JPS61159322A - Nc gear processing machine - Google Patents

Nc gear processing machine

Info

Publication number
JPS61159322A
JPS61159322A JP27967384A JP27967384A JPS61159322A JP S61159322 A JPS61159322 A JP S61159322A JP 27967384 A JP27967384 A JP 27967384A JP 27967384 A JP27967384 A JP 27967384A JP S61159322 A JPS61159322 A JP S61159322A
Authority
JP
Japan
Prior art keywords
machining
efficiency
accuracy
precision
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27967384A
Other languages
Japanese (ja)
Inventor
Kenji Ueno
健治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27967384A priority Critical patent/JPS61159322A/en
Publication of JPS61159322A publication Critical patent/JPS61159322A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/006Equipment for synchronising movement of cutting tool and workpiece, the cutting tool and workpiece not being mechanically coupled

Abstract

PURPOSE:To improve high-accuracy machining and high-efficiency machining of a gear independently, by dividing the operating function of a control system into the one for high-accuracy machining in which operation is carried out on a high-accuracy machining operating basis, and the one for high-efficiency machining in which operation is carried out on a high-efficiency machining operating basis. CONSTITUTION:First, when a command for the number of revolution of a hob 2 is input, a spindle motor 1 rotates based on the command, and the rotating position of the hob 2 is input into an NC controller 5 by means of an encoder 4. And, commands for the number of revolution and the phase of rotation either for high accuracy or for high efficiency of the machining of a gear, are output to a table driving motor 9 via either of a high-accuracy digital phase modulation circuit 21 having an operating function for high-accuracy machining or a high- efficiency digital phase modulation circuit 22 having an operating function for high-efficiency machining, a position controlling circuit, and an amplifying circuit, by means of a switch SW. And, the commanded number of revolution and phase of rotation are compared with actual number of revolution and phase of rotation and adjusted by means of feedback.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はNC歯車加工機の改良に関し、歯車の高精度加
工、高能率加工がそれぞれ得られるよりに全回したもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to the improvement of an NC gear processing machine, and is aimed at achieving both high-precision and high-efficiency processing of gears.

〈従来の技術〉 近年、工作機械のNC化か普及している中で1、 ホブ
盤、ギヤシェイパ、歯車シェービング盤等の歯車加工機
においてもNC化が普及しており、そのNC化率は年を
追って高くなる傾向にある。
<Conventional technology> In recent years, as the use of NC in machine tools has become widespread,1, the use of NC has also become widespread in gear processing machines such as hobbing machines, gear shapers, and gear shaving machines, and the rate of use of NC is increasing every year. It tends to increase as the price increases.

現在実用化されているホブ盤におけるホブ主軸(工具軸
)とワークテーブル軸との同期制御は、第2図に示す如
く機構で行なわれている。即ち主軸モータlにより回転
されるホブ2のホブ軸3にはホブ軸3の回転数を検知し
ホブ2の回転位置を表わすエンコーダ4が取付けられ、
エンコーダ4からの情報はNC制御装置5に入力される
。エンコーダ4からの情報に基づきNC制御装置5では
、ウオーム6.9オームホイール7t−介して被削歯車
8に動力を伝達するテーブル駆動モータ9の回転数及び
回転位置が演算され、NC制御装置5からこの演算され
た回転数及び回転位置がテーブル駆動モータ9に指令さ
れこの回転数及び回転位置でテーブル駆動モータ9け回
転する。一方テーブル駆動モータ9にはこのテーブル駆
動モータ9の回転数を検出するタコジェネレータ10と
テーブル駆動モータ9の回転位相を検出するレゾルバ1
1が備えられ、タコジェネレータ10とレゾルバ11と
からの情報はNC制御装置5にフィードバックされる。
Synchronous control of the hob main shaft (tool shaft) and work table shaft in hobbing machines currently in practical use is performed by a mechanism as shown in FIG. That is, an encoder 4 is attached to the hob shaft 3 of the hob 2 rotated by the main shaft motor 1, which detects the rotational speed of the hob shaft 3 and indicates the rotational position of the hob 2.
Information from the encoder 4 is input to the NC control device 5. Based on the information from the encoder 4, the NC control device 5 calculates the rotational speed and rotational position of the table drive motor 9 that transmits power to the workpiece gear 8 via the worm 6.9 ohm wheel 7t. The calculated rotational speed and rotational position are then commanded to the table driving motor 9, and the table driving motor 9 rotates at this rotational speed and rotational position. On the other hand, the table drive motor 9 includes a tacho generator 10 that detects the rotational speed of the table drive motor 9 and a resolver 1 that detects the rotational phase of the table drive motor 9.
1 is provided, and information from the tachogenerator 10 and resolver 11 is fed back to the NC control device 5.

フィードバックされた情報はエンコーダ4からの情報に
基づき演算された回転数及び回転位置と比較され、修正
演算されて再びテーブル駆動モータ9に指令される。こ
のようにして工具軸とワークテーブル軸とは同期制御さ
れている。
The fed-back information is compared with the rotational speed and rotational position calculated based on the information from the encoder 4, corrected and calculated, and then commanded to the table drive motor 9 again. In this way, the tool axis and work table axis are synchronously controlled.

ところがホブ盤における工具軸とワークテーブル軸の同
期制御は、単に直線軸の位置決めのように8標値だけの
制御に留まらず時々刻々の工具軸とワークテーブル軸の
位置関係を制御しなければならず、困難なものである。
However, the synchronized control of the tool axis and work table axis in a hobbing machine is not limited to simply controlling eight target values like the positioning of a linear axis, but also requires controlling the positional relationship between the tool axis and work table axis from moment to moment. It is difficult.

そこで従来では、ホブ盤の使用目的に応じて高精度加工
に使用する場合はNC制御装置5における演算暑岸を小
さくし、高能率加工に使用する場合はNC制御装置5に
おける演算基中ヲ大きくして使用目的に応じてN C!
II御装置5の制御系を決定している。
Therefore, conventionally, depending on the purpose of use of the hobbing machine, the calculation base in the NC control device 5 is made small when used for high-precision machining, and the calculation base in the NC control device 5 is made large when used for high-efficiency machining. N C! depending on the purpose of use!
The control system for the II control device 5 has been determined.

〈発明が解決しようとする問題点〉 機械のNC化によるメリットは加工能率向上にあるが、
加工精度が低下してはNC化にした意味が無くなり、N
C歯車加工機においても高能率、高精度加工に対する要
求は高まりつつある。しかし加工精度と加工能率という
問題は一方を向上させると一方が低下するという問題で
あシ、歯車加工の分野では特に顕著である。し九がって
それぞれの要求を満たすにはNC制御装置の演算単位を
歯車加工機の使用目的に応じて決定せざるを得ないのが
現状であり、上述し念問題は制御系がどのように改善さ
れてもつきまとう問題である。・ 本発明は上記状況にかんがみてなされたもので、制御系
の演算機能を高精度加工用演算基準で演算を行なう高精
度加工用と高精度加工用演算基準で演算を行なう高能率
加工用とに区別し、適宜使用目的にあった演算基準で演
算を行なう演算機能を選択することができ為Nc歯歯車
工機t−提供し、もって歯車の高fllf&加工、高能
率加工をそれぞれ行なえるように企図することを目的と
する。
<Problems to be solved by the invention> The advantage of using NC in machines is improved processing efficiency;
If the machining accuracy decreases, there is no point in using NC.
Demand for high efficiency and high precision machining is also increasing for C gear processing machines. However, the problem of machining accuracy and machining efficiency is that when one is improved, the other is degraded, and this is particularly noticeable in the field of gear machining. Therefore, in order to meet each requirement, the calculation unit of the NC control device must be determined according to the purpose of use of the gear processing machine. This is a problem that persists even after improvements have been made. - The present invention was made in view of the above situation, and the calculation function of the control system is divided into two types: one for high-precision machining, which performs calculations based on calculation standards for high-precision machining, and one for high-efficiency machining, which performs calculations based on calculation standards for high-precision machining. Nc gear machine tool t- allows you to select a calculation function that performs calculations based on the calculation criteria that suits the purpose of use. The purpose is to plan for.

く問題点を解決するための手段〉 上記目的を達成するための本発明の構成は、工具軸側及
びワークテーブル軸側の駆動系のうち少なくとも一方側
の駆動系から入力される数値情報t−NC制御装置によ
り演算し、該演算値に基づき工具軸・側及びワーク軸側
の駆動系を同期制御して歯車の加工を行なうNC歯車加
工機に算機能也被加工歯車の加工が能率良く行なえる高
能率加工用演算基準で演算を行なう高能率加咳高能率加
工用演算機能との選択を行なう演算機能選択手段を備え
たこと1−*徴とし、菌単加工機の使用目的に応じて演
算機能選択手段によりNC制御装置の制御系を高1i1
度加工用演算機能ま之は高能率加工用演算機能のどちら
かを選択し、歯車の高精度加工、高能率加工をそれぞれ
行なえるようにしたものである。
Means for Solving the Problems> The configuration of the present invention for achieving the above object is based on numerical information t- input from at least one of the drive systems on the tool axis side and the work table axis side. Calculations are performed by the NC control device, and based on the calculated values, the drive systems of the tool axis side and the work axis side are synchronously controlled to machine gears.The NC gear processing machine has a calculation function and can efficiently process the gears to be machined. Equipped with a calculation function selection means for selecting a calculation function for high efficiency machining that performs calculations based on calculation standards for high efficiency machining. The control system of the NC control device is set to 1i1 by the arithmetic function selection means.
The calculation function for high-speed machining allows you to select either of the calculation functions for high-efficiency machining to perform high-precision machining and high-efficiency machining of gears, respectively.

〈実施例〉 811図には本発明の一実施例に係るNC水゛プ繋のN
C回路を表わすブロック図を示しである。尚、工具軸と
ワークテーブル軸との同期制御槽1ド第2図に示した従
来の機構と同一であるので、同一符号を付して、ここで
はNC制御装置における制御系統について説明し重複す
る説明は省略する。
<Embodiment> Fig. 811 shows the N of the NC water pipe connection according to an embodiment of the present invention.
3 shows a block diagram representing a C circuit. The synchronization control tank 1 for the tool axis and work table axis is the same as the conventional mechanism shown in Figure 2, so the same reference numerals are given, and the control system in the NC control device will be explained and redundant here. Explanation will be omitted.

ホブ回転数の指令を入力すると主軸モータ1はその指令
に基づき回転し、ホブ2の回転位置がエンコーダ4によ
りNC制御装置に入力され、エンコーダ4からの情報は
予め記憶きれた歯数指令値と共にスムージング回路に入
力される。
When a command for the number of rotations of the hob is input, the spindle motor 1 rotates based on the command, and the rotational position of the hob 2 is input to the NC control device by the encoder 4, and the information from the encoder 4 is transmitted together with the pre-stored tooth number command value. Input to smoothing circuit.

スムージング回路に入力された情tI&は、演算機能選
択手段であるスイッチSWにより高精度加工用演算基準
で演算を行なう高精度加工用演算機能を有する高精度デ
ィジタル位相変調回路21または高能率加工用演算基準
で演算を行なう高能率加工用演算機能を有する高能率デ
ィジタル位相変調回路22に選択入力され、位置制御回
路及び増重回路を介してテーブル駆動モータ9に歯車の
加工が高精度に行なえるかもしくは高能率で行なえる回
転数及び回転位相の指令が出力される。そしてテーブル
駆動モータ9による回転はタコジェネレータ10、レゾ
ルバ11によシ位置制御回路及び増重回路にフィードバ
ックされ、指令回転数及び回転位相と実際の回転数及び
回転位相とが比較修正される。
The information tI& input to the smoothing circuit is either a high-precision digital phase modulation circuit 21 having a calculation function for high-precision machining, which performs calculations based on the calculation standard for high-precision machining, or a calculation for high-efficiency machining using a switch SW, which is a calculation function selection means. It is selectively input to the high-efficiency digital phase modulation circuit 22 which has a calculation function for high-efficiency machining that performs calculations based on the standard, and is sent to the table drive motor 9 via the position control circuit and the multiplication circuit to ensure that gear machining can be performed with high precision. Alternatively, commands for the rotation speed and rotation phase that can be performed with high efficiency are output. The rotation by the table drive motor 9 is fed back to the position control circuit and the multiplication circuit by the tacho generator 10 and resolver 11, and the commanded rotation speed and rotation phase are compared and corrected with the actual rotation speed and rotation phase.

上述の如く、スイッチSWによりホブ2側の情報を高精
度ディジタル位相変調回路21に入力するか高能率位相
変調回路22に入力するかを適宜選択することができる
ので、製品目的に応じて加工精度重視、加工能率重視を
選択することができる。
As mentioned above, it is possible to appropriately select whether to input the information on the hob 2 side to the high-precision digital phase modulation circuit 21 or the high-efficiency phase modulation circuit 22 by using the switch SW, so that the machining accuracy can be adjusted depending on the product purpose. You can choose to prioritize processing efficiency or machining efficiency.

ここで高精度ディジタル位相変調回路21及び高能率デ
ィジタル位相変調回路220割出し数値Q/p に対す
る演算基準Sの具体例を表−1に示し、表−1の演算基
準Sに基づき表−1中区分随2の条件で歯切り加工を行
なった加工精度データを表−2に示す。尚Qは被加工歯
車の歯数、Pはホブの条数である。
Here, specific examples of calculation standards S for the high-precision digital phase modulation circuit 21 and high-efficiency digital phase modulation circuit 220 index value Q/p are shown in Table-1. Table 2 shows the machining accuracy data when gear cutting was performed under the conditions of Category 2. Note that Q is the number of teeth of the gear to be machined, and P is the number of threads of the hob.

表−1 表  −2 また、モジュール6、歯数23、歯幅25m。Table-1 Table-2 Also, the module has 6, number of teeth is 23, and face width is 25m.

ねじれ角200の被加工物を高精度ディジタル位相変調
回路21の演算基準0.002、高能率ディジタル位相
変調回路22の演算基準0.005の条件で歯切り加工
を行ない、歯筋誤差を調べた結果、高精度ディジタル位
相変調回路21を径由してテーブル駆動モータ9に指令
を出力した場合JISO〜1級、高能率ディジタル位相
変調回路22t−径由してテーブル駆動モータ9に指令
を出力した場合JIS2〜3級の歯車を得ることができ
た。
A workpiece with a helix angle of 200 was subjected to gear cutting under the conditions of a calculation standard of 0.002 for the high-precision digital phase modulation circuit 21 and a calculation standard of 0.005 for the high-efficiency digital phase modulation circuit 22, and the tooth trace error was investigated. As a result, when a command is output to the table drive motor 9 via the high-precision digital phase modulation circuit 21, the command is output to the table drive motor 9 via the JISO to class 1, high efficiency digital phase modulation circuit 22t. In this case, it was possible to obtain gears of JIS class 2 to 3.

したがって、NC制御装置5における制御系を高精度加
工用と高能率加工用とに分け、スイッチSWによシそれ
を選択することにより製品目的に応じた加工精度、加工
能率を得ることが′できる。
Therefore, by dividing the control system in the NC control device 5 into one for high-precision machining and one for high-efficiency machining, and selecting the control system using the switch SW, it is possible to obtain machining accuracy and machining efficiency according to the purpose of the product. .

尚、上記一実施例はホブ盤について説明したが勿論他の
歯車加工機にも適用できる。また演算基準も上記一実施
例に限定されず、使用加工機の機種等により適宜設定で
きるものである。
Incidentally, although the above embodiment has been described with respect to a hobbing machine, it is of course applicable to other gear processing machines. Further, the calculation standard is not limited to the one embodiment described above, and can be set as appropriate depending on the type of processing machine used.

〈発明の効果〉 本発明のNC歯車加工機は、制御系の演算機能が高精度
加工用演算、!21’で演算を行なう高精度加工用と、
高精度加工用演g−1!eで演算を行なう高能率加工用
とに区別され、適宜使用目的に合った演算基捧で演算を
行なう演算機能が選択できるので、使用目的に合わせて
歯車の高精度加工及び高能率加工をそれぞれ行なうこと
ができる。その結果、歯車の高精度化及び高能率加工化
を個々に向上きせることが可能となる。
<Effects of the Invention> The NC gear processing machine of the present invention has a calculation function of the control system that can be used for high-precision processing. For high-precision machining that performs calculations at 21',
Performance g-1 for high precision machining! There is a distinction between high-efficiency machining, which performs calculations with e, and a calculation function that performs calculations with the calculation base that suits the purpose of use, so you can perform high-precision machining and high-efficiency machining of gears, respectively, depending on the purpose of use. can be done. As a result, it becomes possible to individually improve the precision and efficiency of gear processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るN C、f<つη1=
MitのNC回路を表わすブロック図、第2図は図面中
、 1は主軸モータ、 2はホブ、 3けホブ軸、 5はNC制御装置、 9はテーブル駆動モータ、 21は高精度ディジタル位相変調回路、22は高能率デ
ィジタル位相変調回路、SWげスイッチである。
FIG. 1 shows N C, f< η1= according to an embodiment of the present invention.
Figure 2 is a block diagram showing Mit's NC circuit, in which 1 is the main shaft motor, 2 is the hob, 3 hob shafts, 5 is the NC control device, 9 is the table drive motor, and 21 is the high-precision digital phase modulation circuit. , 22 are high-efficiency digital phase modulation circuits and SW switches.

Claims (1)

【特許請求の範囲】[Claims] 工具軸側及びワークテーブル軸側の駆動系のうち少なく
とも一方側の駆動系から入力される数値情報をNC制御
装置により演算し、該演算値に基づき工具軸側及びワー
ク軸側の駆動系を同期制御して歯車の加工を行なうNC
歯車加工機において、被加工歯車の加工が高精度に行な
える高精度加工用演算基準で演算を行なう高精度加工用
演算機能と被加工歯車の加工が能率良く行なえる高能率
加工用演算基準で演算を行なう高能率加工用演算機能と
を前記NC制御装置に持たせる一方、被加工歯車加工時
に該高精度加工用演算機能と該高能率加工用演算機能と
の選択を行なう演算機能選択手段を備えたことを特徴と
するNC歯車加工機。
Numerical information input from at least one of the drive systems on the tool axis side and the work table axis side is calculated by the NC control device, and the drive systems on the tool axis side and workpiece axis side are synchronized based on the calculated value. NC that controls and processes gears
In gear processing machines, there is a calculation function for high-precision machining that performs calculations using a calculation standard for high-precision machining that allows the machining of gears to be processed with high precision, and a calculation standard for high-efficiency machining that allows machining of gears to be processed efficiently. The NC control device has a calculation function for high-efficiency machining that performs calculations, and a calculation function selection means that selects between the calculation function for high-precision machining and the calculation function for high-efficiency machining when machining the gear to be machined. An NC gear processing machine featuring the following features.
JP27967384A 1984-12-29 1984-12-29 Nc gear processing machine Pending JPS61159322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27967384A JPS61159322A (en) 1984-12-29 1984-12-29 Nc gear processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27967384A JPS61159322A (en) 1984-12-29 1984-12-29 Nc gear processing machine

Publications (1)

Publication Number Publication Date
JPS61159322A true JPS61159322A (en) 1986-07-19

Family

ID=17614266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27967384A Pending JPS61159322A (en) 1984-12-29 1984-12-29 Nc gear processing machine

Country Status (1)

Country Link
JP (1) JPS61159322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374218U (en) * 1986-11-01 1988-05-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374218U (en) * 1986-11-01 1988-05-18

Similar Documents

Publication Publication Date Title
US4475319A (en) Process for machining a worm-type workpiece with a worm-type tool
JPH046001B2 (en)
EP0474882B1 (en) Numeric controller
GB2114322A (en) Method of controlling amendment of machining program in numerical control machine tool
CN1102890A (en) CNC system of directly interpolation of curved surface profile
JPH01159126A (en) Skiving machine
KR920003748B1 (en) Numerical control device
JPS63308613A (en) Control system for servo motor
JPS61159322A (en) Nc gear processing machine
JPH0649260B2 (en) Synchronous control device
US5237251A (en) Control unit for a machine with a tapping function
JPH0651241B2 (en) Y-axis processing method
JPH10286720A (en) Screw part working method of screw rotor
JPS5828416A (en) Rolling projecting cutting method for forming contour of workpiece and device for executing said method
JP3782545B2 (en) Gear cutting method
JPH03252704A (en) Rotational synchronization corrective control system
JPS6168606A (en) Numerical controller
JP2001134321A (en) Numerical controller
JPS58115504A (en) Controlling system of smoothing time constant of numerical controller
KR890002434B1 (en) Numerical control apparatus
JP2000190126A (en) Gear shaping method by nc lathe
JPS6089201A (en) Numerical controller
JPS6039488B2 (en) Automatic tooth alignment method on numerically controlled hobbing machine
JPS62224519A (en) Rigid tapping control system
JPH07100257B2 (en) Gear processing machine