JPS6116031A - Production of vertical magnetic recording medium - Google Patents

Production of vertical magnetic recording medium

Info

Publication number
JPS6116031A
JPS6116031A JP13646384A JP13646384A JPS6116031A JP S6116031 A JPS6116031 A JP S6116031A JP 13646384 A JP13646384 A JP 13646384A JP 13646384 A JP13646384 A JP 13646384A JP S6116031 A JPS6116031 A JP S6116031A
Authority
JP
Japan
Prior art keywords
substrate
film
cylindrical
insulator
wrinkles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13646384A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kazuyoshi Honda
和義 本田
Hiroshi Nishida
宏 西田
Kiyokazu Touma
清和 東間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13646384A priority Critical patent/JPS6116031A/en
Publication of JPS6116031A publication Critical patent/JPS6116031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a satisfactory vertical magnetic recording medium which is free from wrinkles by setting an insulator to at least a part between a forming part of a vapor deposition film and a start part of contact between a substrate and a cylindrical can in order to separate the substrate from the can and setting different levels of potential between the can and a conductor film on the substrate for vapor deposition of a Co-Cr vertically magnetized film. CONSTITUTION:A cylindrical can 2 is grounded, and a roller 4 set at the outgoing side of a substrate 8 is connected to a power supply 11 in order to secure a difference of potential between a conductor part on the surface of the substrate 8 and the can 2. An insulator 14 is put in between a contact start part 12 (an arrow head) to the can 2 of the substrate 8 and a forming part 13 of a vapor deposition film in order to separate the substrate 8 from the can 2. An end of the insulator 14 is fixed to a tool 15. The attraction between the can 2 and the substrate 8 is small at an area where the insulator 14 exists. While the electrostatic attraction is produced by the voltage applied to a conductor film at an area where no insulator 14 exists. Thus the substrate 8 touches close to the can 2 and therefore no wrinkle is produced. Under such conditions, a Co-Cr vertically magnetized film is vapor-deposited. Thus a vertical magnetic recorder produces no wrinkle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度記録特性の優れた垂直磁気記録媒体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a perpendicular magnetic recording medium with excellent high-density recording characteristics.

(従来例の構成とその問題点) 短波長記録特性の優れた方式として垂直記録方式が知ら
れている。これは媒体の膜面に垂直方向の残留磁化を利
用するものである。従ってこの方式においては、膜面の
略垂直方向に残留磁化が残る垂直磁化膜が必要となる。
(Structure of conventional example and its problems) A perpendicular recording method is known as a method with excellent short wavelength recording characteristics. This utilizes residual magnetization in the direction perpendicular to the film surface of the medium. Therefore, this method requires a perpendicularly magnetized film in which residual magnetization remains in a direction substantially perpendicular to the film surface.

垂直磁化膜としては、CoとCr f主成分とするいわ
ゆるCo −Cr垂直磁化膜が優れた特性を有している
。Co −Cr垂直磁化膜はスバ、タリング法や真空蒸
着法(イオンシレーティング法のように蒸発原子の一部
をイオン化して膜を堆積する方法も含む。)により作製
されるが、特に後者の方法によれば非常に高い膜堆積速
度が達成出来、量産に適している。しかし以下に説明す
るように、実際に真空蒸着法によりCo −Cr垂直磁
化膜の作製を行なうと、種々の皺が発生するという問題
が生じた。皺が発生すると、磁気記録媒体として使用す
ることは不可能であり、何らかの解決策が必要である。
As a perpendicular magnetization film, a so-called Co--Cr perpendicular magnetization film containing Co and Crf as main components has excellent characteristics. Co-Cr perpendicularly magnetized films are manufactured by the spinning, taling, and vacuum deposition methods (including methods such as ion silating, in which a part of the evaporated atoms is ionized to deposit the film), but the latter method is particularly effective. The method allows very high film deposition rates to be achieved and is suitable for mass production. However, as will be explained below, when a Co--Cr perpendicular magnetization film was actually fabricated by vacuum evaporation, a problem occurred in that various wrinkles were generated. If wrinkles occur, it is impossible to use the material as a magnetic recording medium, and some kind of solution is required.

真空蒸着法によりCo −Cr垂直磁化膜を作製する方
法としては、基板を円筒状キャンの周面に浴わせて走行
させつつ蒸着を行なう方法が最も優れている。
As a method for producing a Co--Cr perpendicularly magnetized film by a vacuum evaporation method, the most excellent method is to carry out the evaporation while moving the substrate around the circumferential surface of a cylindrical can.

第1図はCo−Cr垂直磁化膜を作製するための従来の
真空蒸着装置内部の正面図である。
FIG. 1 is a front view of the interior of a conventional vacuum evaporation apparatus for producing a Co--Cr perpendicularly magnetized film.

高分子材料より成る基板】は円筒状キャン2の周面に沿
って走行する。3及び4はそれぞれ基板入側ローラ及び
基板出側ローラであり、テープ状の基板1ff:案内走
行させるものである。5は蒸発源、6は遮蔽板である。
A substrate made of a polymeric material runs along the circumferential surface of the cylindrical can 2. Reference numerals 3 and 4 are a board entry roller and a board exit roller, respectively, which guide and run the tape-shaped board 1ff. 5 is an evaporation source, and 6 is a shielding plate.

以上の様に構成された従来の真空蒸着装置について以下
その動作を説明する。
The operation of the conventional vacuum evaporation apparatus configured as described above will be explained below.

基板入側ローラ3により案内された高分子制料より成る
基板1は、円筒状キャン2の回転に従いその周面に潜っ
て走行し、基板出側ローラ4により巻取り側へ案内され
る。なお、円筒状キャン2は周面の温度k 350℃付
近まで任意に温度設定が可能である。蒸発源5はCo 
−Cr合金インゴ。
The substrate 1 made of polymeric material guided by the substrate entry roller 3 runs under the circumferential surface of the cylindrical can 2 as it rotates, and is guided to the winding side by the substrate exit roller 4. Note that the temperature of the cylindrical can 2 can be arbitrarily set to a temperature of around 350° C. on the circumferential surface. Evaporation source 5 is Co
-Cr alloy ingo.

ト全加熱蒸発させる。遮蔽板6により、垂直入射に近い
成分を有する蒸発原子のみが、高分子材料より成る基&
1に付着してCo −Cr垂直磁化膜を形成する。
Heat and evaporate completely. Due to the shielding plate 6, only the evaporated atoms having a component close to normal incidence are exposed to the group made of polymer material.
1 to form a Co--Cr perpendicular magnetization film.

しかし、上記の構成によりCo −Cr垂直磁化膜を作
製すると、下記の様な問題が発生する。即ち、Co −
Cr垂直磁化膜に信号を記録再生すると、膜面に垂直方
向の保持力He上の大きな膜はど高い再生出力が得られ
る。He上は蒸着時の基板温度Tsubが上昇するに従
い高くなる。Co −Cr垂直磁化膜を実用化するため
には、少なくとも3000eのHe上が必要であるが、
そのためには蒸着時の基板温度T、、be 1.20℃
以上にしなければならないことが実験の結果間らかにな
った。より好ましくはHe上として5000e以上の値
を有する膜が必要であるが、この場合には蒸着時の基板
温度Tsubは200℃以上にしなければならない。な
お、ここで述べた蒸着時の基板温度Tsubとは円筒状
キャンの周面温度のことである。また、高分子材料より
成る基板1としては、表面性、安定性、量産性等の点か
ら考えてポリエチレンテレフタレートフィルムあるいは
ポリイミド系あるいはポリアミド系のフィルムが適して
いる。ところがこれらのフィルムを用い、第1図に示さ
れる様な方法によって円筒状キャン2の周面の温度を1
20℃以上として蒸着を行なうと、蒸着部で波状の皺が
発生する。
However, when a Co--Cr perpendicular magnetization film is manufactured with the above configuration, the following problems occur. That is, Co −
When a signal is recorded and reproduced in a Cr perpendicularly magnetized film, a film having a large coercive force He perpendicular to the film surface can obtain a high reproduction output. The temperature on He increases as the substrate temperature Tsub during evaporation increases. In order to put a Co-Cr perpendicular magnetization film into practical use, at least 3000e of He is required.
For this purpose, the substrate temperature T during evaporation must be 1.20°C.
As a result of the experiment, it became clear that the above steps had to be taken. More preferably, a film having a value of 5000e or more is required on He, but in this case, the substrate temperature Tsub during vapor deposition must be 200° C. or more. Note that the substrate temperature Tsub during vapor deposition mentioned here refers to the temperature of the peripheral surface of the cylindrical can. Further, as the substrate 1 made of a polymeric material, a polyethylene terephthalate film, a polyimide film, or a polyamide film is suitable from the viewpoint of surface properties, stability, mass productivity, etc. However, by using these films and using the method shown in FIG.
If vapor deposition is performed at a temperature of 20° C. or higher, wavy wrinkles will occur in the vapor deposited area.

第2図はこのときの基板1上に発生する波状の皺の発生
状態を示す立体図であり、7は波状の皺を示す。このよ
うな波状皺7は、円筒状キャン2と基板1との接触が不
充分の場合に蒸着部で発生することが明らかになった。
FIG. 2 is a three-dimensional diagram showing how wavy wrinkles are generated on the substrate 1 at this time, and numeral 7 indicates the wavy wrinkles. It has been revealed that such wavy wrinkles 7 occur in the vapor deposition part when the contact between the cylindrical can 2 and the substrate 1 is insufficient.

そこでこれを防止する方法として、高分子材料より成る
基板1の上に導体膜を形成してこの導体膜と円筒状キャ
ン2との間に電位差を設け、静電引力によって密着させ
ることが考えられる。なお、この導体膜としてパーマロ
イやTiを用いると垂直磁気記録媒体としての記録再生
特性や配向性が向上する。
Therefore, one possible way to prevent this is to form a conductive film on the substrate 1 made of a polymeric material, create a potential difference between this conductive film and the cylindrical can 2, and bring them into close contact by electrostatic attraction. . Note that when permalloy or Ti is used as this conductive film, the recording/reproducing characteristics and orientation of the perpendicular magnetic recording medium are improved.

第3図は上記の様に導体膜と円筒状キヤ、/2との間に
電位差を設けて、Co−Cr垂直磁化膜を蒸着した場合
の状態を示す立体図である。8は表面(円筒状キャン2
に接していない面)に導体膜の形成された高分子材料よ
り成る基板である。導体膜と円筒状キャン2との間に印
加する電圧とじては、直流電圧でも良いし、交流電圧で
も良い。上記の方法1(よれば、第2図に示される様な
波状皺7は消滅するが、基板8が円筒状キャン2に接す
る際に、ランダムな皺9が発生する。このランダムな皺
9の発生ずる原因は次の様に考えられる。
FIG. 3 is a three-dimensional view showing a state in which a Co--Cr perpendicular magnetization film is deposited by providing a potential difference between the conductor film and the cylindrical carrier 2 as described above. 8 is the surface (cylindrical can 2
This is a substrate made of a polymeric material with a conductor film formed on the surface (not in contact with the surface). The voltage applied between the conductor film and the cylindrical can 2 may be either a direct current voltage or an alternating current voltage. According to the above method 1, the wavy wrinkles 7 as shown in FIG. 2 disappear, but random wrinkles 9 are generated when the substrate 8 comes into contact with the cylindrical can 2. The possible causes of this occurrence are as follows.

基板8が円筒状キャン2に接する際に、円筒状キャン2
が高温のため、基板8が急激に加熱され変形を生じる。
When the substrate 8 contacts the cylindrical can 2, the cylindrical can 2
Since the temperature is high, the substrate 8 is rapidly heated and deformed.

変形が修正されない状態で静電引力により円筒状キャン
2に密着するため、基板8にはランダムな皺9が発生す
る。
Random wrinkles 9 are generated on the substrate 8 because the substrate 8 is brought into close contact with the cylindrical can 2 due to electrostatic attraction in a state where the deformation is not corrected.

第4図は第3図のランダムな皺9を改良することを試み
た装置の立体図である。この装置の構成は第:3図と殆
んど同しであるが、第4図では基板入側ローラ3を二、
fローラ3′に変更した点が異なっている。二、ノロー
ラ3′の表面は一般にゴムで作られている。表面に導体
膜の形成された高分子制料より成る基板8は、円筒状キ
ャン2に接し始める際に、二、ブローン3′により円筒
状キャン2に押さえつけられる。しかしながらこの構成
でも、円筒状キャン2の温度を高くし、基板8と円筒状
キャン2との間に電圧を印加して、Co −Cr垂直磁
化膜を作製すると、基板8が円筒状キャン2に接触する
際に急激な加熱のため変形が発生し、これが修正される
前に二、ゾローラ3′によって押さえつけられるために
折れ皺10が発生する。
FIG. 4 is a three-dimensional view of a device that attempts to improve the random wrinkles 9 in FIG. 3. The configuration of this device is almost the same as in Fig. 3, but in Fig. 4, the board entrance roller 3 is
The difference is that the f roller is changed to 3'. 2. The surface of the roller 3' is generally made of rubber. When the substrate 8 made of a polymer material with a conductive film formed on its surface starts to come into contact with the cylindrical can 2, it is pressed against the cylindrical can 2 by two blowers 3'. However, even with this configuration, when the temperature of the cylindrical can 2 is increased and a voltage is applied between the substrate 8 and the cylindrical can 2 to produce a Co-Cr perpendicular magnetization film, the substrate 8 is attached to the cylindrical can 2. Upon contact, deformation occurs due to rapid heating, and before this deformation is corrected, creases 10 are generated due to being pressed down by the second roller 3'.

以上の様に従来の構成では、Co −Cr垂直磁化膜を
蒸着する際に、高分子材第4より成る基板に皺が発生し
、磁気記録媒体としては使用出来ないという問題点を有
していた。
As described above, the conventional structure has the problem that wrinkles occur in the substrate made of the fourth polymer material when the Co-Cr perpendicularly magnetized film is deposited, making it unusable as a magnetic recording medium. Ta.

(発明の目的) 本発明は上記の様な問題点を解決するものであり、皺の
ない良好な垂直磁気記録媒体を製造するだめの方法を提
供することを目的としている。
(Objective of the Invention) The present invention solves the above-mentioned problems, and aims to provide a method for manufacturing a good perpendicular magnetic recording medium without wrinkles.

(発明の構成) 本発明は120℃以上に昇温された円筒状キャンの周面
に活って走行しつつある、表面に導体膜の形成された高
分子材料より成る基板上に、c。
(Structure of the Invention) The present invention is based on a substrate made of a polymeric material having a conductive film formed on its surface, which is running on the circumferential surface of a cylindrical can whose temperature has been raised to 120° C. or higher.

とCrf主成分とする垂直磁化膜を真空蒸着法により形
成する際に、上記基板の上記円筒状キャンへの接触開始
部と蒸着膜形成部との間の少なくとも一部分に、上記基
板と上記円筒状キャン金分離する絶縁体を配置し、かつ
上記導体膜と上記円筒状キャンを異なる電位にするよう
にした垂直磁気記録媒体の製造方法であり、本発明の方
法を用いることにより皺のない垂直磁気記録媒体が得ら
れる。
When forming a perpendicularly magnetized film mainly composed of This is a method for manufacturing a perpendicular magnetic recording medium in which an insulator is arranged to separate the conductive film and the cylindrical can, and the conductor film and the cylindrical can are made to have different potentials. A recording medium is obtained.

(実施例の説明) 第5図は本発明の製造方法の一実施例を説明するだめの
真空蒸着装置内部の正面図である。
(Description of Examples) FIG. 5 is a front view of the inside of a vacuum evaporation apparatus for explaining an example of the manufacturing method of the present invention.

この実施例では、円筒状キャン2は接地され、捷だ、基
板出側ローラ4は、表面に導体膜の形成された高分子材
料より成る基板8の表面の導体部と円筒状キャン2との
間に電位差を設けるために電源11に接続されている。
In this embodiment, the cylindrical can 2 is grounded and the substrate exit roller 4 connects the cylindrical can 2 with the conductive portion on the surface of the substrate 8 made of a polymeric material on which a conductive film is formed. It is connected to a power source 11 to provide a potential difference therebetween.

なお、基板出側ローラ4の電位は正でも負でも良いし、
交流でもよい。
Note that the potential of the substrate output roller 4 may be positive or negative,
It can also be an exchange.

図中の矢印12け基板8が円筒状キャン2に接し始める
場所即ち接触開始部を示す。1:l;を蒸着膜形成部で
あり、ここでCo −Cr垂直磁化膜が形成される。1
4は接触開始部12と蒸着膜形成部】3との間に、基板
8と円筒状キャ72を分離するために設けられた絶縁体
であり、15け絶縁体14の一端を固定する治具である
。絶縁体14は、固定治具15により固定されているた
めに、基板8及び円筒状キャン2′id、絶縁体14の
表面上をすべって動くことになる。従って絶縁体14と
しては、出来る限り摩擦係数の小さいものがT1しい。
The arrow 12 in the figure indicates the location where the substrate 8 begins to come into contact with the cylindrical can 2, that is, the contact start portion. 1:l; is a deposited film forming part, where a Co--Cr perpendicular magnetization film is formed. 1
4 is an insulator provided between the contact initiation part 12 and the deposited film forming part 3 to separate the substrate 8 and the cylindrical cap 72, and a jig for fixing one end of the 15-piece insulator 14. It is. Since the insulator 14 is fixed by the fixing jig 15, it slides on the surfaces of the substrate 8, the cylindrical can 2'id, and the insulator 14. Therefore, it is desirable for the insulator 14 to have a friction coefficient T1 as small as possible.

我々の行なった実験の結果、テフロン系のノートが最も
適していることが明らかになった。
Our experiments have shown that Teflon-based notebooks are the most suitable.

以上のような配置にすることにより、基板8と円筒状キ
ャン2との間に絶縁体14が存在する部分では、この絶
縁体14の膜厚を適当に設定することにより、円筒状キ
ャン2と基板8における導体膜との間に電位差が存在し
ても、両者間に働く引力は弱い。i方、絶縁体14のな
い部分では基板8上の導体膜が電源J】により電圧を印
加さ八ているので、円筒状キャン2と基板8上の導体膜
との間に強い静電引力が働き、基板8が円筒状キャン2
に張り付く。
With the above arrangement, in the area where the insulator 14 exists between the substrate 8 and the cylindrical can 2, by appropriately setting the film thickness of the insulator 14, the cylindrical can 2 and Even if a potential difference exists between the substrate 8 and the conductive film, the attractive force acting between the two is weak. On the other hand, in the part where the insulator 14 is not present, a voltage is applied to the conductive film on the substrate 8 by the power source J, so a strong electrostatic attraction is created between the cylindrical can 2 and the conductive film on the substrate 8. The board 8 is a cylindrical can 2.
stick to.

第;3図及び第・1図に示される従来の方法において(
寸、基板8が円筒状キャン2に接する際に、基板8が急
激に加熱され変形が発生し、この変形が修正される“前
に円筒状キャ/に密着していた。ためにランダムな皺あ
るいは折れ皺が発生してい汽が、本発明においては基板
8が円筒状キャン2に絶縁体14を介して接してから、
この絶縁体1・1がなくなる壕での間では基板8と円筒
状キャン2との間には基板8のテン/カンにょるカ以外
のカは弱いので、基板8け絶縁体14上をほぼ自由に動
ける。即ち、基板8が矢印12の部分で絶縁物14を介
して円筒状キャン2に接し始めると、基板8は急激に熱
変形するが、この変形の際に基板8と円筒状キャン2と
の間に静電引力のような強いカが殆ど働いていないので
、ランダムな皺や折れ皺を発生せずに熱変形全終了する
。そして、絶縁物14がなくなる部分において基板8は
熱変形を終了した状態で静電引力により円筒状キャン2
に張り付くことになるので円筒状キャ/に張り付く際に
皺は全く生じない。蒸着膜形成部13においては、基板
8上の導体膜と円筒状キャン2との間の静電引力により
基板8は円筒状キャン2に張り付いているために、第2
図に示されるような波状の皺も生しない。このように、
本発明の方法によれば皺は全く発生しない。
In the conventional method shown in Figure 3 and Figure 1 (
When the substrate 8 comes into contact with the cylindrical can 2, the substrate 8 is rapidly heated and deformed, and before this deformation is corrected, it was in close contact with the cylindrical can.This causes random wrinkles. Alternatively, in the present invention, after the substrate 8 comes into contact with the cylindrical can 2 via the insulator 14,
Between the trench where the insulators 1 and 1 disappear, the force between the board 8 and the cylindrical can 2 other than the tension force of the board 8 is weak, so the board 8 almost passes over the insulator 14. I can move freely. That is, when the substrate 8 begins to come into contact with the cylindrical can 2 through the insulator 14 at the portion indicated by the arrow 12, the substrate 8 is rapidly thermally deformed, but during this deformation, the gap between the substrate 8 and the cylindrical can 2 is Since there is almost no strong force such as electrostatic attraction acting on the material, the thermal deformation is completely completed without generating random wrinkles or creases. Then, in the part where the insulator 14 is removed, the substrate 8 is thermally deformed and the cylindrical can 2 is moved by electrostatic attraction.
Since it sticks to the cylindrical case, no wrinkles occur when it sticks to the cylindrical case. In the vapor deposited film forming section 13, since the substrate 8 is stuck to the cylindrical can 2 due to the electrostatic attraction between the conductor film on the substrate 8 and the cylindrical can 2, the second
There are no wavy wrinkles as shown in the figure. in this way,
According to the method of the present invention, no wrinkles occur at all.

なお、円筒状キャン2の周面は一般に硬質Crメ、キが
施されているが、このような金属膜ではなくAt203
等の絶縁物がコーティングされていても何ら差支えない
。また、電源11の具体的な電圧値、絶縁体14の膜厚
、接触開始部12力・らの絶縁体14の長さ等は、円筒
状キャン2の直径及び温度、基板の幅及び膜厚等により
異なる。−例とし2て、円筒状キャンの直径’(i75
0crn、温度を250℃、基板の幅及び膜厚をそれぞ
れ15crn及び50μm1基板上の導体膜を膜厚30
00にのパーマロイとした場合に、電源11の電圧を1
00〜250V、絶縁体14を膜厚50μmのテフロン
ノート、接触開始部12からの絶縁体14の長さf、1
10〜30crnとすると、皺の全くない長尺のCo 
−Cr垂直磁気記録媒体が安定に得られた。また、絶縁
体I4の一端は第6図(a)のように他の部分と均一の
厚さであっても所期の目的は達成されるが、第6図(b
)に示されるように多段構造にするか、あるいは第6図
(c)に示されるように傾斜構造にすることにより、さ
らに安定性が向上することが確認された。
Incidentally, the circumferential surface of the cylindrical can 2 is generally coated with hard Cr film, but instead of such a metal film, At203
There is no problem even if it is coated with an insulating material such as. In addition, the specific voltage value of the power source 11, the film thickness of the insulator 14, the length of the insulator 14 between the contact starting part 12, etc., the diameter and temperature of the cylindrical can 2, the width and film thickness of the substrate, etc. It varies depending on the situation. - As an example 2, the diameter of the cylindrical can (i75
0crn, temperature 250℃, substrate width and film thickness 15crn and 50μm, respectively.The conductor film on one substrate was 30cm thick.
00 permalloy, the voltage of the power supply 11 is 1
00 to 250V, the insulator 14 is a Teflon notebook with a film thickness of 50 μm, the length of the insulator 14 from the contact start part 12 is f, 1
When it is 10 to 30 crn, it is a long Co with no wrinkles.
A -Cr perpendicular magnetic recording medium was stably obtained. Further, even if one end of the insulator I4 has a thickness that is uniform with the other parts as shown in FIG. 6(a), the desired purpose can be achieved; however, as shown in FIG.
) It was confirmed that the stability could be further improved by using a multi-stage structure as shown in FIG. 6(c) or by using an inclined structure as shown in FIG. 6(c).

次に本発明の具体的な実施例について説明する。Next, specific examples of the present invention will be described.

第5図に示した真空蒸着装置によって幅15cm、膜厚
10μmのポリアミド系フィルム上に膜厚2500Xの
・ぐ−マロイ膜を蒸着し、さらにその上に膜厚1500
XのCo −Cr垂直磁化膜を蒸着した。但し、幅15
cmのフィルムの幅方向の両端10はマーノン部として
蒸着膜を形成しなかった。
Using the vacuum evaporation apparatus shown in Fig. 5, a 2500X thick Gu-Malloy film was deposited on a polyamide film 15cm wide and 10μm thick, and then a 1500X thick film was deposited on top of it.
A Co--Cr perpendicular magnetization film of X was deposited. However, width 15
A deposited film was not formed at both ends 10 in the width direction of the film having a width of 10 cm as a mernon part.

即ち、蒸着膜の形成されている幅は13crnである。That is, the width of the deposited film is 13 crn.

・e−マロイ膜蒸着の際には、直径50crnの円筒状
キャン2の周面の温度を室温に設定しだので、皺は入ら
なかった。パーマロイ膜の上にさらにCo −Cr垂直
磁化膜を蒸着する際には、円筒状キャン2の周面の温度
を260℃とし、電源11により金属ローラ4に一70
Vの電圧を印加した。絶縁体14として膜厚30μmの
テフロン/−トヲ用いた。
- When depositing the e-malloy film, the temperature of the circumferential surface of the cylindrical can 2 with a diameter of 50 crn was set at room temperature, so no wrinkles were formed. When further depositing a Co-Cr perpendicularly magnetized film on the permalloy film, the temperature of the circumferential surface of the cylindrical can 2 is set to 260°C, and the metal roller 4 is heated to 70°C by the power source 11.
A voltage of V was applied. As the insulator 14, Teflon/-Teflon with a film thickness of 30 μm was used.

捷だ接触開始部12かもの絶縁体14の長さを20cr
nとした。蒸着の完了した垂直磁気記録媒体において、
皺は皆無であった。また、Co−Cr垂直磁化膜のHe
土は7000eとなっており、優れた短波長記録再生特
性を示した。
The length of the contact start part 12 and the insulator 14 is 20 cr.
It was set as n. In the perpendicular magnetic recording medium after vapor deposition,
There were no wrinkles. In addition, He of the Co-Cr perpendicular magnetization film
The soil was 7000e, and showed excellent short wavelength recording and reproducing characteristics.

(発明の効果) 以北説明したように本発明の方法によれば、従来、高分
子材料よりなる基板上にCo −Cr垂直磁化膜を蒸着
する際に生じていた皺を完全に除去することが可能であ
り、皺のない垂直磁気記録媒体を提供出来る。
(Effects of the Invention) As explained above, according to the method of the present invention, it is possible to completely remove wrinkles that conventionally occur when depositing a Co--Cr perpendicularly magnetized film on a substrate made of a polymer material. This makes it possible to provide a wrinkle-free perpendicular magnetic recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCo −Cr垂直磁化膜を作製するだめの従来
の真空蒸着装置内部の正面図、第2図〜第4図は従来の
真空蒸着装置において基板に発生ずる皺を説明するだめ
の立体図、第5図は本発明の製造方法の一実施例を説明
するだめの真空蒸着装置内部の正面図、第6図は絶縁体
の一端の形状を説明するための図である。 1.8・基板、2・・円筒状キャン、3・基板入側ロー
ラ、4・・基板出側ローラ、5・・蒸発源、6遮蔽板、
7・・・波状皺、9−ランダムな皺、10・・折れ皺、
11・電源、12・矢印・接触開始部、14・・絶縁体
、15 ・絶縁体固定治具。 第1図 第2図 第3図 第4図 第5図 第6図
Figure 1 is a front view of the inside of a conventional vacuum evaporation apparatus for producing a Co--Cr perpendicularly magnetized film, and Figures 2 to 4 are three-dimensional diagrams illustrating the wrinkles that occur on a substrate in a conventional vacuum evaporation apparatus. 5 is a front view of the inside of a vacuum evaporation apparatus for explaining an embodiment of the manufacturing method of the present invention, and FIG. 6 is a diagram for explaining the shape of one end of an insulator. 1.8. Substrate, 2. Cylindrical can, 3. Substrate entry roller, 4. Substrate exit roller, 5. Evaporation source, 6 Shielding plate,
7... Wavy wrinkles, 9- Random wrinkles, 10... Folded wrinkles,
11. Power supply, 12. Arrow, contact start part, 14. Insulator, 15. Insulator fixing jig. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 120℃以上に昇温された円筒状キャンの周面に沿って
走行しつつある、表面に導体膜の形成された高分子材料
より成る基板上に、CoとCrを主成分とする垂直磁化
膜を真空蒸着法により形成する際に、上記基板の上記円
筒状キャンへの接触開始部と蒸着膜形成部との間の少な
くとも一部分に、上記基板と上記円筒状キャンを分離す
る絶縁体を配置し、かつ上記導体膜と上記円筒状キャン
を異なる電位にすることを特徴とする垂直磁気記録媒体
の製造方法。
A perpendicularly magnetized film mainly composed of Co and Cr is placed on a substrate made of a polymeric material with a conductive film formed on its surface, which is running along the circumference of a cylindrical can whose temperature has been raised to over 120°C. is formed by a vacuum evaporation method, an insulator for separating the substrate and the cylindrical can is disposed at least in a portion between the contact initiation portion of the substrate to the cylindrical can and the vapor deposited film forming portion. , and a method for manufacturing a perpendicular magnetic recording medium, characterized in that the conductor film and the cylindrical can are set to different potentials.
JP13646384A 1984-07-03 1984-07-03 Production of vertical magnetic recording medium Pending JPS6116031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13646384A JPS6116031A (en) 1984-07-03 1984-07-03 Production of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13646384A JPS6116031A (en) 1984-07-03 1984-07-03 Production of vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6116031A true JPS6116031A (en) 1986-01-24

Family

ID=15175698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13646384A Pending JPS6116031A (en) 1984-07-03 1984-07-03 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6116031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112226A (en) * 1985-11-11 1987-05-23 Sony Corp Production of vertical magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112226A (en) * 1985-11-11 1987-05-23 Sony Corp Production of vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0411625B2 (en)
JPS6116031A (en) Production of vertical magnetic recording medium
JPS6089828A (en) Manufacture of vertical magnetic recording medium
JPS61120345A (en) Production of vertical magnetic recording medium
JPS59201230A (en) Manufacture of vertical magnetic recording medium
JPS59172163A (en) Production of vertical magnetic recording medium
JPS61187127A (en) Manufacture of magnetic recording medium
JPS63277750A (en) Formation of thin film
JPS61120346A (en) Production of vertical magnetic recording medium
JPS6059069A (en) Manufacture of metallic thin film
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPS6297133A (en) Production of magnetic recording medium
JPS62219234A (en) Production of magnetic recording medium
JPH0334131B2 (en)
JPH01263274A (en) Thin film producing apparatus
JPH082536B2 (en) Film temperature treatment method
JPS63308729A (en) Production of magnetic recording medium
JPS60147934A (en) Apparatus for producing magnetic recording medium
JPS63206912A (en) Production of magnetic recording medium
JPS62226426A (en) Production device for magnetic recording medium
JPS58118034A (en) Production of magnetic recording medium
JPS6132219A (en) Manufacture of vertical magnetic recording medium
JPH06309646A (en) Thin-film magnetic recording medium and its production
JPS63310959A (en) Production of thin metal film
JPH02239428A (en) Production of metal thin film