JPS61159289A - Electric resistance welding method - Google Patents

Electric resistance welding method

Info

Publication number
JPS61159289A
JPS61159289A JP27909284A JP27909284A JPS61159289A JP S61159289 A JPS61159289 A JP S61159289A JP 27909284 A JP27909284 A JP 27909284A JP 27909284 A JP27909284 A JP 27909284A JP S61159289 A JPS61159289 A JP S61159289A
Authority
JP
Japan
Prior art keywords
low
electrode
conductivity
welding
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27909284A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
一雄 田中
Seiji Sasabe
誠二 笹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27909284A priority Critical patent/JPS61159289A/en
Publication of JPS61159289A publication Critical patent/JPS61159289A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/20Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of different metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Resistance Welding (AREA)

Abstract

PURPOSE:To join securely a high-conductivity material and low-conductivity material by resistance welding while preventing the temp. elevation and welding of the contact surface between electrodes and an insert material owing to the smaller tendency of the insert material to heat generation by interposing the high-conductivity material between the low conductivity material and the electrode in the resistance welding stage of the high-conductivity material and low-conductivity material. CONSTITUTION:The high-conductivity material 1 and the low-conductivity material 2 are superposed in the electric resistance welding stage of the two materials. The high-conductivity material 5 is then pressed to the bottom surface of the material 2 to form a 3-layered construction and thereafter the materials are sandwiched by the electrodes 3, 4 from above and below and welding current is passed between the electrode 3 and the electrode 4 while the materials are pressed. Then mainly the material 2 generates heat and the contact surface 6 between the material 2 and the material 1 as well as the contact surface 7 between the material 6 as well as the material 5 are respectively fused to each other. Since the materials 1 and 5 generate heat to the smaller extent, the welding of said materials to the contact surface 8 with the electrode 3 or 4 and the contact surface 9 does not arise.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高電気伝導性被溶接材(以下高導電材という)
と低電気伝導性被溶接材(以下低導電材という)を電気
抵抗溶接する方法に関し、詳細には低導電材と電極の溶
着を防止しつつ両導電材を電気抵抗溶接する方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a highly electrically conductive material to be welded (hereinafter referred to as a "highly conductive material").
This article relates to a method of electrical resistance welding a material to be welded with a low electrical conductivity (hereinafter referred to as a "low electrical conductive material"), and specifically relates to a method of electrical resistance welding the low electrical conductive material and the electrode while preventing welding of both electrically conductive materials. .

〔従来の技術〕[Conventional technology]

IC等の半導体装置の発展は著しいものがあシ、ICパ
ッケージを支えるリードフレームに対する需要も大幅に
伸びている。そしてこの様なリードフレームに求められ
る重要な特性としては成形加工性や接合用めっきの付着
性の他、熱特性が挙げられる。即ち大型のコンピュータ
においてはコンピュータから発生する熱量も大きく、蓄
熱量が大きくなシ温度が過度に上昇すると、コンピュー
タ機能に障害が出ることもある。従ってリードフレーム
形成材料については発熱量自体が小さくしかも放熱性の
良好な材料即ち電気伝導性及び熱伝導性の高い材料が望
まれておシ、従来のFe−N1系合金からCu系合金に
切換ら九つつある。
Semiconductor devices such as ICs are rapidly developing, and the demand for lead frames that support IC packages is also increasing significantly. Important properties required of such lead frames include moldability, adhesion of bonding plating, and thermal properties. That is, in large-sized computers, the amount of heat generated by the computer is large, and if the temperature of the computer with a large amount of heat storage increases excessively, the computer function may be impaired. Therefore, for the lead frame forming material, a material with a small calorific value and good heat dissipation, that is, a material with high electrical conductivity and thermal conductivity, is desired, and the conventional Fe-N1 alloy has been switched to a Cu alloy. There are nine.

一方部品によっては熱特性(発熱性及び放熱性)よ)も
機械的特性が重視されるものがあり、この様な部品のリ
ードフレームには高強度ではあるが電気伝導性が低い材
料が使用されている。
On the other hand, for some parts, emphasis is placed on both thermal properties (heat generation and heat dissipation) as well as mechanical properties, and the lead frames of such parts are made of materials with high strength but low electrical conductivity. ing.

その為IC等を組み合わせてコンピュータを形成するに
当たって、高導電性のリードフレームと低電導性のリー
ドフレームを接合する場面に遭遇することがある。
Therefore, when forming a computer by combining ICs and the like, a situation may be encountered in which a highly conductive lead frame and a low conductive lead frame are joined.

ところでリードフレーム同士を接合するに当たっては従
来電気抵抗溶接法が採用されておpFe−Nl系合金(
低導電材)同士の場合には特に支障なく良好な接合が行
なわれている。即ち低導電性リードフレーム同士を電気
抵抗溶接するに蟲たっては例えば第5図に示す様にリー
ドフレーム2同士を重ね合わせ、電極3,4によってこ
れを挾持し、押圧しつつ電極3と電極40間に溶接電流
を流しており、リードフレームの電気抵抗は電極に比べ
てかなシ大きいので主としてリードフレーム部分で発熱
しリードフレーム2同士の接触面6を融合することがで
きる。
By the way, electric resistance welding has traditionally been used to join lead frames together, but pFe-Nl alloy (
In the case of low-conductivity materials, good bonding was achieved without any particular problem. That is, when electrical resistance welding is performed between low-conductivity lead frames, for example, as shown in FIG. A welding current is passed between them, and since the electrical resistance of the lead frame is much larger than that of the electrode, heat is generated mainly in the lead frame portion, and the contact surfaces 6 of the lead frames 2 can be fused together.

ところで電極はそれ自身の中を電流が流れるので電極自
体の発熱を防止する為に高電気伝導度を有するCu合金
で形成するのが一般的であシミ極自身も通常水冷されて
いる。しかし温度上昇が完全に防止できる訳ではないの
で該温度上昇下における変形を防止する意味から高い機
械的性質も要求される。ところが電気伝導度と機械的性
質は要求物性として相反するものである為機械的性質を
満足させようとすれば電気伝導度を多少とも犠牲にせざ
るを得す、現在汎用されている電極材料のCr  Cu
合金は電気伝導度がおよそ90チlAC3となっている
Incidentally, since current flows through the electrode, it is generally made of a Cu alloy having high electrical conductivity to prevent the electrode from generating heat, and the stain electrode itself is also usually water-cooled. However, since temperature rise cannot be completely prevented, high mechanical properties are also required in order to prevent deformation under the temperature rise. However, since electrical conductivity and mechanical properties are contradictory physical properties, it is necessary to sacrifice electrical conductivity to some extent in order to satisfy mechanical properties. Cu
The alloy has an electrical conductivity of approximately 90 Chi AC3.

しかるに第6図に示す如く高導電性リードフレーム1と
低導電性リードフレーム2を電気抵抗溶接する場合には
、低導電性リードフレーム2の電気抵抗が高い為に発熱
の分布が著しく不均衡になシ第6図に点描部分として示
す様に低導電性リードフレーム2の電極近傍部分2aの
みが昇温し良好な接合状態は得られない。そこで高導電
性リードフレーム1と低導電性リードフレーム2を十分
に溶接する方向で溶接電流値を上げていくと低導電性リ
ードフレーム2と電極4の接触面9aが溶着してしまい
、溶接終了後低導電性リードフレーム2から電極4を剥
がすことが困難となる。又剥離後の電極表面の損傷が著
しく簡単なドレッシング(清浄化)手段では再生するこ
とができず生産性が阻害される。
However, when electrical resistance welding is performed between a highly conductive lead frame 1 and a low conductive lead frame 2 as shown in FIG. 6, the distribution of heat generation becomes significantly unbalanced due to the high electrical resistance of the low conductive lead frame 2. However, as shown in the stippled area in FIG. 6, only the portion 2a of the low conductivity lead frame 2 near the electrodes rises in temperature, and a good bonding state cannot be obtained. Therefore, if the welding current value is increased in the direction of sufficiently welding the high conductive lead frame 1 and the low conductive lead frame 2, the contact surface 9a of the low conductive lead frame 2 and the electrode 4 will be welded together, and the welding will end. After that, it becomes difficult to peel off the electrode 4 from the low conductivity lead frame 2. In addition, the damage to the electrode surface after peeling cannot be regenerated by simple dressing (cleaning) means, which impedes productivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等はこうした事情に着目し、電極と被    
 ・溶接材を溶着させることなく筋導電性材と低導電性
材を接合することのできる電気抵抗溶接方法を提供しよ
うと研究を重ねた。
The present inventors focused on these circumstances and
・Research has been conducted to provide an electric resistance welding method that can join conductive materials and low conductive materials without welding the welding material.

即ち低導電性リードフレームと電極が溶着するのは低導
電性リードフレームの発熱が大きいことが主たる要因で
はあるが電極自身の発熱の影響も大きいと考えられる。
That is, although the main reason for welding of the low conductive lead frame and the electrode is that the low conductive lead frame generates a large amount of heat, it is thought that the heat generated by the electrode itself also has a large effect.

これは電極の打点回数が増加すると上記溶着が激しくな
る事からも裏付けられる。即ち低導電性リードフレーム
と電極の接触面を考えると、ここには■低導電性リード
フレームから伝達される熱量、■電極から伝達される熱
量及び◎該接触面の接触抵抗に基づく発熱量が加わって
おシ、これらが合算されて該接触面の温度が過度に上昇
し前記溶着が発生すると考えられる。
This is supported by the fact that the welding becomes more intense as the number of electrode strikes increases. In other words, considering the contact surface between the low-conductivity lead frame and the electrode, here are ■ the amount of heat transferred from the low-conductivity lead frame, ■ the amount of heat transferred from the electrode, and ◎ the amount of heat generated based on the contact resistance of the contact surface. In addition, these factors are considered to be added together to cause the temperature of the contact surface to rise excessively, causing the above-mentioned welding.

従って上記3つの発熱因子のうちいずれが1つでも低減
させることができれば溶着を緩和することができると考
えられる。しかるに■に係る電極の材質は前述の事情か
らして変えることはできずその発熱量低減は難しい。又
Oの接触抵抗は低導電性リードフレーム及び電極の表面
凸凹形状、酸化皮膜、接触面積、圧接力等に左右される
値で低導電性リードフレーム及び電極の種類及び溶接条
件の選択によってほぼ決定されてし塘うので低減は難し
く、仮に低減しようとすると研磨や酸洗等煩雑な処理操
作が必要となる。従ってこれらの面における実質的な改
善は難しく、特に溶接対象がリードフレームの場合には
殆んど不可能と考えられる。こうした状況から■低導電
性リードフレームからの伝熱量を低減せざるを得ないと
も考えられるが、被溶接材である低導電性リードフレー
ムの種類(材質)を変えることは当然できない。そこで
本発明者等は更に検討を重ねた結果、低導電性リードフ
レームと電極の間にスペーサを介装することによって前
記接触面(スペーサを介装した状態においては電極面)
に対する■低導電性リードフレームからの伝熱量を低減
しようと考えるに至った。
Therefore, it is considered that if any one of the above three heating factors can be reduced, welding can be alleviated. However, the material of the electrode according to (2) cannot be changed due to the above-mentioned circumstances, and it is difficult to reduce the amount of heat generated. In addition, the contact resistance of O is a value that depends on the uneven surface shape of the low conductive lead frame and electrode, oxide film, contact area, pressure contact force, etc., and is almost determined by the type of low conductive lead frame and electrode and the selection of welding conditions. It is difficult to reduce the amount of oxidation that occurs over time, and if one were to attempt to reduce it, complicated treatment operations such as polishing and pickling would be required. Therefore, it is difficult to make substantial improvements in these aspects, and it is considered almost impossible, especially when the object to be welded is a lead frame. Under these circumstances, it may be necessary to reduce the amount of heat transferred from the low-conductivity lead frame, but of course it is not possible to change the type (material) of the low-conductivity lead frame that is the material to be welded. Therefore, as a result of further studies, the present inventors found that by interposing a spacer between the low-conductivity lead frame and the electrode, the contact surface (electrode surface in the state where the spacer is interposed)
(2) We came up with the idea of reducing the amount of heat transfer from the low conductivity lead frame.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は上記着想を更に検討した結果完成されたもので
あって、その要旨は、高導電材と低導電材を電気抵抗溶
接するに邑たり、低導電材と電極の間に高導電性材料を
介装する点に存在する。
The present invention was completed as a result of further consideration of the above idea, and its gist is to perform electrical resistance welding between a high conductive material and a low conductive material, and to weld a highly conductive material between a low conductive material and an electrode. It exists in that it is interposed.

〔作用〕[Effect]

低導電材と電極の間に介装する材料は冒城電性材料とす
る必要がある。即ち上記介装材料は低導電材と電極の電
気的接続を確保するものでなければならず、その意味で
は見掛上導電性材料でありさえすればよいことになる。
The material interposed between the low conductive material and the electrode needs to be a highly conductive material. That is, the intervening material must ensure electrical connection between the low conductive material and the electrode, and in that sense, it only needs to be an apparently conductive material.

しかるに該介装材料が上述の低導電材なみの低導電性材
料であると、電気抵抗溶接時に介装材料が発熱してこの
熱量が電極との接触面に与えられる為接触面が昇温しで
電極と介装材料が溶着する。従って介装材料は発熱量の
少ない高導電性材料でなければならない。
However, if the intervening material is a low conductive material similar to the above-mentioned low conductive materials, the intervening material generates heat during electrical resistance welding, and this heat is applied to the contact surface with the electrode, causing the contact surface to rise in temperature. The electrode and intervening material are welded together. Therefore, the intervening material must be a highly conductive material with low calorific value.

上記高導電性材料としては高導電材と同等若しくは同等
以上の電気伝導度を有するものであればよく特に制限は
ないが、その例としてはCu 、 Cu合金y A g
 r A g合金等が挙げられる。
The above-mentioned highly conductive material is not particularly limited as long as it has an electrical conductivity equal to or higher than that of the highly conductive material, but examples thereof include Cu, Cu alloy, A g
Examples include r A g alloy.

〔実施例〕〔Example〕

第1図は本発明の実施態様を示す模式図で、高導電性リ
ードフレーム1(80〜110チIACS)と低導電性
リードフレーム2(50%IACS)を電気抵抗溶接す
るに当たっては、両者を重ね合わせ、さらに低導電性リ
ードフレーム2の開放面(図の下面)にCu合金プレー
ト(,80〜!、10%IAC5)5を当接させて3層
構造とした後、電極3,4で上下から挾持し、押圧しな
がら電極3と電極4の間に溶接電流を流す。これによっ
て主として低導電性リードフレーム2が発熱し、低導電
性リードフレーム2と高導電性リードフレーム1との接
触面6並びにCu合金プレート5との接触面7が夫人融
合する。このとき高導電性リードフレーム1及びCu合
金プレート5の発熱は小さいので電極3又は電極4との
接触面8及び接触面9が融合することはない。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. When electrical resistance welding a high conductive lead frame 1 (80 to 110 inches IACS) and a low conductive lead frame 2 (50% IACS), both After overlapping and further abutting a Cu alloy plate (,80~!, 10% IAC5) 5 on the open surface (bottom surface of the figure) of the low conductive lead frame 2 to form a three-layer structure, electrodes 3 and 4 are stacked. Welding current is applied between electrodes 3 and 4 while holding and pressing them from above and below. As a result, the low conductivity lead frame 2 mainly generates heat, and the contact surface 6 between the low conductivity lead frame 2 and the high conductivity lead frame 1 and the contact surface 7 with the Cu alloy plate 5 fuse together. At this time, since the heat generation of the highly conductive lead frame 1 and the Cu alloy plate 5 is small, the contact surfaces 8 and 9 with the electrodes 3 or 4 do not fuse together.

第2図は本発明の他の実施態様を示す模式図で上記の如
くCu合金プレート5を使用する代わシに、高導電性リ
ードフレーム1の先端を折り曲げて該折曲げ端1aを低
導電性リードフレーム2の下面に当てがっている。そし
て高導電性リードフレーム1の上面に電極3を、前記折
シ曲げ端1aの下面に電極4を当接させ押圧しておシ、
電極3と電極40間に溶接電流を流すことによって前記
と同様の効果が得られる。尚本実施態様においては溶接
電流Aとは別に無効電流Bが生じるので高導電性リード
フレーム2の折シ曲げ長はできる限シ長くすることが望
せしい。
FIG. 2 is a schematic diagram showing another embodiment of the present invention. Instead of using the Cu alloy plate 5 as described above, the tip of the highly conductive lead frame 1 is bent and the bent end 1a is made of a low conductive material. It is in contact with the bottom surface of the lead frame 2. Then, the electrode 3 is brought into contact with the upper surface of the highly conductive lead frame 1, and the electrode 4 is brought into contact with the lower surface of the bent end 1a and pressed.
By flowing a welding current between the electrode 3 and the electrode 40, the same effect as described above can be obtained. In this embodiment, since a reactive current B is generated in addition to the welding current A, it is desirable to make the bending length of the highly conductive lead frame 2 as long as possible.

又上記折多曲げ部を形成するに当たっては予め高導電性
リードフレーム1及び低導電性リードフレーム2の各端
部を第3図げ)に示す様に予めプレス加工し、第3図(
ロ)に示す様に重れ合わさればよい。
In addition, in forming the above-mentioned folded portion, each end of the high conductive lead frame 1 and the low conductive lead frame 2 is pressed in advance as shown in Fig. 3 (Fig. 3).
It is sufficient if they are overlapped as shown in b).

実施例 第1表に示す被溶接材を、第1表及び下記に示す溶接条
件下に電気抵抗溶接した。溶接部の接合強度等は第1表
に示す通りであった。
Examples The materials to be welded shown in Table 1 were subjected to electric resistance welding under the welding conditions shown in Table 1 and below. The joint strength of the welded portion was as shown in Table 1.

溶接条件 電 極 Cr −Cu合金 8mmφ 加圧力 100kg 第1表に示す様に、Nnl+3+5については従来通り
電極と低導電材を直接々触させて電気抵抗溶接した例で
、高2M、電材と低導電材の組合せの如何にかかわらず
電極と低4電材の溶着が激しく殆んどの例で電極を剥が
すことができなかった。これらに対しrh2.4.6(
実施例)ではボタン破断が見られ高導電材と低4電材を
十分接合することができ、しかも電極と介装材料の溶着
は全く見られなかった。
Welding conditions Electrode: Cr-Cu alloy 8mmφ Pressure force: 100kg As shown in Table 1, for Nnl+3+5, the electrode and low conductivity material are in direct contact with each other and electrical resistance welding is performed as before. Regardless of the material combination, the welding between the electrode and the low-4 electric material was so severe that in most cases the electrode could not be removed. For these rh2.4.6 (
In Example), button breakage was observed, but the high-conductivity material and the low-conductivity material could be sufficiently joined, and no welding between the electrode and the intervening material was observed.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されておシ、低導電材と電極の
間に高電気伝導性材料を介装したので、介装材料の固有
抵抗による発熱が小さくて済み、電極と介装材料の接触
面の温度上昇を低く抑えることができる。従って高導電
材と低導電材を電気抵抗溶接するに当たり、電極面に対
する溶着を防止しつつ高導電材と低導電材を強固に溶接
することができる。
The present invention is constructed as described above, and since a highly electrically conductive material is interposed between a low electrically conductive material and an electrode, heat generation due to the specific resistance of the intervening material can be reduced, and the electrode and intervening material It is possible to suppress the temperature rise of the contact surface to a low level. Therefore, when performing electric resistance welding of a high conductivity material and a low conductivity material, it is possible to firmly weld the high conductivity material and the low conductivity material while preventing welding to the electrode surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は本発明に係る実施態様を示す模式図、第3
図0)、(ロ)はリードフレームの組合せ態様を示す斜
視図、第4図はボタン破断の状況を示す斜視図、第5.
6図は従来の電気溶接態様を示す模式図である。
Figures 1 and 2 are schematic diagrams showing embodiments of the present invention;
Figures 0) and (b) are perspective views showing how the lead frames are assembled, Figure 4 is a perspective view showing the state of button breakage, and Figure 5.
FIG. 6 is a schematic diagram showing a conventional electric welding mode.

Claims (1)

【特許請求の範囲】[Claims] 高電気伝導性被溶接材と低電気伝導性被溶接材を電気抵
抗溶接するに当たり、低電気伝導性被溶接材と電極の間
に高電気伝導性材料を介装することを特徴とする電気抵
抗溶接法。
Electric resistance welding of a high electrical conductivity welding material and a low electrical conductivity welding material, characterized by interposing a high electrical conductivity material between the low electrical conductivity welding material and the electrode. Welding method.
JP27909284A 1984-12-28 1984-12-28 Electric resistance welding method Pending JPS61159289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27909284A JPS61159289A (en) 1984-12-28 1984-12-28 Electric resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27909284A JPS61159289A (en) 1984-12-28 1984-12-28 Electric resistance welding method

Publications (1)

Publication Number Publication Date
JPS61159289A true JPS61159289A (en) 1986-07-18

Family

ID=17606300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27909284A Pending JPS61159289A (en) 1984-12-28 1984-12-28 Electric resistance welding method

Country Status (1)

Country Link
JP (1) JPS61159289A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154880A (en) * 1987-12-11 1989-06-16 Mazda Motor Corp Resistance welding method
EP0865860A1 (en) * 1995-09-18 1998-09-23 Honda Giken Kogyo Kabushiki Kaisha Method of lap joining two kinds of metallic members having different melting points
JPH1116465A (en) * 1997-06-25 1999-01-22 Matsushita Electric Ind Co Ltd Thermal protector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154880A (en) * 1987-12-11 1989-06-16 Mazda Motor Corp Resistance welding method
EP0865860A1 (en) * 1995-09-18 1998-09-23 Honda Giken Kogyo Kabushiki Kaisha Method of lap joining two kinds of metallic members having different melting points
EP0865860A4 (en) * 1995-09-18 2001-08-16 Honda Motor Co Ltd Method of lap joining two kinds of metallic members having different melting points
JPH1116465A (en) * 1997-06-25 1999-01-22 Matsushita Electric Ind Co Ltd Thermal protector

Similar Documents

Publication Publication Date Title
US4650951A (en) Method of welding laminates each having the structure of metal layer/thermally softenable insulating layer/metal layer
JPH08264256A (en) Connecting method for terminal and electric wire, and connecting electrode
TWI277106B (en) Thermistor having improved lead structure and secondary battery having the thermistor
JPH0582745B2 (en)
JPS61159289A (en) Electric resistance welding method
WO2002100585A1 (en) Spot welding head
EP3152049B1 (en) Low nickel, multiple layer laminate composite
US3374530A (en) Process for the joinder of metallic members
JPH05283139A (en) Resistance welding method for different metal terminal
JP2006175504A (en) Method for joining different kind of material
WO2018159310A1 (en) Bonded body and manufacturing method thereof
JPH0316725A (en) Thin plate spring material
KR100516768B1 (en) Secondary Battery having Parallel-Tap Combining Structure and Method of Combining the Tab
US2356049A (en) Method of resistance welding
JPH0246742A (en) Compression-bonded flat semiconductor device
Liu et al. Interconnection of Cu wire/Au plating pads using parallel gap resistance microwelding process
JPH0747476A (en) Resistance welding method for each copper
JP7348119B2 (en) Welding method and battery module manufacturing method
JPS61140365A (en) Electric resistance welding method
JPH05111778A (en) Resistance welding method for different kinds of metals
JPH01132079A (en) Electrode for heat pressure welding
JPH0383870A (en) Electric bonding of metal si-containing silicon carbide ceramic
JPS637662B2 (en)
JPH0143414B2 (en)
JP4288941B2 (en) Battery pack wiring material, battery pack using the same, and manufacturing method thereof