JPH0430931B2 - - Google Patents

Info

Publication number
JPH0430931B2
JPH0430931B2 JP60003263A JP326385A JPH0430931B2 JP H0430931 B2 JPH0430931 B2 JP H0430931B2 JP 60003263 A JP60003263 A JP 60003263A JP 326385 A JP326385 A JP 326385A JP H0430931 B2 JPH0430931 B2 JP H0430931B2
Authority
JP
Japan
Prior art keywords
polymer
group
silica gel
filler
naphthyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60003263A
Other languages
Japanese (ja)
Other versions
JPS61162750A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60003263A priority Critical patent/JPS61162750A/en
Publication of JPS61162750A publication Critical patent/JPS61162750A/en
Publication of JPH0430931B2 publication Critical patent/JPH0430931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3276Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は光学的に活性なポリマーをシリカゲル
に固定化した光学分割用充填剤に関する。 <従来の技術> ラセミ混合物を光学的対称体に分割することは
分析化学および合成化学において重要である。通
常の方法はラセミ混合物をジアステレオマー混合
物に変換させ、そのジアステレオマー混合物を溶
解度などの物理的性質の差異によつて分離するこ
とからなる。これらの通常の方法のほかにクロマ
トグラフイーによつてラセミ混合物を分割する技
術が近年著しく研究されており、下記の技術が公
知である。 (A) 光学活性なアミンから誘導されるアクリルア
ミドモノマーから得られるビーズ状ポリマーを
充填剤として用いる液体クロマトグラフイー
(特公昭59−7503号公報)。 (B) 光学活性物質をシリカゲル等の無機担体にグ
ラフト化することによつて得られる光学活性な
固定相を充填剤として用いる液体クロマトグラ
フイー。 (a) 光学活性なプロリンをグラフト化した充填
剤を用いる配位子交換による方法(J.
Chromatogr.266,p439(1983)。 (b) π電子不足の光学活性化合物をグラフト化
した充填剤を用いる電荷移動錯体による方法
(J.Chromatogr.122,p205(1976))。 (c) 光学活性なN−アシル化アミノ酸をグラフ
ト化した充填剤を用いる方法(J.
Chromatogr.186,p543(1979))。 (d) 光学活性な1−(9−アンスリル)トリフ
ルオロエタノールあるいは3,5−ジニトロ
ベンゾイル化した光学活性なフエニルグリシ
ンをグラフト化した充填剤を用いる方法(J.
Chromatogr.192,p143(1980)、J.Org.
Chem.46、p4988(1981))。 (e) 光学活性な芳香族アミンをグラフト化した
充填剤を用いる方法(J.Chromatogr.265,
p.117(1983))。 <発明が解決しようとする問題点> しかしながら、従来技術の(A)法においてはポリ
マービーズが比較的大きく、ふぞろいでありカラ
ム効率が低い上に、機械的強度が弱く、高流速化
できないという欠点を有している。また、ポリマ
ービーズは親水性溶媒においては膨潤しないた
め、使用可能な溶媒が制限される欠点もある。こ
れに対して、従来技術の(B)法においては光学活性
物質をシリカゲル等の無機担体にグラフト化する
ことによつて得られる光学活性な固定相は機械的
強度が十分であり、高速化も可能である。しか
し、分離し得る化合物が狭い範囲のものに限定さ
れていたり、また分離の程度が小さかつたりし、
さらにはグラフト化した充填剤の製造が困難で再
現性のある性能を持つ充填剤が得にくかつたりし
て、いずれも実用的な充填剤とは言い難い。 これらのなかで光学活性な芳香族アミンをグラ
フト化した充填剤を用いる(e)法はアミン、アルコ
ール、カルボン酸、アミノ酸、オキシ酸、アミノ
アルコールなど比較的広範囲のラセミ混合物を分
割し、高性能であるが、分離の程度がまだ十分で
はない。 <問題点を解決するための手段および作用> 本発明者らはかかる状況のもとで、分析し得る
化合物の範囲が広く、製造が比較的容易でしかも
化学的に安定で実用的な充填剤の提供を目的とし
て鋭意検討を続けて来た結果、下記一般式(I)
で表わされる光学活性モノマーと下記一般式
()で表わされるモノマーとからなるポリマー
をシリカゲルに固定化してなる光学分割用充填剤
が広範囲のラセミ混合物の分離に優れた効果を示
すのみならず、光学活性なポリマー構造を作るこ
とにより、同種構造のモノマー型充填剤と同等以
上の性能を持つばかりでなく、従来分離が困難で
あつた面不整の化合物に対して優れた分離能を示
すことを見い出し、本発明に到達した。 (式中、R1はフエニル基、1−ナフチル基ま
たは2−ナフチル基あるいは低級アルキル基で置
換されたフエニル基、1−ナフチル基または2−
ナフチル基を表わし、R2は低級アルキル基を表
わし、R3は水素原子またはメチル基を表わし、
*は不整炭素原子を表わす。) (式中、R4,R5,R6は同一または相異なるア
ルキル基、アルコキシ基、ヒドロキシル基または
ハロゲン原子を表わし、R4,R5,R6の少なくと
も1つはアルコキシル基またはハロゲン原子であ
る。) 本発明の充填剤は通常の化学反応で容易に製造
し得る上、化学的にも安定であるなど極めて有用
な充填剤である。 上記一般式(I)で表わされる光学活性モノマ
ーは、例えば、光学的に活性なアミンR1R2C〓
HNH2(ここで、R1,R2は上述のとおりである)
をアクリル酸無水物またはメタクリル酸無水物
と、特に4−第3級ブチルピロカテコール等の重
合禁止剤の存在下において、約−5℃乃至60℃の
温度にて反応させることによつて得ることができ
るが、室温において不活性な有機溶媒、特にベン
ゼン、トルエンなどの炭化水素または塩化メチレ
ン、クロロホルムなどのハロゲン化炭化水素を用
いて反応させることが好ましい。反応時間は適用
する反応温度に左右されるが、通常約30分ないし
4時間である。 また、上記一般式(I)で表わされる光学活性
モノマーは光学的に活性なアミンR1R2C〓HNH2
(ここで、R1,R2は上述のとおりである)をアク
リル酸クロライドまたはメタクリル酸クロライド
と重合禁止剤の存在下において上記の不活性な有
機溶媒中で副生する塩酸の中和剤の存在下に室温
以下で反応させることによつても合成することが
できる。塩酸の中和剤としては、トリエチルアミ
ンなどの3級アミンまたは水酸化ナトリウム、炭
酸ナトリウムなどのアルカリ水溶液を挙げること
ができる。 上記一般式(I)で表わされる光学活性モノマ
ーの具体例として下記の化合物を挙げることがで
きる。 R−またはS−アクリル酸−1−フエニルエチ
ルアミド、R−またはS−アクリル酸−1−(2
−メチルフエニル)エチルアミド、R−またはS
−アクリル酸1−(4−メチルフエニル)エチル
アミド、R−またはS−アクリル酸−1−フエニ
ルプロピルアミド、R−またはS−アクリル酸−
1−(1−ナフチル)エチルアミド、R−または
S−アクリル酸−1−(2−ナフチル)エチルア
ミド、 R−またはS−アクリル酸−1−(1−
ナフチル)プロピルアミド、R−またはS−アク
リル酸−1−(6,7−ジメチル−1−ナフチル)
エチルアミド、R−またはS−アクリル酸−1−
(6,7−ジメチル−1−ナフチル)イソプロピ
ルアミド、R−またはS−メタクリル酸−1−フ
エニルエチルアミド、R−またはS−メタクリル
酸−1−(2−メチルフエニル)エチルアミド、
R−またはS−メタクリル酸−1−(4−メチル
フエニル)エチルアミド、R−またはS−メタク
リル酸−1−フエニルプロピルアミド、R−また
はS−メタクリル酸−1−(1−ナフチル)エチ
ルアミド、R−またはS−メタクリル酸−1−
(2−ナフチル)エチルアミド、R−またはS−
メタクリル酸−1−(1−ナフチル)プロピルア
ミド、R−またはS−メタクリル酸−1−(6,
7−ジメチル−1−ナフチル)エチルアミド、R
−またはS−メタクリル酸−1−(6,7−ジメ
チル−1−ナフチル)イソプロピルアミド。 一方、一般式()で表わされるモノマーとし
ては、3−メタクリロキシプロピルトリメトキシ
シラン、3−メタクリロキシプロピルメチルジエ
トキシシラン、3−メタクリロキシプロピルジメ
チルエトキシシラン、3−メタクリロキシプロピ
ルトリクロロシラン、3−メタクリロキシプロピ
ルメチルジクロロシラン、3−メタクリロキシプ
ロピルジメチルクロロシランなどが好ましく用い
られる。なかでも、3−メタクリロキシプロピル
トリメトキシシランが特に好ましい。 上記一般式(I)で表わされる光学活性モノマ
ーと上記一般式()で表わされるモノマーとの
共重合は、例えば、ジベンゾイルパーオキサイ
ド、ジラウロイルパーオキサイドなどの過酸化物
などのラジカル形成化合物またはアゾイソブチロ
ニトリルなどのアゾ化合物のラジカル重合開始剤
の存在下に不活性な有機溶媒、好ましくはベンゼ
ン、トルエンなどの芳香族炭化水素もしくは塩化
メチレン、クロロホルム、1,2−ジクロロエタ
ンなどのハロゲン化炭化水素中で既知の方法で行
なわれる。特に好ましい溶媒としてはベンゼン、
トルエンが挙げられる。 重合によつて得られたポリマーは反応液をその
まままたは濃縮して大過剰のポリマー不溶の溶
媒、たとえばメタノール、エタノールなどの低級
アルコールまたはn−ヘプタン、シクロヘキサン
などの脂肪族アルカン中に投入することによつて
沈澱物として分離回収することができる。特に好
ましい希釈沈澱剤としてはメタノール、n−ヘキ
サンなどが挙げられる。沈澱物を再びベンゼン、
トルエンなどの芳香族炭化水素またはクロロホル
ム、塩化メチレンなどのハロゲン化炭化水素に溶
解し、希釈沈澱剤中に投入すればポリマーの精製
が可能である。あるいは、ポリマーを反応液から
分離せずに反応液のまま使用してあらかじめ乾燥
したシリカゲルと反応させてポリマーを固定化す
ることもでき、この方法によれば、より簡便に充
填剤を製造し得る。 上記一般式(I)で表わされる光学活性モノマ
ーと上記一般式()で表わされるモノマーとか
らなるポリマー中の上記一般式(I)で表わされ
るモノマーと上記一般式()で表わされるモノ
マーの共重合組成のモル比は0.5以上が好ましく、
さらに好ましくは1以上である。モル比が0.5以
上であれば、光学分割用充填剤として十分な性能
を持つ。モル比が0.5未満では、上記一般式(I)
で表わされる光学活性モノマーの量が少なくな
り、光学分割性能は低下する傾向にある。また、
モル比が大きくなりすぎると、上記一般式()
で表わされるモノマーの量が少なくなり、シリカ
ゲルへの固定化量が減少する傾向にあるので、モ
ル比が100以下であることが好ましく、特に80以
下であることが好ましい。 次に、ポリマーのシリカゲルへの固定化につい
て説明する。 本発明において使用されるシリカゲルの形状は
球状、破砕状などいずれの形状でも差し支えない
が、高効率のクロマトカラムを得るためにはでき
るだけ粒子径の揃つた微細な粒子で適当な細孔径
を持つものが好ましい。全多孔性シリカゲルとし
ては、通常、平均粒子径が1μm〜1mmであり、平
均細孔径が100オングストローム以上のものが好
ましく使用される。さらに好ましくは300オング
ストローム以上のものを使用する。平均細孔径が
100オングストローム未満では細孔径が小さすぎ
て、ポリマーのシリカゲルへの固定化が難しくな
る傾向がある。細孔径の上限については特に限定
はないが、シリカゲルの機械強度面から通常5000
オングストローム以下が好ましい。このようなシ
リカゲルを用いて、ポリマーが安定に溶解し得る
溶媒、たとえばベンゼン、トルエンなどの芳香族
炭化水素あるいはクロロホルム、などのハロゲン
化炭化水素中でポリマー中の上記一般式()で
表わされるモノマーユニツトのR4,R5,R6とシ
リカゲル表面のヒドロキシル基とを加熱条件下で
反応させることでポリマーを簡単に強固な共有結
合でシリカゲルに固定化することができる。シリ
カゲルはあらかじめ簡単な脱水処理をするだけで
複雑な前処理を必要とせずにポリマーを固定化で
きる。これは、本発明の一つの特徴である。さら
に、得られた充填剤は十分な機械強度を持つた
め、クロマトグラフイーの高速化が容易であり、
しかも化学的に安定であるために長期にわたつて
使用可能である。 固定化処理中のポリマーの加水分解を抑えるた
めに、溶媒をあらかじめ脱水処理した後に使用す
ることが好ましい。固定化処理の反応時間は加熱
温度に依存するが、通常1〜100時間である。ポ
リマーの固定化量はシリカゲルに対して、通常
0.1重量%以上、好ましくは1重量%以上、さら
に好ましくは3重量%以上である。 本発明によつて得られる光学分割用充填剤はス
ラリー充填法などの常法に従つてクロマトグラフ
用カラムに充填し、液体クロマトグラフイーの固
定相として使用することができる。本固定相を用
いる液体クロマトグラフイーにおいて適当な溶離
条件、とくに通常よく用いられる順相分配または
逆相分配の条件を選ぶことにより、広範囲の化合
物の光学異性体の光学分割が可能である。 光学分割可能な化合物として、芳香族炭化水
素、ハロゲン化物、アルコール、アルデヒド、ケ
トン、カルボン酸、アミン、エーテル、エステ
ル、アミド、ニトリル、アミノ酸、オキシカルボ
ン酸、などが挙げられる。特に、不整炭素原子に
結合した−CONH−基、−OH基、−OCO−基、−
OCONH−基、または− N ‐−CONH−基を有す
る化合物のラセミ体混合物の分離あるいは分析を
分離能よく、かつ短時間で行なうことができる。
具体例を例示すれば、α−クロルプロピオン酸ア
ニリド、ヘキソバルビタール、1−(9−アンス
リル)トリフルオロエタノール、N−ベンゾイル
アラニンエチルエステル、N−ベンゾイル−1−
(1−ナフチル)エチルアミン、マンデル酸アミ
ド、N−3,5−ジニトロベンゾイルフエニルア
ラニンエチルエステル、O−3,5−ジニトロフ
エニルカルバモイル−2−ペンタノールなどが挙
げられる。また、1,1′−ビ−2−ナフトール、
2′−メトキシ−1,1′−ビナフチル−2−オー
ル、2′−(1−プロペン−3−イロキシ)−1,
1′−ビナフチル−2−オールなどの面不整の化合
物に対し、優れた分離能を示す特徴がある。 <実施例> 以下の実施例によつて本発明に係る充填剤の製
造および光学分割例について説明する。 実施例 1 メタクリル酸R−1−(1−ナフチル)エチル
アミド3.0g、3−メタクリロキシプロピルトリ
メトキシシラン0.14gおよびα.α′−アゾイソブチ
ロニトリル0.04gと脱水トルエン40mlを100mlフ
ラスコに入れ、スターラー攪拌しながら、窒素雰
囲気下で50℃で1時間、次に80℃で1時間加熱し
た後、16時間加熱還流した。反応液を約1/3に濃
縮し、攪拌下n−ヘキサン約20mlを添加し、デカ
ンテーシヨンによつて析出したポリマーを分離し
た。粗ポリマーをベンゼン15mlで溶解し、再びn
−ヘキサンを添加して、ポリマーを析出させた。
このポリマー中には未反応モノマーが含まれてい
ないことを薄層クロマトグラフイーで確認した。
ポリマー収量は1.75gであり、メタクリル酸R−
1−(1−ナフチル)エチルアミドと3−メタク
リロキシプロピルトリメトキシシランの共重合モ
ル比はポリマーのSi含有量から換算して24であつ
た。多孔性シリカゲル(平均粒子径10μm、平均
細孔径1000オングストローム)3gを200℃で5
時間減圧乾燥した後、上記のポリマー0.30gを脱
水トルエン30mlに溶かした液に加え、20時間加熱
還流した。ポリマー固定化シリカゲルを回収し、
ベンゼン30mlで4回、アセトン30mlで3回、最後
にメタノール30mlで3回洗浄した。60℃で減圧乾
燥して、メタクリル酸R−1−(1−ナフチル)
エチルアミドと3−メタクリロキシプロピルトリ
メトキシシランの共重合体をシリカゲルに固定化
した光学分割用充填剤を得た。得られた充填剤の
炭素含有量は3.8重量%であつた。 実施例 2 メタクリル酸−S−1−フエニルエチルアミド
4.0g、3−メタクリロキシプロピルトリメトキ
シシラン0.48gおよびα、α′−アゾイソブチロニ
トリル0.05gと脱水トルエン60mlを100mlフラス
コに入れ、スターラー攪拌しながら、窒素雰囲気
下で80℃で14時間、次に9時間加熱還流した。実
施例1と同様に処理して、1.92gの光学活性ポリ
マーを得た。Si含有量からメタクリル酸−S−1
−フエニルエチルアミドと3−メタクリロキシプ
ロピルトリメトキシシランの共重合モル比は23で
あつた。上記のポリマー1.86gを用いて、実施例
1と同一のシリカゲルに実施例1と同様の処方で
ポリマーの固定化を行なつて、メタクリル酸−S
−1−フエニルエチルアミドと3−メタクリロキ
シプロピルトリメトキシシランの共重合体をシリ
カゲルに固定化した光学分割用充填剤を得た。得
られた充填剤の炭素含有量は5.7重量%であつた。 実施例 3 アクリル酸−S−1−フエニルエチルアミド
4.0g、3−メタクリロキシプロピルトリメトキ
シシラン0.28gおよびα、α′−アゾイソブチロニ
トリル0.04gと脱水ベンゼン40mlを100mlフラス
コに入れ、スターラー攪拌しながら、窒素雰囲気
下で15時間加熱還流した。反応溶液をそのまま
200mlのメタノール中に投入し、沈澱したポリマ
ーをデカンテーシヨンで分離した。光学活性ポリ
マーの収量は3.79gであり、アクリル酸−S−1
−フエニルエチルアミドと3−メタクリロキシプ
ロピルトリメトキシシランとの共重合モル比は25
であつた。実施例1と同様にして、実施例1と同
一のシリカゲル2.5gに上記ポリマー0.50gを固
定化した。得られたアクリル酸−S−1−フエニ
ルエチルアミドと3−メタクリロキシプロピルト
リメトキシシランとの共重合体を固定化したシリ
カゲルの炭素含有量は5.8重量%であつた。 実施例 4 メタクリル酸R−1−(1−ナフチル)エチル
アミド1.0g、3−メタクリロキシプロピルトリ
メトキシシラン0.52gおよびα、α′−アゾイソブ
チロニトリル0.04gと脱水トルエン20mlを100ml
フラスコに入れ、スターラー攪拌しながら、窒素
雰囲気下で50℃で1時間、次に80℃で1時間加熱
した後、16時間加熱還流した。得られた光学活性
ポリマーは0.84gであり、メタクリル酸R−1−
(1−ナフチル)エチルアミドと3−メタクリロ
キシプロピルトリメトキシシランの共重合モル比
はポリマーのSi含有量から3であつた。このポリ
マー0.44gを用いて、実施例1と同一のシリカゲ
ルに実施例1と同様の処方でポリマーの固定化を
行なつて、メタクリル酸R−1−(1−ナフチル)
エチルアミドと3−メタクリロキシプロピルトリ
メトキシシランの共重合体をシリカゲルに固定化
した光学分割用充填剤を得た。得られた充填剤の
炭素含有量は3.6重量%であつた。 実施例 5 メタクリル酸R−1−(1−ナフチル)エチル
アミド3.0g、3−メタクリロキシプロピルトリ
メトキシシラン0.06gおよびα、α′−アゾイソブ
チロニトリル0.04gと脱水トルエン40mlを100ml
フラスコに入れ、実施例1と同様に反応させた。
得られたポリマーは1.86gであり、メタクリル酸
R−1−(1−ナフチル)エチルアミドと3−メ
タクリロキシプロピルトリメトキシシランの共重
合モル比はポリマーのSi含有量から86であつた。
このポリマー0.30gを用いて、実施例1と同一の
シリカゲルに実施例1と同様の処方でポリマーの
固定化を行なつて、メタクリル酸R−1−(1−
ナフチル)エチルアミドと3−メタクリロキシプ
ロピルトリメトキシシランの共重合体をシリカゲ
ルに固定化した光学分割用充填剤を得た。得られ
た充填剤の炭素含有量は1.9重量%であつた。 実施例 6 実施例1で得られた光学活性ポリマー0.40gを
多孔性シリカゲル(平均粒子径10μm、平均細孔
径300オングストローム)3.0gに固定化した。得
られたメタクリル酸R−1−(1−ナフチル)エ
チルアミドと3−メタクリロキシプロピルトリメ
トキシシランの共重合体をシリカゲルに固定化し
た光学分割用充填剤の炭素含有量は4.8重量%で
あつた。 実施例7および8 実施例1および2で得られた充填剤をそれぞれ
内径4mm、長さ30cmのステンレス製カラムにスラ
リー充填し、光学分割用カラムを調製した。これ
らの光学分割用カラムを使用して、種々のラセミ
体混合物を分析し表1に示す結果を得た。測定は
室温で行ない、溶離液流量は1ml/分であり、検
出は254nmの紫外線吸収を用いた。
<Industrial Application Field> The present invention relates to a filler for optical resolution in which an optically active polymer is immobilized on silica gel. <Prior Art> The resolution of racemic mixtures into optical symmetries is important in analytical and synthetic chemistry. A common method consists of converting a racemic mixture into a diastereomeric mixture and separating the diastereomeric mixtures by differences in physical properties such as solubility. In addition to these conventional methods, techniques for resolving racemic mixtures by chromatography have been extensively studied in recent years, and the following techniques are known. (A) Liquid chromatography using as a filler a bead-like polymer obtained from an acrylamide monomer derived from an optically active amine (Japanese Patent Publication No. 7503/1983). (B) Liquid chromatography using an optically active stationary phase obtained by grafting an optically active substance onto an inorganic carrier such as silica gel as a packing material. (a) Ligand exchange method using an optically active proline-grafted filler (J.
Chromatogr.266, p439 (1983). (b) A method using a charge transfer complex using a filler grafted with an optically active compound lacking π electrons (J. Chromatogr. 122, p. 205 (1976)). (c) Method using a filler grafted with optically active N-acylated amino acids (J.
Chromatogr.186, p543 (1979)). (d) A method using a filler grafted with optically active 1-(9-anthryl)trifluoroethanol or 3,5-dinitrobenzoylated optically active phenylglycine (J.
Chromatogr.192, p143 (1980), J.Org.
Chem.46, p4988 (1981)). (e) Method using filler grafted with optically active aromatic amine (J.Chromatogr.265,
p.117 (1983)). <Problems to be solved by the invention> However, in the conventional method (A), the polymer beads are relatively large and uneven, resulting in low column efficiency, as well as weak mechanical strength and inability to achieve high flow rates. have. Furthermore, since polymer beads do not swell in hydrophilic solvents, there is also the drawback that the solvents that can be used are limited. On the other hand, in the conventional method (B), the optically active stationary phase obtained by grafting an optically active substance onto an inorganic carrier such as silica gel has sufficient mechanical strength and can be used at high speeds. It is possible. However, the compounds that can be separated are limited to a narrow range, or the degree of separation is small.
Furthermore, it is difficult to produce a grafted filler and it is difficult to obtain a filler with reproducible performance, so it is difficult to say that any of these fillers is a practical filler. Among these, method (e), which uses a filler grafted with optically active aromatic amines, can resolve a relatively wide range of racemic mixtures such as amines, alcohols, carboxylic acids, amino acids, oxyacids, and amino alcohols, and has high performance. However, the degree of separation is still not sufficient. <Means and effects for solving the problems> Under such circumstances, the present inventors have developed a filler that can be analyzed over a wide range of compounds, is relatively easy to manufacture, and is chemically stable and practical. As a result of continuing intensive studies with the aim of providing the following general formula (I)
The filler for optical resolution, which is made by immobilizing a polymer consisting of an optically active monomer represented by the following general formula () and a monomer represented by the following general formula (), on silica gel not only exhibits excellent effects in separating a wide range of racemic mixtures, but also exhibits excellent optical resolution. It was discovered that by creating an active polymer structure, it not only has performance equivalent to or better than monomer-type fillers with the same structure, but also exhibits excellent separation ability for compounds with irregular surfaces that were previously difficult to separate. , arrived at the present invention. (In the formula, R 1 is a phenyl group, a 1-naphthyl group, a 2-naphthyl group, or a phenyl group substituted with a lower alkyl group, a 1-naphthyl group, or a 2-naphthyl group.
represents a naphthyl group, R 2 represents a lower alkyl group, R 3 represents a hydrogen atom or a methyl group,
* represents an asymmetric carbon atom. ) (In the formula, R 4 , R 5 , and R 6 represent the same or different alkyl groups, alkoxy groups, hydroxyl groups, or halogen atoms, and at least one of R 4 , R 5 , and R 6 is an alkoxy group or a halogen atom. ) The filler of the present invention is an extremely useful filler because it can be easily produced by ordinary chemical reactions and is also chemically stable. The optically active monomer represented by the above general formula (I) is, for example, an optically active amine R 1 R 2 C
HNH 2 (where R 1 and R 2 are as described above)
by reacting with acrylic anhydride or methacrylic anhydride at a temperature of about -5°C to 60°C, especially in the presence of a polymerization inhibitor such as 4-tertiary butylpyrocatechol. However, it is preferable to carry out the reaction using an inert organic solvent at room temperature, particularly a hydrocarbon such as benzene or toluene, or a halogenated hydrocarbon such as methylene chloride or chloroform. The reaction time depends on the applied reaction temperature, but is usually about 30 minutes to 4 hours. Further, the optically active monomer represented by the above general formula (I) is an optically active amine R 1 R 2 C〓HNH 2
(Here, R 1 and R 2 are as described above) in the presence of acrylic acid chloride or methacrylic acid chloride and a polymerization inhibitor in the above-mentioned inert organic solvent as a neutralizing agent for hydrochloric acid by-produced. It can also be synthesized by reacting at room temperature or below in the presence of Examples of neutralizing agents for hydrochloric acid include tertiary amines such as triethylamine, and alkaline aqueous solutions such as sodium hydroxide and sodium carbonate. Specific examples of the optically active monomer represented by the above general formula (I) include the following compounds. R- or S-acrylic acid-1-phenylethylamide, R- or S-acrylic acid-1-(2
-methylphenyl)ethylamide, R- or S
-acrylic acid 1-(4-methylphenyl)ethylamide, R- or S-acrylic acid-1-phenylpropylamide, R- or S-acrylic acid-
1-(1-naphthyl)ethylamide, R- or S-acrylic acid-1-(2-naphthyl)ethylamide, R- or S-acrylic acid-1-(1-
naphthyl) propylamide, R- or S-acrylic acid-1-(6,7-dimethyl-1-naphthyl)
Ethylamide, R- or S-acrylic acid-1-
(6,7-dimethyl-1-naphthyl)isopropylamide, R- or S-methacrylic acid-1-phenylethylamide, R- or S-methacrylic acid-1-(2-methylphenyl)ethylamide,
R- or S-methacrylic acid-1-(4-methylphenyl)ethylamide, R- or S-methacrylic acid-1-phenylpropylamide, R- or S-methacrylic acid-1-(1-naphthyl)ethylamide, R - or S-methacrylic acid-1-
(2-naphthyl)ethylamide, R- or S-
Methacrylic acid-1-(1-naphthyl)propylamide, R- or S-methacrylic acid-1-(6,
7-dimethyl-1-naphthyl)ethylamide, R
- or S-methacrylic acid-1-(6,7-dimethyl-1-naphthyl)isopropylamide. On the other hand, the monomers represented by the general formula () include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyldimethylethoxysilane, 3-methacryloxypropyltrichlorosilane, -methacryloxypropylmethyldichlorosilane, 3-methacryloxypropyldimethylchlorosilane, etc. are preferably used. Among these, 3-methacryloxypropyltrimethoxysilane is particularly preferred. The copolymerization of the optically active monomer represented by the above general formula (I) and the monomer represented by the above general formula ( In the presence of a radical polymerization initiator of an azo compound such as azoisobutyronitrile, an inert organic solvent, preferably an aromatic hydrocarbon such as benzene or toluene, or a halogenated polymer such as methylene chloride, chloroform or 1,2-dichloroethane It is carried out in known manner in hydrocarbons. Particularly preferred solvents include benzene,
An example is toluene. The polymer obtained by polymerization is obtained by pouring the reaction solution as it is or by concentrating it into a large excess of a polymer-insoluble solvent, such as a lower alcohol such as methanol or ethanol, or an aliphatic alkane such as n-heptane or cyclohexane. Therefore, it can be separated and recovered as a precipitate. Particularly preferred diluting precipitants include methanol and n-hexane. Benzene the precipitate again,
The polymer can be purified by dissolving it in an aromatic hydrocarbon such as toluene or a halogenated hydrocarbon such as chloroform or methylene chloride, and adding it to a diluted precipitant. Alternatively, it is also possible to use the reaction solution as it is without separating the polymer from the reaction solution and react with pre-dried silica gel to immobilize the polymer. According to this method, the filler can be manufactured more easily. . A combination of the monomer represented by the above general formula (I) and the monomer represented by the above general formula () in a polymer consisting of an optically active monomer represented by the above general formula (I) and a monomer represented by the above general formula (). The molar ratio of the polymerization composition is preferably 0.5 or more,
More preferably, it is 1 or more. If the molar ratio is 0.5 or more, it has sufficient performance as a filler for optical resolution. When the molar ratio is less than 0.5, the above general formula (I)
As the amount of the optically active monomer represented by is decreased, the optical resolution performance tends to decrease. Also,
If the molar ratio becomes too large, the above general formula ()
The molar ratio is preferably 100 or less, particularly preferably 80 or less, because the amount of the monomer represented by 2 tends to decrease, and the amount immobilized on the silica gel tends to decrease. Next, immobilization of the polymer onto silica gel will be explained. The silica gel used in the present invention may be in any shape, such as spherical or crushed, but in order to obtain a highly efficient chromatography column, the silica gel should be as fine as possible and have an appropriate pore size. is preferred. The fully porous silica gel usually has an average particle diameter of 1 μm to 1 mm, and preferably has an average pore diameter of 100 angstroms or more. More preferably, a thickness of 300 angstroms or more is used. The average pore diameter is
If the pore diameter is less than 100 angstroms, the pore diameter is too small and it tends to be difficult to immobilize the polymer on the silica gel. There is no particular limit to the upper limit of the pore diameter, but it is usually 5000 mm from the mechanical strength of silica gel.
The thickness is preferably angstrom or less. Using such silica gel, the monomer represented by the above general formula () in the polymer can be dissolved in a solvent in which the polymer can be stably dissolved, such as an aromatic hydrocarbon such as benzene or toluene, or a halogenated hydrocarbon such as chloroform. By reacting the units R 4 , R 5 , and R 6 with the hydroxyl groups on the silica gel surface under heating conditions, the polymer can be easily immobilized on the silica gel with strong covalent bonds. Silica gel can immobilize polymers by simply dehydrating it in advance without requiring complicated pretreatment. This is one feature of the present invention. Furthermore, the obtained packing material has sufficient mechanical strength, making it easy to speed up chromatography.
Moreover, because it is chemically stable, it can be used for a long period of time. In order to suppress hydrolysis of the polymer during immobilization, it is preferable to use the solvent after dehydrating it in advance. The reaction time of the immobilization treatment depends on the heating temperature, but is usually 1 to 100 hours. The amount of polymer immobilized on silica gel is usually
The content is 0.1% by weight or more, preferably 1% by weight or more, and more preferably 3% by weight or more. The optical resolution packing material obtained according to the present invention can be packed into a chromatographic column by a conventional method such as a slurry packing method and used as a stationary phase in liquid chromatography. In liquid chromatography using this stationary phase, by selecting appropriate elution conditions, particularly commonly used conditions for normal phase partitioning or reversed phase partitioning, it is possible to optically resolve optical isomers of a wide range of compounds. Examples of optically resolvable compounds include aromatic hydrocarbons, halides, alcohols, aldehydes, ketones, carboxylic acids, amines, ethers, esters, amides, nitriles, amino acids, oxycarboxylic acids, and the like. In particular, -CONH- group, -OH group, -OCO- group, -
Racemic mixtures of compounds having an OCONH- group or a -N--CONH- group can be separated or analyzed with good resolution and in a short time.
Specific examples include α-chloropropionic acid anilide, hexobarbital, 1-(9-anthryl)trifluoroethanol, N-benzoylalanine ethyl ester, N-benzoyl-1-
Examples include (1-naphthyl)ethylamine, mandelic acid amide, N-3,5-dinitrobenzoylphenylalanine ethyl ester, O-3,5-dinitrophenylcarbamoyl-2-pentanol, and the like. Also, 1,1'-bi-2-naphthol,
2'-methoxy-1,1'-binaphthyl-2-ol, 2'-(1-propene-3-yloxy)-1,
It is characterized by excellent separation ability for compounds with irregular surfaces such as 1'-binaphthyl-2-ol. <Example> Examples of the production and optical resolution of a filler according to the present invention will be explained with the following examples. Example 1 3.0 g of methacrylic acid R-1-(1-naphthyl)ethylamide, 0.14 g of 3-methacryloxypropyltrimethoxysilane, 0.04 g of α.α'-azoisobutyronitrile, and 40 ml of dehydrated toluene were placed in a 100 ml flask. The mixture was heated under a nitrogen atmosphere at 50° C. for 1 hour, then at 80° C. for 1 hour, and then heated under reflux for 16 hours while stirring with a stirrer. The reaction solution was concentrated to about 1/3, about 20 ml of n-hexane was added under stirring, and the precipitated polymer was separated by decantation. Dissolve the crude polymer in 15 ml of benzene and add n again.
- Hexane was added to precipitate the polymer.
It was confirmed by thin layer chromatography that this polymer contained no unreacted monomer.
The polymer yield was 1.75 g, methacrylic acid R-
The copolymerization molar ratio of 1-(1-naphthyl)ethylamide and 3-methacryloxypropyltrimethoxysilane was 24 as calculated from the Si content of the polymer. 3 g of porous silica gel (average particle size 10 μm, average pore size 1000 angstroms) was heated at 200℃ for 5 minutes.
After drying under reduced pressure for an hour, it was added to a solution of 0.30 g of the above polymer dissolved in 30 ml of dehydrated toluene, and the mixture was heated under reflux for 20 hours. Collect the polymer-immobilized silica gel,
Washed 4 times with 30 ml of benzene, 3 times with 30 ml of acetone, and finally 3 times with 30 ml of methanol. Dry under reduced pressure at 60°C to obtain R-1-(1-naphthyl) methacrylate.
A filler for optical resolution was obtained in which a copolymer of ethylamide and 3-methacryloxypropyltrimethoxysilane was immobilized on silica gel. The carbon content of the filler obtained was 3.8% by weight. Example 2 Methacrylic acid-S-1-phenylethylamide
4.0 g, 0.48 g of 3-methacryloxypropyltrimethoxysilane, 0.05 g of α,α'-azoisobutyronitrile, and 60 ml of dehydrated toluene were placed in a 100 ml flask, and heated under a nitrogen atmosphere at 80°C for 14 hours while stirring with a stirrer. , and then heated under reflux for 9 hours. It was treated in the same manner as in Example 1 to obtain 1.92 g of optically active polymer. Methacrylic acid-S-1 based on Si content
The copolymerization molar ratio of -phenylethylamide and 3-methacryloxypropyltrimethoxysilane was 23. Using 1.86 g of the above polymer, the polymer was immobilized on the same silica gel as in Example 1 according to the same formulation as in Example 1, and methacrylic acid-S
A filler for optical resolution was obtained in which a copolymer of -1-phenylethylamide and 3-methacryloxypropyltrimethoxysilane was immobilized on silica gel. The carbon content of the filler obtained was 5.7% by weight. Example 3 Acrylic acid-S-1-phenylethylamide
4.0 g, 0.28 g of 3-methacryloxypropyltrimethoxysilane, 0.04 g of α,α'-azoisobutyronitrile, and 40 ml of dehydrated benzene were placed in a 100 ml flask, and heated under reflux under a nitrogen atmosphere for 15 hours while stirring with a stirrer. . Leave the reaction solution as is
The mixture was poured into 200 ml of methanol, and the precipitated polymer was separated by decantation. The yield of optically active polymer was 3.79 g, and acrylic acid-S-1
-The copolymerization molar ratio of phenylethylamide and 3-methacryloxypropyltrimethoxysilane is 25
It was hot. In the same manner as in Example 1, 0.50 g of the above polymer was immobilized on 2.5 g of the same silica gel as in Example 1. The carbon content of the obtained silica gel on which the copolymer of acrylic acid-S-1-phenylethylamide and 3-methacryloxypropyltrimethoxysilane was immobilized was 5.8% by weight. Example 4 100 ml of 1.0 g of methacrylic acid R-1-(1-naphthyl)ethylamide, 0.52 g of 3-methacryloxypropyltrimethoxysilane, 0.04 g of α,α'-azoisobutyronitrile and 20 ml of dehydrated toluene
The mixture was placed in a flask and heated under a nitrogen atmosphere at 50°C for 1 hour, then at 80°C for 1 hour while stirring with a stirrer, and then heated under reflux for 16 hours. The optically active polymer obtained was 0.84 g, and methacrylic acid R-1-
The copolymerization molar ratio of (1-naphthyl)ethylamide and 3-methacryloxypropyltrimethoxysilane was 3 based on the Si content of the polymer. Using 0.44 g of this polymer, the polymer was immobilized on the same silica gel with the same formulation as in Example 1, and R-1-(1-naphthyl methacrylate)
A filler for optical resolution was obtained in which a copolymer of ethylamide and 3-methacryloxypropyltrimethoxysilane was immobilized on silica gel. The carbon content of the filler obtained was 3.6% by weight. Example 5 100 ml of 3.0 g of methacrylic acid R-1-(1-naphthyl)ethylamide, 0.06 g of 3-methacryloxypropyltrimethoxysilane, 0.04 g of α,α'-azoisobutyronitrile and 40 ml of dehydrated toluene
The mixture was placed in a flask and reacted in the same manner as in Example 1.
The weight of the obtained polymer was 1.86 g, and the copolymerization molar ratio of methacrylic acid R-1-(1-naphthyl)ethylamide and 3-methacryloxypropyltrimethoxysilane was 86 based on the Si content of the polymer.
Using 0.30 g of this polymer, the polymer was immobilized on the same silica gel as in Example 1 according to the same formulation as in Example 1, and methacrylic acid R-1-(1-
A filler for optical resolution was obtained in which a copolymer of (naphthyl)ethylamide and 3-methacryloxypropyltrimethoxysilane was immobilized on silica gel. The carbon content of the filler obtained was 1.9% by weight. Example 6 0.40 g of the optically active polymer obtained in Example 1 was immobilized on 3.0 g of porous silica gel (average particle diameter 10 μm, average pore diameter 300 angstroms). The resulting filler for optical resolution, in which the copolymer of methacrylic acid R-1-(1-naphthyl)ethylamide and 3-methacryloxypropyltrimethoxysilane was immobilized on silica gel, had a carbon content of 4.8% by weight. . Examples 7 and 8 The fillers obtained in Examples 1 and 2 were slurry-packed into stainless steel columns with an inner diameter of 4 mm and a length of 30 cm to prepare columns for optical resolution. Using these optical resolution columns, various racemic mixtures were analyzed and the results shown in Table 1 were obtained. Measurements were carried out at room temperature, the eluent flow rate was 1 ml/min, and detection was performed using ultraviolet absorption at 254 nm.

【表】【table】

【表】 また、実施例7の光学分割用カラムによる1,
1′−ビ−2−ナフトールのクロマトグラムを第1
図に、実施例8の光学分割用カラムによるα−ク
ロルプロピオン酸アニリドのクロマトグラムを第
2図に示す。 <発明の効果> 本発明の光学分割用充填剤は、広範囲のラセミ
混合物の分離に優れた効果を示すのみならず、光
学活性ポリマー構造を取ることにより、類似構造
のモノマー型光学分割用充填剤と同等以上の性能
を持つばかりでなく、従来分離が困難であつた面
不整の化合物に対して優れた分離能力を示す特徴
がある。 また、本発明の光学分割用充填剤はシリカゲル
の特殊な前処理を必要とせず、光学活性ポリマー
を不活性な有機溶媒中で加熱するだけで強固な共
有結合によつてシリカゲルに固定化できるため、
製造方法は簡便であり、しかも得られた充填剤は
化学的に安定で長期間の使用が可能である。さら
に、本発明の充填剤は十分な機械的強度を持つた
め、クロマトグラフイーの高速化が容易であり、
使用する溶媒の制限を受けないという優れた利点
も有している。
[Table] Also, 1,
The first chromatogram of 1'-bi-2-naphthol
FIG. 2 shows a chromatogram of α-chloropropionic acid anilide obtained using the optical resolution column of Example 8. <Effects of the Invention> The filler for optical resolution of the present invention not only exhibits an excellent effect in separating a wide range of racemic mixtures, but also has an optically active polymer structure, so that it can be used as a monomer-type filler for optical resolution with a similar structure. Not only does it have performance equivalent to or better than that of the conventional method, but it also exhibits excellent separation ability for compounds with irregular surfaces that were previously difficult to separate. In addition, the optical resolution filler of the present invention does not require any special pretreatment of silica gel, and can be immobilized on silica gel by strong covalent bonds by simply heating the optically active polymer in an inert organic solvent. ,
The manufacturing method is simple, and the filler obtained is chemically stable and can be used for a long period of time. Furthermore, since the packing material of the present invention has sufficient mechanical strength, it is easy to speed up chromatography.
It also has the excellent advantage of not being subject to restrictions on the solvent used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例7の光学分割用カラムによる
1,1′−ビ−2−ナフトールのクロマトグラムで
あり、第2図は実施例8の光学分割用カラムによ
るα−クロルプロピオン酸アニリドのクロマトグ
ラムである。図の縦軸はUV吸収強度を、横軸は
保持時間を表わす。
Figure 1 is a chromatogram of 1,1'-bi-2-naphthol using the optical resolution column of Example 7, and Figure 2 is a chromatogram of α-chloropropionic acid anilide using the optical resolution column of Example 8. Gram. The vertical axis of the figure represents UV absorption intensity, and the horizontal axis represents retention time.

Claims (1)

【特許請求の範囲】 1 下記一般式(I)で表わされる光学活性モノ
マーと下記一般式()で表わされるモノマーと
からなるポリマーをシリカゲルに固定化してなる
光学分割用充填剤。 (式中、R1はフエニル基、1−ナフチル基ま
たは2−ナフチル基あるいは低級アルキル基で置
換されたフエニル基、1−ナフチル基または2−
ナフチル基を表わし、R2は低級アルキル基を表
わし、R3は水素原子またはメチル基を表わし、
*は不整炭素原子を表わす。) (式中、R4,R5,R6は同一または相異なるア
ルキル基、アルコキシル基、ヒドロキシル基また
はハロゲン原子を表わし、R4,R5,R6の少なく
とも1つはアルコキシル基またはハロゲン原子で
ある。)
[Scope of Claims] 1. A filler for optical resolution, which is obtained by immobilizing on silica gel a polymer consisting of an optically active monomer represented by the following general formula (I) and a monomer represented by the following general formula (). (In the formula, R 1 is a phenyl group, a 1-naphthyl group, a 2-naphthyl group, or a phenyl group substituted with a lower alkyl group, a 1-naphthyl group, or a 2-naphthyl group.
represents a naphthyl group, R 2 represents a lower alkyl group, R 3 represents a hydrogen atom or a methyl group,
* represents an asymmetric carbon atom. ) (In the formula, R 4 , R 5 , and R 6 represent the same or different alkyl groups, alkoxyl groups, hydroxyl groups, or halogen atoms, and at least one of R 4 , R 5 , and R 6 is an alkoxyl group or a halogen atom. be.)
JP60003263A 1985-01-14 1985-01-14 Packing agent for optical resolution Granted JPS61162750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60003263A JPS61162750A (en) 1985-01-14 1985-01-14 Packing agent for optical resolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003263A JPS61162750A (en) 1985-01-14 1985-01-14 Packing agent for optical resolution

Publications (2)

Publication Number Publication Date
JPS61162750A JPS61162750A (en) 1986-07-23
JPH0430931B2 true JPH0430931B2 (en) 1992-05-25

Family

ID=11552579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003263A Granted JPS61162750A (en) 1985-01-14 1985-01-14 Packing agent for optical resolution

Country Status (1)

Country Link
JP (1) JPS61162750A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664973B2 (en) * 1989-01-09 1997-10-22 ダイセル化学工業株式会社 Optical splitting method
US5302633A (en) * 1990-11-29 1994-04-12 Nacalai Tesque, Inc. Optical resolution agent and process for the preparation of the same
ITRM20020155A1 (en) * 2002-03-20 2003-09-22 Univ Roma "BRUSH TYPE" POLYMERIC COMPOSITE CHIRAL STATIONARY PHASES.

Also Published As

Publication number Publication date
JPS61162750A (en) 1986-07-23

Similar Documents

Publication Publication Date Title
US4737560A (en) Polymer beads
US4871824A (en) Variably crosslinked polymeric supports
JP3896468B2 (en) Chiral stationary phases for chromatographic separation of enantiomers.
US5639861A (en) Crosslinked methacrylic anhydride copolymers
US4517241A (en) Chromatographic support material
FR2482112A1 (en) NOVEL HYDROPHILIC COPOLYMERS BASED ON N- (TRIS (HYDROXYMETHYL) METHYL) ACRYLAMIDE, PROCESSES FOR THEIR PREPARATION, AQUEOUS GELS OF SAID COPOLYMERS AND THEIR USE AS ION EXCHANGERS
JP2896571B2 (en) Composite separating agent and method for producing the same
EP0978498B1 (en) Separating agent for optical isomers and process for producing the same
JP2005510609A5 (en)
JP2002210377A (en) Anion exchanger and its production method and application
JPS63218857A (en) Packing agent for liquid chromatography
US6316235B1 (en) Preparation and use of magnetically susceptible polymer particles
JPH0430931B2 (en)
Koilpillai et al. Immobilization of penicillin G acylase on methacrylate polymers
JP2965752B2 (en) Optically active N-α-fluoroacryloylamino acid derivatives, their production, optically active polymers produced therefrom and their use for resolving racemates
JP3446274B2 (en) Manufacturing method of separation agent
JP2001521507A (en) Chromatographic separation of enantiomers of lactones
JPS61160054A (en) Packing material for optical splitting
JPH04249762A (en) Separating material
JPS61162751A (en) Packing agent for optical resolution
JP3493706B2 (en) Adsorption carrier for chromatography
JP3029640B2 (en) Adsorbent
JPH0788366A (en) Production of separating agent
WO2003004149A1 (en) Novel separation agent for separating optical isomer and method for preparation thereof
US7087748B2 (en) Process