JPS61160054A - Packing material for optical splitting - Google Patents

Packing material for optical splitting

Info

Publication number
JPS61160054A
JPS61160054A JP60000169A JP16985A JPS61160054A JP S61160054 A JPS61160054 A JP S61160054A JP 60000169 A JP60000169 A JP 60000169A JP 16985 A JP16985 A JP 16985A JP S61160054 A JPS61160054 A JP S61160054A
Authority
JP
Japan
Prior art keywords
naphthyl
optically active
formula
silica gel
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60000169A
Other languages
Japanese (ja)
Inventor
Yuzo Sakurai
桜井 雄三
Sakie Hasegawa
長谷川 佐喜恵
Norio Kitajima
教雄 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60000169A priority Critical patent/JPS61160054A/en
Publication of JPS61160054A publication Critical patent/JPS61160054A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3276Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a packing agent having not only good separation efficiency but also sufficient mechanical strength and easily adaptable to high performance chromatography and having excellent separation capacity even to a roughened plane compound, by fixing a copolymer consisting of a specific optically active monomer and a vinyl silane compound to a silica gel. CONSTITUTION:A copolymer, which consists of an optically active monomer represented by formula I (wherein R1 is phenyl, 1-naphthyl, 2-naphthyl or lower alkyl and phenyl and 1- or 2-naphthyl may have a substituent. R2 is lower alkyl, R3 is H or CH3 and * is asymmetric carbon) and a compound represented by formula II (wherein R4, R5 and R6 are alkyl, alkoxy, OH or halogen and one or more of R4, R5, R6 is alkoxy and halogen), is obtained so that the mol ratio of the compound represented by the formula I and the compound represented by the formula II is 0.5-80. This copolymer is fixed to a silica gel particle pref. having a uniform particle size and an average fine pore size of 100Angstrom or more. By this method, a packing agent excellent in the optical separation capacity of a wide range of a racemic mixture.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光学的に活性なポリマー含シリカゲルに固定化
した光学分割用充填剤に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a filler for optical resolution immobilized on an optically active polymer-containing silica gel.

〈従来の技術〉 うじミa合物を光学的対称体に分割することは分析化学
および合成化学において重要である。
<Prior Art> The separation of maggot a compound into optically symmetric bodies is important in analytical and synthetic chemistry.

通常の方法はうぎミ混合物をジアステレオマー混合物に
変換させ、そのジアステレオマー混合物を溶解度などの
物理的性質の差異によって分離することからなる。これ
らの通常の方法のほかにクロマトグラフィーによってう
ぎミ混合物を分割する技術が近年著しく研究されており
、下記の技術が公知である。
A common method consists of converting the mixture into diastereomeric mixtures and separating the diastereomeric mixtures by differences in physical properties such as solubility. In addition to these conventional methods, the technique of separating the Ugimi mixture by chromatography has been extensively researched in recent years, and the following techniques are known.

(A)光学活性なアミンから誘導されるアクリル7ミド
モ/マーから17られるど−ズ状ポリマーを充填剤とし
て用いる液体クロマトグライー(特公昭59−7503
号公報)。
(A) Liquid chromatography using as a filler a doze-like polymer derived from an acrylic 7-midomo/mer derived from an optically active amine (Japanese Patent Publication No. 59-7503
Publication No.).

(B)光学活性物質をシリカゲル等の無償担体にグラフ
ト化することによって得られる光学活性な固定相を充填
剤として用いる液体クロマトグラフィー。
(B) Liquid chromatography using an optically active stationary phase obtained by grafting an optically active substance onto a free carrier such as silica gel as a packing material.

(a )光学活性なプロリンをグラフト化した充填剤を
用いる配位子交換による方法(J。
(a) Ligand exchange method using an optically active proline-grafted filler (J.

Chromatoar 、 266、0439 (19
83))。
Chromatoar, 266, 0439 (19
83)).

(b)π電子不足の光学活性化合物をグラフト化した充
填剤を用いる電荷移動錯体による方 ン去  (J、 
  ChrOn+atOgr   、   1 2 2
.   p  205(1976))。
(b) Removal by a charge transfer complex using a filler grafted with an optically active compound lacking π electrons (J,
ChrOn+atOgr, 1 2 2
.. p 205 (1976)).

(C)光学活性なN−アシル化アミノ酸をグラフト化し
た充填剤を用いる方法<J、ChrOmatOLJr 
、  186 、ρ543 (1979))。
(C) Method using a filler grafted with optically active N-acylated amino acids <J, ChrOmatOLJr
, 186, ρ543 (1979)).

(d)光学活性な1−(9−アンスリル)トリフルオロ
エタノールあるいは3.5−ジニトロベンゾイル化した
光学活性なフェニルグリシンをグラフト化した充填剤を
用いる方法(J 、 Cbromatogr 、  1
92、p143(1980)、J、Ora、Chell
、46.o 4988 (1981)))。
(d) A method using a filler grafted with optically active 1-(9-anthryl)trifluoroethanol or 3,5-dinitrobenzoylated optically active phenylglycine (J, Cbromatogr, 1)
92, p143 (1980), J. Ora, Chell.
, 46. o 4988 (1981))).

<e >光学活性な芳香族アミンをグラフト化した充填
剤を用いる方法(J 、 (:、 hromatogr
 。
<e> Method using a filler grafted with an optically active aromatic amine (J, (:, chromatogr
.

265、p、117(1983))。265, p. 117 (1983)).

〈発明が解決しようとする問題点〉 しかしながら、従来技術の(△)法においてはポリマー
ビーズが比較的大と<、ふぞろいでありカラム効゛率が
低い上に、灘械的強度が弱く、高流速化できないという
欠点を存している。また、ポリマービーズは親水性溶媒
においては膨潤しないlζめ、使用可能な溶媒が制限さ
れる欠点もある。これに対して、従来技術の(B)法に
おいては光学活性物質をシリカゲル等の無機jH体にグ
ラフト化することによって得られる光学活性な固定相は
礪械的強度が十分であり、高速化ら可能である。しかし
、分離し得る化合物が狭い範囲のものに限定されていた
り、また分離の程度が小さかったりし、さらにはグラフ
ト化した充填剤の製造が困難で再現性のある性能を持つ
充填剤が得にくかったりして、いずれも実用的な充填剤
とは言い難い。
<Problems to be solved by the invention> However, in the prior art (△) method, the polymer beads are relatively large and uneven, resulting in low column efficiency, as well as weak mechanical strength and high It has the disadvantage of not being able to increase the flow rate. Furthermore, since polymer beads do not swell in hydrophilic solvents, they have the disadvantage that the solvents that can be used are limited. On the other hand, in the conventional method (B), the optically active stationary phase obtained by grafting an optically active substance onto an inorganic jH body such as silica gel has sufficient mechanical strength and is suitable for speeding up. It is possible. However, the compounds that can be separated are limited to a narrow range, the degree of separation is small, and it is difficult to produce grafted fillers, making it difficult to obtain fillers with reproducible performance. Therefore, it is difficult to say that any of them are practical fillers.

これらのなかで光学活性な芳香族アミンをグラフト化し
た充填剤を用いる(e)法はアミン、アルコール、カル
ボン酸、アミノ酸、オキシ酸、アミノアルコールなど比
較的広範囲のラセミ混合物を分割し、高性能であるが、
分離の程度がまだ十分ではない。
Among these, method (e), which uses a filler grafted with optically active aromatic amines, separates a relatively wide range of racemic mixtures such as amines, alcohols, carboxylic acids, amino acids, oxyacids, and amino alcohols, and provides high performance. In Although,
The degree of separation is still not sufficient.

く問題点を解決するための手段および作用〉本発明者ら
はかかる状況のもとで、分析し得る化合物の範囲が広り
、WIJ造が比較的容易でしかも化学的に安定で実用的
な充填剤の提供を目的として鋭意検問を続けて来た結果
、下記一般式(1)で表わされる光学活性モノマーと下
記一般式(II)で表わされるモノマーとからなるポリ
マーをシリカゲルに固定化してなる光学分割用充填剤が
広範囲のラセミ混合物の分離に漫れた効果を示すのみな
らず、光学活性なポリマー構造を作ることにより、同種
構造のモノマー型充填剤と同等以上の性能を持つばかり
でなく、従来分離が困難であった面不整の化合物に対し
て優れた分離能を示すことを見い出し、本発明にデ11
達した。
Under these circumstances, the present inventors have developed a method that expands the range of compounds that can be analyzed, is relatively easy to construct with WIJ, is chemically stable, and is practical. As a result of our continued investigation with the aim of providing fillers, we have found that a polymer consisting of an optically active monomer represented by the following general formula (1) and a monomer represented by the following general formula (II) is immobilized on silica gel. The filler for optical resolution not only shows a wide range of effects in separating racemic mixtures, but by creating an optically active polymer structure, it not only has performance equivalent to or better than monomer-type fillers with the same structure. discovered that it exhibits excellent separation ability for compounds with irregular surfaces, which were difficult to separate in the past, and developed the present invention.
Reached.

■ (式中、R1はフェニル基、1−ナフチル基または2−
ナフチル基あるいは低級アルキル基で置換されたフェニ
ル基、1−ナフチル基または2−ナフチル基を表わし、
R2は低級アルキル基を表わし、R3は水素原子または
メチル暴を表わし、*は不整炭素原子を表わす。)普゛ CF+2 −CH−8i   −Rs       ・
・・ (II)(式中、R4,R5,Rsは同一または
相異なるアルキル基、アルコキシル基、ヒドロキシル塁
またはハロゲン原子を表わし、R4,R5、R6の少な
くとも1つはアルコキシル填またはハロゲン原子である
。) 本発明の充填剤は通常の化学反応で容易に製造し得る上
、化学的にも安定であるなど極めて有用な充填剤である
(In the formula, R1 is a phenyl group, a 1-naphthyl group, or a 2-
Represents a phenyl group, 1-naphthyl group or 2-naphthyl group substituted with a naphthyl group or a lower alkyl group,
R2 represents a lower alkyl group, R3 represents a hydrogen atom or a methyl group, and * represents an asymmetric carbon atom. ) Normal CF+2 -CH-8i -Rs ・
... (II) (wherein R4, R5, and Rs represent the same or different alkyl groups, alkoxyl groups, hydroxyl groups, or halogen atoms, and at least one of R4, R5, and R6 is an alkoxyl filler or a halogen atom) ) The filler of the present invention is an extremely useful filler because it can be easily produced by ordinary chemical reactions and is also chemically stable.

上記一般式(I)で表わされる光学活性モノマーは、例
えば、光学的に活性なアミンRIR2♂HNH2(ここ
で、R1,R2は上述のとおりである)をアクリルlS
!無水物またはメタクリル5!無水物と、特に4−第3
F&、ブチルピロカテコール等の重合禁止剤の存在下に
おいて、約−5℃乃至60℃の温度にて反応させること
によって得ることができるが、空温において不活性な有
機溶媒、特にベンゼン、トルエンなどの炭化水素または
塩化メチレン、クロロホルムなどのハロゲン化炭化水素
を用いて反応させることが好ましい。反応時間は適用す
る反応温度に左右されるが、通常約30分ないし4時間
である。
The optically active monomer represented by the above general formula (I) is, for example, an optically active amine RIR2♂HNH2 (where R1 and R2 are as described above), an acrylic lS
! Anhydrous or methacrylic 5! Anhydrous and especially 4-tertiary
It can be obtained by reacting at a temperature of about -5°C to 60°C in the presence of a polymerization inhibitor such as F&, butylpyrocatechol, etc., but it can be obtained by reacting with an organic solvent that is inert at air temperature, especially benzene, toluene, etc. It is preferable to carry out the reaction using a hydrocarbon or a halogenated hydrocarbon such as methylene chloride or chloroform. The reaction time depends on the applied reaction temperature, but is usually about 30 minutes to 4 hours.

二りだ、上記一般式(1)で表わされる光学活性モノマ
ーは光学的に活性なアミン ネ RI R2CHNH2(ここで、R1,R2は上述のと
J5ゆである)をアクリル酸クロライドまたはメタクリ
ル酸クロライドと1合禁止剤の存在下にJ5いて上記の
不活性な有機溶媒中で副生ずる塩酸の中和剤の存在下に
型温以下で反応させることによっても合成することがで
きる。塩酸の中和剤としては、トリエチルアミンなどの
3級アミンまたは水酸化ナトリウム、炭酸ナトリウム/
eiどのアルカリ水溶液を挙げることができる。
The optically active monomer represented by the above general formula (1) is an optically active amine RI R2CHNH2 (where R1 and R2 are the above-mentioned and J5) and acrylic acid chloride or methacrylic acid chloride. It can also be synthesized by reacting J5 in the presence of a reaction inhibitor in the above-mentioned inert organic solvent at a temperature below the mold temperature in the presence of a neutralizing agent for hydrochloric acid produced as a by-product. As a neutralizing agent for hydrochloric acid, tertiary amines such as triethylamine, sodium hydroxide, sodium carbonate/
Examples of alkaline aqueous solutions include:

上記一般式(r)で表わされる光学6廿モノマーの瓜体
例として下記の化合物を挙げることができる。
Examples of the optical monomer represented by the above general formula (r) include the following compounds.

R−またはS−アクリル故−1−フェニルエチルアミド
、R−またはS−アクリル酸−1−(2−メチルフェニ
ル)エチルアミド、R−またはS−アクリル酸1−(4
−メチルフェニル)エチルアミド、R−またはS−アク
リル酎−1−フェニルプロピルアミド、R−またはS−
アクリル酸−1−(1−ナフチル)エチルアミド、R−
またはS−アクリル!!!−1−(2−ナフチル)エチ
ルアミド、R−またはS−アクリル酸−1−(1−ナフ
チル)プロピルアミド、R−またはS−アクリル酸−1
−(6,7−シメチルー1−ナフチル)エチルアミド、
R−またはS−アクリル酸−1−(6,7−ジメチル−
1−ナフチル)イソプロピルアミド、R−またはS−メ
タクリルM−1−フェニルエチルアミド、R−またはS
−メタクリル酸−1−(2−メチルフェニル)エチルア
ミド、R−またはS−メタクリル酸−1−(4−メチル
フェニル)エチルアミド、R−またはS−メタクリルl
!1−1−フェニルプロとルアミド、R−またはS−メ
タクリル1lill−1−(1−ナフチル)エチルアミ
ド、R−またはS−メタクリルl−1−(2−ナフチル
)エチルアミド、R−またはS−メタクリルM−1−(
1−ナフチル)プロピルアミド、R−またはS−メタク
リル!l!−1−<6.7−シメチルー1−ナフチル)
エチルアミド、R−またはS−メタクリルlS!l−1
−<6.7−シメチルー1−ナフチル)イソプロピルア
ミド。
R- or S-acrylic acid-1-phenylethylamide, R- or S-acrylic acid-1-(2-methylphenyl)ethylamide, R- or S-acrylic acid 1-(4
-methylphenyl)ethylamide, R- or S-acrylic alcohol-1-phenylpropylamide, R- or S-
Acrylic acid-1-(1-naphthyl)ethylamide, R-
Or S-Acrylic! ! ! -1-(2-naphthyl)ethylamide, R- or S-acrylic acid-1-(1-naphthyl)propylamide, R- or S-acrylic acid-1
-(6,7-dimethyl-1-naphthyl)ethylamide,
R- or S-acrylic acid-1-(6,7-dimethyl-
1-naphthyl) isopropylamide, R- or S-methacrylic M-1-phenylethylamide, R- or S
-methacrylic acid-1-(2-methylphenyl)ethylamide, R- or S-methacrylic acid-1-(4-methylphenyl)ethylamide, R- or S-methacrylic acid
! 1-1-phenylprotolylamide, R- or S-methacrylic 1-(1-naphthyl)ethylamide, R- or S-methacrylic 1-(2-naphthyl)ethylamide, R- or S-methacrylic M -1-(
1-naphthyl)propylamide, R- or S-methacrylic! l! -1-<6.7-dimethyl-1-naphthyl)
Ethylamide, R- or S-methacrylic lS! l-1
-<6.7-dimethyl-1-naphthyl)isopropylamide.

一方、上記一般式<ff)で表わされるモノマーとして
は、ビニルジエチルエトキシシラン、ビニルメチルジク
ロロシラン、ビニルメチルジクロロシラン、ビニルメチ
ルジェトキシシラン、ビニルトリクロロシラン、ビニル
トリエトキシシラン、ビニルトリイソプロポキシシラン
、ビニルトリメトキシシランなどが好ましく用いられる
。なかでも、ビニルトリメトキシシラン、ビニルトリエ
トキシシラン1、ビニルメチルジェトキシシランが特に
好ましい。
On the other hand, the monomers represented by the above general formula <ff) include vinyldiethylethoxysilane, vinylmethyldichlorosilane, vinylmethyldichlorosilane, vinylmethyljethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, and vinyltriisopropoxysilane. , vinyltrimethoxysilane, etc. are preferably used. Among these, vinyltrimethoxysilane, vinyltriethoxysilane 1, and vinylmethyljethoxysilane are particularly preferred.

上記一般式(1)で表わされる光学活性モノマーと上記
一般式(Ir)で表わされるモノマーとの共重合は、例
えば、ジベンゾイルバーオキ)ナイド、ジラウロイルパ
ーオキサイドなどの過酸化物などのラジカル形成化合物
またはアゾイソブチロニトリルなどのアゾ化合物のラジ
カル手合開始剤の存在下に不活性な有機溶媒、好ましく
はベンゼン、トルエンなどの芳香族炭化水素もしくは塩
化メチレン、クロロホルム、1゜2−ジクロロエタンな
どのハロゲン化炭化水素中で既知の方法で行なわれる。
Copolymerization of the optically active monomer represented by the above general formula (1) and the monomer represented by the above general formula (Ir) can be carried out using radicals such as peroxides such as dibenzoyl peroxy)nide and dilauroyl peroxide. In the presence of a radical initiation initiator of the forming compound or an azo compound such as azoisobutyronitrile, an inert organic solvent, preferably an aromatic hydrocarbon such as benzene, toluene or methylene chloride, chloroform, 1°2-dichloroethane, etc. in a known manner in halogenated hydrocarbons.

特に好ましい溶媒としてはベンゼン、トルエンが挙げら
れる。
Particularly preferred solvents include benzene and toluene.

重合によって得られたポリマーは反応液をそのまままた
は濃縮して大過剰のポリマー不溶の溶媒、たとえばメタ
ノール、エタノールなどの低級アルコールまたはn−へ
ブタン、シクロヘキサンなどの脂肪族アルカン中に投入
することによって沈[1として分離回収することができ
る。特に好ましい希釈沈澱剤としてはメタノール、n−
ヘキサンなどが挙げられる。沈澱物を再びベンゼン、ト
ルエンなどの芳香族炭化水素またはクロロホルム、塩化
メチレンなどのハロゲン化炭化水素に溶解し、希釈沈澱
剤中に投入すればポリマーの精製が可能である。あるい
は、ポリマーを反応液から分離せずに反応液のまま使用
してあらかじめ乾燥したシリカゲルと反応させてポリマ
ーを固定化することもでき、この方法によれば、より簡
便に充填剤を製造し得る。
The polymer obtained by polymerization can be precipitated by pouring the reaction solution as it is or by concentrating it into a large excess of a polymer-insoluble solvent, such as a lower alcohol such as methanol or ethanol, or an aliphatic alkane such as n-hebutane or cyclohexane. [Can be separated and recovered as 1. Particularly preferred diluent precipitants include methanol, n-
Examples include hexane. The polymer can be purified by dissolving the precipitate again in an aromatic hydrocarbon such as benzene or toluene or a halogenated hydrocarbon such as chloroform or methylene chloride, and introducing the solution into a diluted precipitant. Alternatively, it is also possible to use the reaction solution as it is without separating the polymer from the reaction solution and react with pre-dried silica gel to immobilize the polymer. According to this method, the filler can be manufactured more easily. .

上記一般式(+>で表わされる光学活性モノマーと一ヒ
記一般式(IF)で表わされるモノマーとからなるポリ
マー中の上記一般式<1)で表わされる七ツマ−と上記
一般式(If>で表わされるモノマーの共重合組成のモ
ル比は0.5以上が好ましく、さらに好ましくは1以上
である。
In a polymer consisting of an optically active monomer represented by the above general formula (+>) and a monomer represented by the general formula (IF), a 7mer represented by the above general formula <1) and the above general formula (If> The molar ratio of the copolymerization composition of the monomers represented by is preferably 0.5 or more, more preferably 1 or more.

モル比が0.51J、上であれば、光学分割用充填剤と
して十分な性能を持つ。モル比が0.5未満では、上記
一般式(I)で表わされる光学活性上ツマ−の囚が少な
くなり、光学分割性能は低下する傾向にある。また、モ
ル比が大きくなりすぎると、上記一般式(IF)で表わ
されるモノマーの量が少なくなり、シリカゲルへの固定
化量が減少する傾向にあるので、モル比は100以下で
あることが好ましく、特に80以下であることが好まし
い。
If the molar ratio is 0.51J or above, it has sufficient performance as a filler for optical resolution. If the molar ratio is less than 0.5, the number of optically active molecules represented by the above general formula (I) decreases, and the optical resolution performance tends to deteriorate. Furthermore, if the molar ratio becomes too large, the amount of the monomer represented by the above general formula (IF) tends to decrease, and the amount immobilized on the silica gel tends to decrease, so the molar ratio is preferably 100 or less. , particularly preferably 80 or less.

次に、ポリ′マーのシリカゲルへの固定化について現用
する。
Next, we will discuss the immobilization of polymers onto silica gel.

本発明において使用されるシリカゲルの形状は球状、破
砕状などいずれの形状でも差し支えないが、高効率のり
Oマドカラムを得るためにはできるだGノ粒子径の揃っ
た微細な粒子で適当な細孔径を持つものが好ましい。全
多孔性シリカゲルとしては、通常、平均粒子径が1μ麿
〜11Ilalであり、平均細孔径が100オングスト
ローム以上のものが好ましく使用される。さらに好まし
くは300オングストロ一ム以上のものを使用する。平
均細孔径が100オングストローム未満では細孔径が小
さすぎて、ポリマーのシリカゲルへの固定化が烈しくな
る傾向がある。
The shape of the silica gel used in the present invention may be any shape, such as spherical or crushed, but in order to obtain a highly efficient adhesive column, it is necessary to use fine particles with uniform particle size and an appropriate pore size. It is preferable to have The fully porous silica gel usually has an average particle diameter of 1 μm to 11 μl, and preferably has an average pore diameter of 100 angstroms or more. More preferably, the thickness is 300 angstroms or more. If the average pore diameter is less than 100 angstroms, the pore diameter is too small, and the polymer tends to be strongly immobilized on the silica gel.

細孔径の上限については待に限定はないが、シリカゲル
の機械強度面から通常5000オングストローム以下が
好ましい、このようなシリカゲルを用いて、ポリマーが
安定に溶解し得る溶媒、たとえばベンゼン、トルエンな
どの芳香族炭化水素あるいはクロロホルム、などのハロ
ゲン化炭化水素中でポリマー中の上記一般式(I[)で
表わされる七ツマーユニットのR4,R5゜R6とシリ
カゲル表面のヒドロキシル基とを加熱条件下で反応させ
ることでポリマーを簡単に強固な共有結合でシリカゲル
に固定化することができる。シリカゲルはあらかじめ簡
単な脱水処理をするだけで?Ilな前処理を必要とせず
にポリマーを固定化できる。これは、本発明の一つの特
徴である。さらに、得られた充填剤は十分な機械強度を
持つため、クロマトグラフィーの高速化が容易であり、
しかも化学的に安定であるために長期にわたつて使用可
能である。
The upper limit of the pore diameter is not particularly limited, but it is usually preferably 5000 angstroms or less in view of the mechanical strength of the silica gel. R4, R5゜R6 of the seven-mer unit represented by the above general formula (I [) in the polymer and the hydroxyl group on the surface of the silica gel are reacted in a halogenated hydrocarbon such as group hydrocarbon or chloroform under heating conditions. This allows polymers to be easily immobilized on silica gel with strong covalent bonds. Can silica gel be simply dehydrated in advance? Polymers can be immobilized without the need for extensive pretreatment. This is one feature of the present invention. Furthermore, the obtained packing material has sufficient mechanical strength, making it easy to speed up chromatography.
Moreover, because it is chemically stable, it can be used for a long period of time.

固定化処理中のポリマーの加水分解を抑えるために、溶
媒をあらかじめ脱水処理した後に使用することが好まし
い。固定化処理の反応時間は加熱温度に依存するが、通
常1〜ioog間である。ポリマーの固定化量はシリカ
ゲルに対して、通常o、i重量%以上、好ましくは1m
邑%以上、ざらに好ましくは3重口%以上である。
In order to suppress hydrolysis of the polymer during the immobilization process, it is preferable to use the solvent after dehydrating it in advance. The reaction time of the immobilization treatment depends on the heating temperature, but is usually between 1 and ioog. The amount of immobilized polymer is usually 0.1% by weight or more, preferably 1 m2, based on the silica gel.
It is at least 3%, preferably at least 3%.

本発明によって得られる光学分割用充填剤はスラリー充
填法などの常法に従ってクロマトグラフ用カラムに充填
し、液体りOマトグラフィ−の固定相として使用刀るこ
とがでざる。本固定相を用いる液体クロマトグラフィー
において適当な溶離条件、とくに通常よく用いられる順
相分配または逆相分配の条件を選、Sことにより、広範
囲の化合物の光学異性体の光学分1jが可能である。
The optical resolution packing material obtained according to the present invention can be packed into a chromatographic column according to a conventional method such as a slurry packing method and used as a stationary phase in liquid O-chromatography. In liquid chromatography using this stationary phase, by selecting appropriate elution conditions, especially commonly used normal phase distribution or reversed phase distribution conditions, it is possible to determine the optical fraction 1j of optical isomers of a wide range of compounds. .

光学分割可能な化合物として、芳香族炭化水素、ハロゲ
ン化物、アルコール、アルデヒド、ケトン、カルボン酸
、アミン、エーテル、エステル、アミド、ニトリル、ア
ミノ酸、オキシカルボン酸、などが挙げられる。特に、
不整炭素原子に結合した一〇〇NH−基、−08塁、−
oco−m、−0CONH−W、マタハーN−CONH
−基を有する化合物のラセミ体混合物の分離あるいは分
析を分1IIIl能よく、かつ短時間で行なうことがで
きる。具体例を例示すれば、α−クロルブOピオン酸ア
ニリド、ヘキソバルビクール、1−(9−アンスリル)
トリフルオロエタノール、N−ベンゾイルアラニンエチ
ルエステル、N−ベンゾイル−1−(1−フフヂル)エ
チルアミン、マンデル醇アミド、N−3,5−ジニトロ
ベンゾイルフェニルアラニンエチルエステル、○−3,
5−ジニト[1フェニルカルバモイル−2−ペンタノー
ルなどが挙げられる。また、1.1−一ビー2−ナフト
ール、2′−メトキシ−1,1′−とナフチル−2−オ
ール、2−−(1−プロペン−3−イロキシ)−1,1
−−ビナフチル−2−オールなどの面不整の化合物に対
し、浸れた分離能を示す特徴がある。
Examples of optically resolvable compounds include aromatic hydrocarbons, halides, alcohols, aldehydes, ketones, carboxylic acids, amines, ethers, esters, amides, nitriles, amino acids, oxycarboxylic acids, and the like. especially,
100NH- group bonded to an asymmetric carbon atom, -08 base, -
oco-m, -0CONH-W, Matahar N-CONH
Separation or analysis of racemic mixtures of compounds having - groups can be carried out efficiently and in a short time. Specific examples include α-chlorbu O pionic acid anilide, hexobarbicur, 1-(9-anthryl)
Trifluoroethanol, N-benzoylalanine ethyl ester, N-benzoyl-1-(1-fufudyl)ethylamine, Mandel amide, N-3,5-dinitrobenzoylphenylalanine ethyl ester, ○-3,
Examples include 5-dinito[1-phenylcarbamoyl-2-pentanol. Also, 1.1-bi-2-naphthol, 2'-methoxy-1,1'- and naphthyl-2-ol, 2-(1-propene-3-yloxy)-1,1
--It is characterized by excellent separation ability for compounds with irregular surfaces such as binaphthyl-2-ol.

〈実施例〉 以下の実施例によプて本発明に係る充填剤の製造および
光学分割例について説明する。
<Example> Examples of the production and optical resolution of a filler according to the present invention will be explained with reference to the following examples.

実施例1 メタクリルIR−1−(1−ナフチル)エチルアミド3
.○Q、ビニルトリエトキシシラン0.11g、jjよ
びα、α′−7ゾイソプチロニトリル0.04gと脱水
トルエン40…1を1QQml フラスコに入れ、スタ
ーラー歴拝しながら、窒素雰囲気下で50”Cで1時間
、次に8○℃で1時間加熱した後、16時間加熱還流し
た。反応液を約1/3に濃縮し、攪拌下n−ヘキリーン
約2011を添加し、デカンテーションによって析出し
たポリマーを分離した。粗ポリマーをベンゼン15m1
で溶解し、再びn−ヘキサンを添加して、ポリマーを析
出させた。このポリマー中には未反応モノマーが含まれ
ていないことを薄層クロマトグラフィーで確認した。
Example 1 Methacrylic IR-1-(1-naphthyl)ethylamide 3
.. ○Put 0.11 g of Q, vinyltriethoxysilane, 0.04 g of jj, α, α'-7 zoisobutyronitrile, and 40...1 of dehydrated toluene into a 1QQml flask, and stir under a nitrogen atmosphere for 50 minutes while using a stirrer. C for 1 hour, then heated at 80°C for 1 hour, and then heated under reflux for 16 hours.The reaction solution was concentrated to about 1/3, and about 2011 ml of n-hexylene was added with stirring, and precipitated by decantation. The polymer was separated.The crude polymer was mixed with 15ml of benzene.
and n-hexane was added again to precipitate the polymer. It was confirmed by thin layer chromatography that this polymer contained no unreacted monomer.

ポリマー収量は1.65gであり、メタクリルBR−1
−(1−ナフチル)エチルアミドとビニルトリエトキシ
シランの共重合モル比はポリマーのS1含有同からfI
Aeして26であった。
Polymer yield was 1.65g, methacryl BR-1
- The copolymerization molar ratio of (1-naphthyl)ethylamide and vinyltriethoxysilane is determined from the S1 content of the polymer to fI.
Ae was 26.

多孔性シリカゲル(平均粒子径10μm、平均細孔径1
000オングストローム)39を200℃で5時間減圧
乾燥した後、上記のポリマー0.50gを脱水トルエン
30m1に溶かした液に加え、20時間加熱還流した。
Porous silica gel (average particle size 10 μm, average pore size 1
After drying 39 under reduced pressure at 200°C for 5 hours, it was added to a solution of 0.50 g of the above polymer dissolved in 30 ml of dehydrated toluene, and the mixture was heated under reflux for 20 hours.

ポリマー固定化シリカゲルを回収し、ベンゼン3Qml
で4回、アセトン3oIl11で3回、最後にメタノー
ル3Qmlで3回洗浄した。60℃で減圧乾燥して、メ
タクリルIR−1−(1−プフチルンエチルアミドとビ
ニルトリエトキシシランの共m合体をシリカゲルに固定
化した光学分割用カラムを得た。、得られた充填剤の炭
素含有」は4゜0!Jfft%であった。
Collect the polymer-immobilized silica gel and add 3Qml of benzene.
4 times, 3 times with 30Il11 of acetone, and finally 3 times with 3Qml of methanol. The column was dried under reduced pressure at 60° C. to obtain an optical resolution column in which a co-merge of methacryl IR-1-(1-pufthyrunethylamide and vinyltriethoxysilane) was immobilized on silica gel.The obtained packing material The carbon content was 4°0!Jfft%.

得られた充填剤を内径4mm、長さ30cmのステンレ
ス製カラムにスラリー充填し、光学分割用カラムを調製
した。この光学分割用カラムを使用して、種々のラセミ
体混合物を分析し表1に示り結果を得た。測定は空温で
行ない、溶離液流社は1m1/分であり、検出は254
 nmの紫外線吸収を用いた。
A column made of stainless steel with an inner diameter of 4 mm and a length of 30 cm was slurry filled with the obtained filler to prepare a column for optical resolution. Using this optical resolution column, various racemic mixtures were analyzed and the results shown in Table 1 were obtained. The measurement was carried out at air temperature, the eluent flow rate was 1 m1/min, and the detection rate was 254
nm ultraviolet absorption was used.

表    1 *移動+n絹成 り:n−ヘキサン/イソプロパツール (98: 2) Can−へキサン/ジクロロメタン/エタノール(90
:10:2) D二〇−へキサン/ジクロロメタン/エタノール(70
:30:2) E:n−へキサン/1.2−ツク00エタン/エタノー
ル   <20:6:1) また、(りられ/、−充填剤を充填した光学分割用カラ
ムによる1、1′−と−2−ナフトールのクロマトグラ
ムを第1図に示す。
Table 1 *Transfer + n silk composition: n-hexane/isopropanol (98:2) Can-hexane/dichloromethane/ethanol (90:2)
:10:2) D20-hexane/dichloromethane/ethanol (70
:30:2) E:n-hexane/1.2-ethane/ethanol <20:6:1) Also, (1, 1' by an optical resolution column packed with a packing material) The chromatograms of - and -2-naphthol are shown in Figure 1.

実施例2 メタクリル酸−3−1−フェニルエチルアミド4.0(
1、ビニルトリエトキシシラン0.37(+およびα、
α′−アゾイソブチロニトリル0.059と脱水トルエ
ン601w1を100m1フラスコに入れ、スターラー
攪拌しながら、窒素雰囲気下で80℃で14時間、次に
9時間υΩ熱還流した。実施例1と同様に処理して、1
.859の光学活性ポリマーを得た。
Example 2 Methacrylic acid-3-1-phenylethylamide 4.0 (
1, vinyltriethoxysilane 0.37 (+ and α,
0.059 .alpha.'-azoisobutyronitrile and 601 w1 of dehydrated toluene were placed in a 100 ml flask, and heated under υΩ reflux at 80° C. for 14 hours and then 9 hours under a nitrogen atmosphere while stirring with a stirrer. Treated in the same manner as in Example 1, 1
.. An optically active polymer of No. 859 was obtained.

$1含有攪からメタクリル5−s−i−フェニルエチル
アミドとビニルトリエトキシシランの共重合モル比は2
5であった。上記のポリマー1.80gを用いて、実施
例1と同一のシリカゲルに実施例1と同様の処方でポリ
マーの固定化を行なって、メタクリル11−8−1−フ
ェニルエチルアミドとビニルトリエトキシシランの共1
合体をシリカゲルに固定化した光学分割用充填剤を(η
だ。1qられた充填剤の炭素含有旦は5.9這え%であ
った。
From the stirring containing $1, the copolymerization molar ratio of methacrylic 5-s-i-phenylethylamide and vinyltriethoxysilane is 2.
It was 5. Using 1.80 g of the above polymer, the polymer was immobilized on the same silica gel as in Example 1 with the same formulation as in Example 1. Common 1
An optical resolution filler in which the coalescence is immobilized on silica gel (η
is. The carbon content of 1q filler was 5.9%.

実IafI143 アクリルa−s−i−フェニルエチルアミド4、OQ、
ビニルトリエトキシシラン0.219およびα、α−−
アゾイソブチロニトリル0.04gと脱水ベンゼン4Q
mlを10(11フラスコに入れ、スターラー攪拌しな
がら、窒素雰囲気下で15時間加熱還流した。、反応溶
液をそのまま200111のメタノール中に投入し、沈
澱したポリマーをデカンテーションで分離した。光学活
性ポリマーの取組は3.659であり、アクリル酸−8
−1−フェニルエチルアミドとごニルトリエトキシシラ
ンとの共重合そル比は24であった。実施例1と同様に
して、実施例1と同一のシリカゲル2.59に上記ポリ
マー1.50gを固定化した。得られたアクリル5−s
−i−フェニルエチルアミドとビニルトリエトキシシラ
ンとの共重合体を固定化しIごシリカゲルの炭素含有量
は5.8mm%であつl〔。
Real IafI143 Acrylic a-si-phenylethylamide 4, OQ,
Vinyltriethoxysilane 0.219 and α, α--
Azoisobutyronitrile 0.04g and dehydrated benzene 4Q
10 ml was placed in a flask and heated under reflux for 15 hours under a nitrogen atmosphere while stirring with a stirrer. The reaction solution was directly poured into 200111 methanol, and the precipitated polymer was separated by decantation. Optically active polymer The effort is 3.659, and acrylic acid-8
The copolymerization ratio of -1-phenylethylamide and nyltriethoxysilane was 24. In the same manner as in Example 1, 1.50 g of the above polymer was immobilized on 2.5 g of the same silica gel as in Example 1. The resulting acrylic 5-s
A copolymer of -i-phenylethylamide and vinyltriethoxysilane was immobilized, and the carbon content of the silica gel was 5.8 mm%.

〈発明の効宋〕・ 本発明の光学分割用充填剤は、広範囲のラセミ0合物の
分離に浸れたfA果を示すのみならず、光学活性ポリマ
ー構造を取ることにより、類似構造のモノマー型光学分
割用充填剤と同等以上の性能を持つばかりでなく、従来
分餡が困難であった面不整の化合物に対して優れた分離
能力を示す特徴がある。
<Effects of the Invention> The filler for optical resolution of the present invention not only exhibits excellent fA performance for the separation of a wide range of racemic compounds, but also has an optically active polymer structure, so that it can be used for monomer types with similar structures. It not only has performance equivalent to or better than optical resolution fillers, but also exhibits excellent separation ability for compounds with irregular surfaces, which were difficult to separate in the past.

また、本発明の光学分割用充填剤はシリカゲルの特殊な
前処理を必要とせず、光学活性ポリマーを不活性な有□
溶媒中で加熱するだけで強固な共有結合によってシリカ
ゲルに固定化できるlこめ、製造方法は簡便であり、し
かも(1られた充填剤は化学的に安定で長期間の使用が
可能である。さらに、本発明の充填剤は十分な機械的強
度を持つため、クロマトグラフィーの高速化が容易であ
り、使用する溶媒のあり限を受けないという優れた利点
も有している。
Furthermore, the filler for optical resolution of the present invention does not require any special pretreatment of silica gel, and the optically active polymer can be treated with an inert compound.
The manufacturing method is simple, as it can be immobilized on silica gel by strong covalent bonds simply by heating in a solvent.Furthermore, the filler is chemically stable and can be used for a long period of time. Since the packing material of the present invention has sufficient mechanical strength, it is easy to speed up chromatography, and it also has the excellent advantage of not being limited by the solvents that can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、艮、実施VA1で1qられlこ本発明の光′
i゛分割用充1!I PIl+を充填したカラムによる
1、1−−ビー2−〕°フトールのクロマトグラムであ
り、縦軸はU V吸収強度を、横軸は保))0)問を人
わす。 特;1出願人 東し株式会社
FIG. 1 (1) The light of the present invention
i゛Divided charge 1! This is a chromatogram of 1,1--bi-2-]phthol obtained by a column packed with IPIl+, in which the vertical axis represents the UV absorption intensity and the horizontal axis represents the retention))0) question. Special; 1 applicant: Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】 下記一般式( I )で表わされる光学活性モノマーと下
記一般式(II)で表わされるモノマーとからなるポリマ
ーをシリカゲルに固定化してなる光学分割用充填剤。 ▲数式、化学式、表等があります▼・・・( I ) (式中、R_1はフェニル基、1−ナフチル基または2
−ナフチル基あるいは低級アルキル基で置換されたフェ
ニル基、1−ナフチル基または2−ナフチル基を表わし
、R_2は低級アルキル基を表わし、R_3は水素原子
またはメチル基を表わし、*は不整炭素原子を表わす。 ) ▲数式、化学式、表等があります▼・・・(II) (式中、R_4、R_5、R_6は同一または相異なる
アルキル基、アルコキシル基、ヒドロキシル基またはハ
ロゲン原子を表わし、R_4、R_5、R_6の少なく
とも1つはアルコキシル基またはハロゲン原子である。 )
[Scope of Claims] A filler for optical resolution, which is obtained by immobilizing on silica gel a polymer consisting of an optically active monomer represented by the following general formula (I) and a monomer represented by the following general formula (II). ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (In the formula, R_1 is a phenyl group, 1-naphthyl group, or 2
- Represents a phenyl group, 1-naphthyl group, or 2-naphthyl group substituted with a naphthyl group or a lower alkyl group, R_2 represents a lower alkyl group, R_3 represents a hydrogen atom or a methyl group, and * represents an asymmetric carbon atom. represent. ) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) (In the formula, R_4, R_5, R_6 represent the same or different alkyl groups, alkoxyl groups, hydroxyl groups, or halogen atoms, and R_4, R_5, R_6 At least one of them is an alkoxyl group or a halogen atom.)
JP60000169A 1985-01-07 1985-01-07 Packing material for optical splitting Pending JPS61160054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000169A JPS61160054A (en) 1985-01-07 1985-01-07 Packing material for optical splitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000169A JPS61160054A (en) 1985-01-07 1985-01-07 Packing material for optical splitting

Publications (1)

Publication Number Publication Date
JPS61160054A true JPS61160054A (en) 1986-07-19

Family

ID=11466521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000169A Pending JPS61160054A (en) 1985-01-07 1985-01-07 Packing material for optical splitting

Country Status (1)

Country Link
JP (1) JPS61160054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302633A (en) * 1990-11-29 1994-04-12 Nacalai Tesque, Inc. Optical resolution agent and process for the preparation of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302633A (en) * 1990-11-29 1994-04-12 Nacalai Tesque, Inc. Optical resolution agent and process for the preparation of the same

Similar Documents

Publication Publication Date Title
US4737560A (en) Polymer beads
EP0888389B1 (en) Photoactivatable chain transfer agents
US4871824A (en) Variably crosslinked polymeric supports
JP3896468B2 (en) Chiral stationary phases for chromatographic separation of enantiomers.
US20200406231A1 (en) Method of separating biomolecules using hydrophobically-derivatized supports
JP2517049B2 (en) Silica gel-immobilized optically active polymer and method of using same
US5306561A (en) Preparation of surface-functional polymer particles
JP2812765B2 (en) Optically active (meth) acrylic acid derivatives, their production, polymerization to give their optically active polymers, and their use
JPH0762054B2 (en) Crosslinked polymer particles
JPS6356208B2 (en)
JP2005510609A5 (en)
JPH0788338B2 (en) Optically active (meth) acrylamide and its production method
JP3659356B2 (en) Optically active sulfur-containing amino acid derivatives, their preparation, their polymerization to give optically active polymers and their use
JP2965752B2 (en) Optically active N-α-fluoroacryloylamino acid derivatives, their production, optically active polymers produced therefrom and their use for resolving racemates
JP3446274B2 (en) Manufacturing method of separation agent
JPS61160054A (en) Packing material for optical splitting
JPH0430931B2 (en)
JPH04249762A (en) Separating material
JPS61162751A (en) Packing agent for optical resolution
JPH0788366A (en) Production of separating agent
JP3029640B2 (en) Adsorbent
JP4944350B2 (en) Method
WO2003004149A1 (en) Novel separation agent for separating optical isomer and method for preparation thereof
JP3531977B2 (en) New polymer and lipid membrane fixative
JPS6238238A (en) Adsorbent