") provided on the inside, a sealing material was applied, and the gap was evacuated at the same time as the pressing. In this state, post-bake 2 times.
The temperature was 00 to 300°C. Then, the polyimide remaining on the surface of the spacer came into close contact with the polyimide alignment film of the opposing glass, making it possible to bond the two glasses together.

この場合、対抗するガラスをセミハードな固さとすると
、ガラス自体が持っている歪みにそって他方のガラスを
合わせ、かつ、そのスペーサでお互いを固着してしまう
ため、ガラス基板自体が歪み(滑らかな凹凸)を有して
いても、それと無関係に電極間隙を一定としてその対向
するガラス同志を実質的に互いに張り合わせ得る。
In this case, if the opposing glass is semi-hard, the other glass will be aligned with the distortion of the glass itself and will be fixed together using the spacer, causing the glass substrate itself to become distorted (smooth Even if the electrodes have irregularities (concavities and convexities), the electrode gaps can be kept constant regardless of the irregularities, and the opposing glasses can be substantially bonded to each other.

本発明の実施例においては、この後このスペーサで保持
された間隙内に液晶(5)を公知の方法で充填した。
In the embodiment of the present invention, the gap held by the spacer was then filled with liquid crystal (5) by a known method.

「効果j 本発明は以上に示す如く、2つの相対向する電極の間隙
を一定にするため、同じ寸法のスペーサによりその上下
の配向膜と互いに密着せしめたものである。その結果、
2つの配向膜間の間隔は所定の厚さ±0.5μの範囲で
一定にできた。特にアクティブマトリックス構造を有し
、そのドツト数を400 X1920も有する20c+
m X 30cmもの大面積の液晶パネルにおいて、中
央部が必要以上に膨れたり、また互いに2つの電極間が
近接したりすることを防ぐことができた。
Effect j As described above, in the present invention, in order to make the gap between two opposing electrodes constant, the upper and lower alignment films are brought into close contact with each other using spacers of the same size.As a result,
The distance between the two alignment films could be kept constant within the range of a predetermined thickness ±0.5μ. In particular, 20c+ has an active matrix structure and has a dot count of 400 x 1920.
In a liquid crystal panel with a large area of m x 30 cm, it was possible to prevent the central part from expanding more than necessary or the two electrodes from coming close to each other.

このため、従来では大面積の基板を用いて液晶を作らん
とすると、それぞれの基板をきわめて精密に研磨しなけ
ればならなかった。しかし本発明においては、かかるガ
ラス基板の価格の2〜5倍もの高価な処理工程がないと
いう他の特長を有する。
For this reason, in the past, if a liquid crystal was manufactured using large-area substrates, each substrate had to be polished extremely precisely. However, the present invention has another feature in that there is no processing step that is 2 to 5 times as expensive as the price of such a glass substrate.

加えてスペーサが約400μ間に1〜数個設けられてい
るため、いわゆる合わせガラスと同様にきわめて強固な
基板として液晶パネルを取り扱うことができるようにな
った。
In addition, since one to several spacers are provided at a distance of approximately 400 μm, the liquid crystal panel can now be handled as an extremely strong substrate similar to so-called laminated glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より公知の液晶表示装置の縦断面図を示す
。 第2図は本発明の液晶表示装置の縦断面図を示す。 第3図は本発明の液晶表示装置の作製工程を示す。
FIG. 1 shows a longitudinal sectional view of a conventionally known liquid crystal display device. FIG. 2 shows a longitudinal sectional view of the liquid crystal display device of the present invention. FIG. 3 shows the manufacturing process of the liquid crystal display device of the present invention.

Claims (1)

【特許請求の範囲】 1、内側にそれぞれ透明電極、配向膜が設けられ相対向
する2枚の透明基板間にスペーサを介在せしめるととも
に、前記基板間に液晶を充填してなる液晶表示パネルに
おいて、前記透明基板の一方が柔軟性を有することを特
徴とする液晶表示パネル。 2、特許請求の排気第1項において、透光性基板の一方
は柔軟性を有することを特徴とする液晶表示パネル。
[Claims] 1. A liquid crystal display panel comprising two transparent substrates each having a transparent electrode and an alignment film on the inside, interposing a spacer between two opposing transparent substrates, and filling liquid crystal between the substrates, A liquid crystal display panel characterized in that one of the transparent substrates has flexibility. 2. The liquid crystal display panel according to claim 1, wherein one of the light-transmitting substrates is flexible.
JP245085A 1985-01-09 1985-01-09 Liquid crystal display panel Pending JPS61160719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP245085A JPS61160719A (en) 1985-01-09 1985-01-09 Liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP245085A JPS61160719A (en) 1985-01-09 1985-01-09 Liquid crystal display panel

Publications (1)

Publication Number Publication Date
JPS61160719A true JPS61160719A (en) 1986-07-21

Family

ID=11529615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP245085A Pending JPS61160719A (en) 1985-01-09 1985-01-09 Liquid crystal display panel

Country Status (1)

Country Link
JP (1) JPS61160719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096809A (en) * 2008-10-14 2010-04-30 Mitsubishi Electric Corp Liquid crystal display and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784432A (en) * 1980-11-14 1982-05-26 Seiko Epson Corp Liquid crystal display panel
JPS59222817A (en) * 1983-06-02 1984-12-14 Asahi Glass Co Ltd Liquid crystal display device
JPS6019125A (en) * 1983-07-12 1985-01-31 Mitsubishi Electric Corp Liquid crystal cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784432A (en) * 1980-11-14 1982-05-26 Seiko Epson Corp Liquid crystal display panel
JPS59222817A (en) * 1983-06-02 1984-12-14 Asahi Glass Co Ltd Liquid crystal display device
JPS6019125A (en) * 1983-07-12 1985-01-31 Mitsubishi Electric Corp Liquid crystal cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096809A (en) * 2008-10-14 2010-04-30 Mitsubishi Electric Corp Liquid crystal display and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5379139A (en) Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US4874461A (en) Method for manufacturing liquid crystal device with spacers formed by photolithography
US5963288A (en) Liquid crystal device having sealant and spacers made from the same material
EP0258848A2 (en) Liquid crystal device and method for manufacturing same with spacers formed by printing
JPS63110425A (en) Cell for sealing liquid crystal
EP0327071A2 (en) Electro-optical device
US5178571A (en) Method for manufacturing an electro-optical device
JPH0441810B2 (en)
JPS61173221A (en) Formation of liquid crystal display device
JPH06175139A (en) Plastic substrate liquid crystal display element and its production
JPS61160719A (en) Liquid crystal display panel
JP2003280008A (en) Liquid crystal display device and method for manufacturing
JPS61160721A (en) Liquid crystal display device
JPH10142595A (en) Liquid crystal display element and its production
JPH0441809B2 (en)
JPS61160722A (en) Manufacture of liquid crystal display device
JPS61173222A (en) Liquid crystal display device
JPH0146852B2 (en)
KR100687343B1 (en) Liquid crystal display device and method for manufacturing the same
JPS6224229A (en) Production of liquid crystal electro-optical device
JPH06110063A (en) Color liquid crystal optical device and its production
JPH01120532A (en) Liquid crystal element and its production
JPH02201424A (en) Production of liquid crystal display device
JPH0756543B2 (en) Liquid crystal display device manufacturing method
JPH03116115A (en) Production of liquid crystal panel