JPS61158839A - Glass composition - Google Patents

Glass composition

Info

Publication number
JPS61158839A
JPS61158839A JP59279028A JP27902884A JPS61158839A JP S61158839 A JPS61158839 A JP S61158839A JP 59279028 A JP59279028 A JP 59279028A JP 27902884 A JP27902884 A JP 27902884A JP S61158839 A JPS61158839 A JP S61158839A
Authority
JP
Japan
Prior art keywords
ceramics
parts
weight
composition
glass composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59279028A
Other languages
Japanese (ja)
Other versions
JPH0149652B2 (en
Inventor
Yoshito Akai
赤井 芳人
Noriyuki Konaga
小永 宣之
Yasunori Zairi
在里 康則
Yukikazu Moritsu
森津 幸和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUNO SEIYAKU KOGYO KK
Okuno Chemical Industries Co Ltd
Original Assignee
OKUNO SEIYAKU KOGYO KK
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUNO SEIYAKU KOGYO KK, Okuno Chemical Industries Co Ltd filed Critical OKUNO SEIYAKU KOGYO KK
Priority to JP59279028A priority Critical patent/JPS61158839A/en
Publication of JPS61158839A publication Critical patent/JPS61158839A/en
Priority to US07/158,051 priority patent/US4917958A/en
Publication of JPH0149652B2 publication Critical patent/JPH0149652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/401Cermets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/901Printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:A glass composition for ceramic bonding, having high bond strength between ceramic and ceramic or ceramic and metal, and small reduction in bond strength even at specific high temperature, having a specified composition. CONSTITUTION:A glass composition for ceramic bonding comprising (A) 100pts. wt. at least one powder of TiN, TiB2, AlN, AlB2, BN, B4C, SiC, and Si3N4, (B) 20-160pts. wt. SiO2 powder, (C) 1-600pts. wt. B2O3 powder, and (D) 1-1,600pts. wt. at least one of (R1)2O, (R2)O, (R3)O2 and (R4)2O2(R1 is Na, K, or Li; R2 is Mg, Ca, Ba, Zn, Pb, or Cd; R3 is Ti, Zr, or Mn; R4 is Al, or bi). This composition is laid between target materials, and heat-treated to give a bonded material having high bond strength the bonded material has characteristics of approximately no reduction in bond strength even if it is heated to 400-1,000 deg.C high temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セラミックスとセラミックス又は金属との接
合用ガラス組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a glass composition for bonding ceramics to ceramics or metals.

従来の技術及びその問題点 近年、セラミックス材料の開発が進み、電子部品、工具
、機械部品、建築材料、家庭用品等の幅広い分野でセラ
ミックスが適用されるに至っている。このようなセラミ
ックス材料の進歩に伴って、更に多くの用途にセラミッ
クスを使用するためには、セラミックスと他のセラミッ
クスや金属との接合技術等の優れた二次加工技術の進歩
が、必要不可欠となる。
BACKGROUND OF THE INVENTION In recent years, the development of ceramic materials has progressed, and ceramics have come to be used in a wide range of fields such as electronic parts, tools, mechanical parts, building materials, and household goods. Along with these advances in ceramic materials, in order to use ceramics for even more applications, it is essential to advance advanced secondary processing technology such as bonding technology between ceramics and other ceramics and metals. Become.

従来、セラミックスとセラミックス又は金属との接合方
法としては、次のような方法が公知である。(1)有機
接着剤を使用する方法、(2)ガラスエナメルを接着剤
として使用する方法、(3)高温下で融着させる方法。
Conventionally, the following methods are known as methods for joining ceramics and ceramics or metals. (1) A method using an organic adhesive, (2) a method using glass enamel as an adhesive, and (3) a method of fusing at high temperature.

しかしながら、(1)の方法では、接合物の使用温度が
200〜800℃以下に限定される、(2)の方法では
、接合対象が酸化物系セラミックスと酸化物系セラミッ
クス又は金属との組み合わせに限定され、また接合強度
が低く、特にaoo℃以上の温度では接合強度か者るし
く低下する、(3)の方法ではω看時にセラミックスや
金属が変形するので使用範囲か限定される、などの欠点
がある。
However, in method (1), the operating temperature of the bonded product is limited to 200 to 800°C or less, and in method (2), the objects to be bonded are a combination of oxide ceramics and oxide ceramics or metals. In addition, the bonding strength is low, especially at temperatures above aoo°C, and the bonding strength decreases markedly.In method (3), the ceramics and metals deform when ω is observed, so the range of use is limited. There are drawbacks.

また、セラミックス上にめっき処理をして金属皮膜を形
成させセラミックスに導電性を付与することにより、セ
ラミックスを更に広い分野に適用させる試みがなされて
いるが、セラミックスと金属皮膜との接合強度が低いた
めに実用化には至っていない。
In addition, attempts have been made to apply ceramics to a wider range of fields by plating them to form a metal film and imparting conductivity to the ceramics, but the bonding strength between the ceramics and the metal film is low. Therefore, it has not been put into practical use.

問題点を解決するための手段 本発明者は、上記の如き従来技術の問題点に−みて、鋭
意研究を重ねた結呆、特定の組成を有するガラス組成物
を接合対象物間に介在させて加熱処理することにより、
高い接合強度を有する接合体が得られ、該接合体を40
0〜1000℃の高温に加熱し念場合にも接合強度の低
下がほとんどないこと、及び接合対象セラミックスは、
酸化物系セラミックスに限定されず、非酸化物系セラミ
ックスを用いた場合にも高い接合強度を有する接合体が
得られることを見出した。更に、本発明者は、該ガラス
組成物をセラミックス上に配して加熱処理した後、その
上にめっき皮膜を形成させることによりめつき皮膜はセ
ラミックスに強固に接合されることを見出した。
Means for Solving the Problems In view of the problems of the prior art as described above, the inventor of the present invention has conducted intensive research and has developed a method in which a glass composition having a specific composition is interposed between the objects to be joined. By heat treatment,
A bonded body with high bonding strength was obtained, and the bonded body was
Even if heated to a high temperature of 0 to 1000°C, there is almost no decrease in bonding strength, and the ceramics to be bonded are
It has been found that a bonded body having high bonding strength can be obtained not only when using oxide-based ceramics but also when non-oxide-based ceramics are used. Furthermore, the present inventors have discovered that by disposing the glass composition on ceramics, heat-treating the composition, and then forming a plating film thereon, the plating film can be firmly bonded to the ceramics.

即ち、本発明は、 Ill  TiN、TIBI、AIN、AlB2、BN
%n、c、sic及びs i 、R4の少なくとも1種
の粉末1ooB量部、 (II  8i02%末 20〜16oo重量部、+m
l  B 20.粉末 1〜600重量部、及び11v
l  (R1)to、(Rz)0、(Rs)Ox及び(
R4)zOs(ただし、R1はNa、 KまたはLi、
、tt、はMg、Ca、 Ba、 zn%PbまたはC
d%R,はTi%zr  またはMn、 R4はA)ま
たはBiである)の少なくとも1種の粉末1〜1600
重量部 からなるセラミックス接合用ガラス組成物に係る。
That is, the present invention provides Ill TiN, TIBI, AIN, AlB2, BN
%n, c, sic and s i , 1 ooB parts by weight of at least one powder of R4, (II 8i02% powder 20-16oo parts by weight, +m
l B 20. Powder 1-600 parts by weight, and 11v
l (R1)to, (Rz)0, (Rs)Ox and (
R4) zOs (where R1 is Na, K or Li,
, tt, is Mg, Ca, Ba, zn%Pb or C
d%R, is Ti%zr or Mn, R4 is A) or Bi) powder 1-1600
The present invention relates to a glass composition for bonding ceramics consisting of parts by weight.

本発明では、TiN、TiB雪、 AIN、 AlBs
%BN。
In the present invention, TiN, TiB snow, AIN, AlBs
%BN.

R40,8jO及びs i 8N4の少なくとも1種の
粉末をガラス組成物に配合することが必須である。こノ
ヨウナガラス組成物を使用して、セラさツクスとセラミ
ックス又は金属との接合を行なうことにより、酸化物系
セラミックスだけでな(、非酸化物系セラミックスの接
合か可能となり、ま友接合強度も向上する。更に、該ガ
ラス組成物をセラミックス上にコーティングして加熱し
た場合に、上記非酸化物粉末がガラス組成物中に島状に
点在する形状になり、この上にめっき皮膜を形成させた
場合の接合強度が著しく向上する。
It is essential to blend at least one powder of R40,8jO and s i 8N4 into the glass composition. By using this glass composition to bond ceramics and metals, it is possible to bond not only oxide ceramics (but also non-oxide ceramics), and the strength of the bond can be increased. Further, when the glass composition is coated on ceramics and heated, the non-oxide powder becomes scattered in the shape of islands in the glass composition, and a plating film is formed on this. The bonding strength is significantly improved when

本発明では、TiN、 TiBz、A/N%AI!B 
2、BN。
In the present invention, TiN, TiBz, A/N%AI! B
2.BN.

13ac、 sic及びsi、R4の少なくとも1種の
粉末100重量部に対して +a+  s i o 、粉末20〜1600重量部(
b)  B t Oa粉末1〜600ftt!、及ヒ(
CI  (R1)!0. (R1)0、(Ra )Ox
及び(R4)zOa(死だし、R1はNa%K 1 f
t41 Li、 84 g;tMg。
+a+ sio, 20 to 1600 parts by weight of powder for at least 100 parts by weight of powder of at least one of 13ac, sic and si, R4 (
b) Bt Oa powder 1-600ftt! , and he (
CI (R1)! 0. (R1)0, (Ra)Ox
and (R4)zOa (death, R1 is Na%K 1 f
t41 Li, 84 g; tMg.

01%Ba、Zn%FbまタハCd%RmはTi%zr
ま念はMn%R4はAI!またはBiである)の少なく
とも1種の粉末1〜1600重量部 を配合することが必要である。各成分の配合量が上記範
囲を下回る場合には、ガラス組成物を加熱し次場合にガ
ラス化しないか、或いは接合強度が著るしく低下し、ま
た上記範囲を上回る場合にも接合強度の著るしい低下が
あるので好ましくない。
01%Ba, Zn%Fb, TahaCd%Rm, Ti%zr
Remember, Mn%R4 is AI! It is necessary to blend 1 to 1,600 parts by weight of at least one powder of (Bi or Bi). If the amount of each component is below the above range, the glass composition may not be vitrified or the bonding strength may be significantly reduced when the glass composition is heated, and if it exceeds the above range, the bonding strength may be significantly reduced. This is not desirable as there is a significant decrease.

本発明ガラス組成物の各成分としては、いずれも市販の
ものを使用でき、特にその製法、粒度、純度などは限定
されないが、接合体の接合強度を高める之めには、高純
度のものを使用することが好ましく、粒度は0.1〜l
 Q Q #m程度のものを使用することが好ましい。
As each component of the glass composition of the present invention, commercially available products can be used, and there are no particular limitations on the manufacturing method, particle size, purity, etc. However, in order to increase the bonding strength of the bonded product, high purity products may be used. It is preferable to use, the particle size is 0.1~l
It is preferable to use a material of about Q Q #m.

本発明組成物を製造する方法は、特に限定されるもので
はなく、例えば、各成分物質をミキサーライカイ機、ミ
ル等で単に混合するだけでよし)。
The method for producing the composition of the present invention is not particularly limited; for example, it is sufficient to simply mix the respective component materials using a mixer, a mill, etc.).

また、2紳以上の任意に定訳した成分物質を混合し、7
00〜1600℃で10〜20分間加熱溶融した後、ボ
ールミル等で0.1〜l Q Q #m程度に粉砕して
得た粉末に他の成分物質を添加沖合してもよい。
In addition, by mixing 2 or more randomly selected component substances, 7
After heating and melting at 00 to 1600° C. for 10 to 20 minutes, other components may be added to the powder obtained by crushing the powder to about 0.1 to 1 Q #m using a ball mill or the like.

本発明組成物を用いてセラミックスとセラミックス又は
金属との接合を行なうには、まず本発明組成物をセラミ
ックス及び/又は金属に塗布する。
In order to bond ceramics and ceramics or metals using the composition of the present invention, the composition of the present invention is first applied to the ceramics and/or metals.

塗布方法としては、特に限定されず以下のような方法を
例示できる。
The coating method is not particularly limited, and the following methods can be exemplified.

(11組成物を直接塗布する方法。(Method of directly applying the 11 composition.

(111組成物を浴射す−る方法。(Method of irradiating the 111 composition.

(till  組成物をアルコール、アセトン等の溶剤
に分散させてスプレー塗装する方法。
(till A method of dispersing the composition in a solvent such as alcohol or acetone and spray painting.

(1v)組成物を有機ビヒクルに分数さ17を後、分散
液中にセラミックス及び/又は金属を浸漬する方法、ま
之は該分散液をノ1ヶ塗り、スクリーン有機ビヒクルと
しては、例えは、エチルセルロースアクリル樹脂等の有
機高分子化合物をインプロピルアルコール、パインオイ
ル、プチルカルヒトールアセテート等の有機溶剤に溶解
したものを使用できる。塗布意は、本発明組成物の麓が
0.005〜277/Cm”  となるようにすること
が好ましい。
(1v) A method of dipping the composition into an organic vehicle and then immersing ceramics and/or metals in the dispersion. A solution of an organic polymer compound such as ethyl cellulose acrylic resin in an organic solvent such as inpropyl alcohol, pine oil, butylcalcitol acetate can be used. It is preferred that the coating density of the composition of the present invention be 0.005 to 277/Cm''.

次いで、接合相手となるセラミックス及び/又は金属を
本発明組成物に接触させた後、加熱する。
Next, ceramics and/or metals to be joined are brought into contact with the composition of the present invention and then heated.

加熱温度は500〜1500℃とし、加熱時間は、8〜
60分程度とする。加熱時の雰囲気は、特に限定されず
、例えば空気、窒素ガス、水素ガス、アルゴンガス等の
雰囲気でよい。
The heating temperature is 500-1500℃, and the heating time is 8-1500℃.
It will take about 60 minutes. The atmosphere during heating is not particularly limited, and may be, for example, an atmosphere of air, nitrogen gas, hydrogen gas, argon gas, or the like.

本発明組成物が適用できるセラミックス及び金属は、耐
熱温度が500℃以上のものであればよく、その他の制
限はない。また形状も限定されず、粉体、棒状、板状、
成型物などあらゆる形状のセラミックス及び金属に適用
できる。本発明組成物が適用できるセラミックスとして
は、具体的にはタイル、ポルトラルセメント、れんが、
かわら、陶磁器、ホーロー容器などのいわゆるオールド
セラミックス、アルミナ、ジルコニア、ベリリヤ、ムラ
イト、ホルステライト、コープライト、マグネシア、フ
ェライト、酸化亜鉛、酸化スス、チタン酸鉛、チタン酸
バリウム、チタン酸ジルコン酸鉛などの酸化物系セラミ
ックス、窒化ケイ素、炭化ケイ素、窒化ホウ素、窒化ア
ルミニウム、炭化ホウ素、タングステンカーバイド、窒
化チタン、炭化タリウム、炭化カルシウム、ホウ化チタ
ン、ホウ化ランタン、cas 1 z 1Mn8 i 
2.7’/化カルシウム、硫酸カルシウムなどの非酸化
物系セラミックスなどが例示できる。ま九金属としては
、例えば、e、帽、ニッケル、ステンレス、チタン合金
、銅合金な・どの通常の金属や合金の他に、炭素−ケイ
素鋼、クロム鋼、ニッケル鋼、マンガン鋼、タングステ
ン−カーバイド合金、チタンーカーノイイト合金、モリ
ブデン合金(Mo −Ag 、 MO−Ouなど)など
の粉末冶金による焼結合金なども使用できる。
Ceramics and metals to which the composition of the present invention can be applied may have a heat resistance temperature of 500° C. or higher, and there are no other restrictions. Also, the shape is not limited; powder, rod, plate, etc.
It can be applied to all shapes of ceramics and metals, such as molded products. Specific examples of ceramics to which the composition of the present invention can be applied include tiles, portral cement, bricks,
So-called old ceramics such as straw, ceramics, and enamel containers, alumina, zirconia, beryllia, mullite, holsterite, coprite, magnesia, ferrite, zinc oxide, soot oxide, lead titanate, barium titanate, lead zirconate titanate, etc. Oxide ceramics, silicon nitride, silicon carbide, boron nitride, aluminum nitride, boron carbide, tungsten carbide, titanium nitride, thallium carbide, calcium carbide, titanium boride, lanthanum boride, cas 1 z 1Mn8 i
Examples include non-oxide ceramics such as calcium 2.7'/oxide and calcium sulfate. Examples of metals include ordinary metals and alloys such as e, cap, nickel, stainless steel, titanium alloy, copper alloy, carbon-silicon steel, chromium steel, nickel steel, manganese steel, tungsten-carbide. Sintered alloys made by powder metallurgy such as alloys, titanium-carnoite alloys, and molybdenum alloys (Mo-Ag, MO-Ou, etc.) can also be used.

本発明組成物は、ま念、セラミックスとめつき金属皮膜
との接合にも使用できる。セラミックスとめつき皮膜と
の接合に使用する場合には、まず、セラミックス上に、
本発明組成物を塗布した後、加熱処理する。塗布方法及
び加熱方法は、セラミックスとセラミックス又は金試と
の接合の場合と同様でよい。次いでセラミックスが室習
となり九後、常法に従って、ガラス組成物上にめっき皮
膜を形成させる。めっき方法としては、触媒物質を付着
させた後無電解ニッケルま友は細″tps銅めっきをす
る方法、蒸着、スパッタリングなどの乾式めっきによる
方法などを例示できる。めっき皮膜を形成させ次後は、
更に電気めっきなどをして厚い金属膜を形成させてもよ
く、また、他の金属などの導電物質をハンダ付け、ろう
付けなどの方法で接合させて使用することもできる。
The composition of the present invention can also be used to bond ceramics and plated metal films. When used for joining ceramics and plating film, first apply
After applying the composition of the present invention, it is heat-treated. The coating method and heating method may be the same as those for joining ceramics to ceramics or metal samples. Next, after the ceramics have been prepared, a plating film is formed on the glass composition according to a conventional method. Examples of the plating method include a method of applying electroless nickel or fine TPS copper plating after depositing a catalyst substance, and a method of dry plating such as vapor deposition or sputtering.After forming a plating film,
Further, a thick metal film may be formed by electroplating or the like, or a conductive material such as another metal may be joined by methods such as soldering or brazing.

発明の効果 本発明ガラス組成物を使用してセラミックスの接合を行
なうことにより、下記の如く優れた効果が卆される。
Effects of the Invention By bonding ceramics using the glass composition of the present invention, the following excellent effects are achieved.

(1)  セラミックスとセラミックス又は金属との接
合強度が高く、かつ400〜1000℃の直温加熱時に
も接合強度の低下が著しく少ない。
(1) The bonding strength between ceramics and ceramics or metals is high, and the decrease in bonding strength is extremely small even when directly heated at 400 to 1000°C.

(2)  酸化物系セラミックス及び非酸化物系セラミ
ックスの両者ともに適用できる。
(2) Applicable to both oxide ceramics and non-oxide ceramics.

(3)  セラミックスとめつき皮膜とを強固に接合で
きる。
(3) Ceramics and plating film can be firmly bonded.

(4)加熱源に臘か500−1500℃と非常に広い。(4) The heating source ranges from 500 to 1500°C.

本発明ガラス組成物は上記の如く優れた性質を有するも
のであって幅広い分野に適用できる。以下その一例を示
す。
The glass composition of the present invention has excellent properties as described above and can be applied to a wide range of fields. An example is shown below.

クスを全面または部分的に接合させて建築材料として用
いる。
It is used as a building material by bonding the whole or part of the wood.

(bl  ホーロー容器に金属部品を接合させて家庭用
品として用いる。
(bl) Metal parts are bonded to an enamel container and used as a household item.

(cl  強度の高い金属と、さびにくく、熱伝等度が
低く、かつ耐摩耗性の優れ次セラミックスとを接合させ
て電熱ゴテ、ヤスリ、刃物などの工具類として用いる。
(cl) Metals with high strength are bonded with ceramics that are resistant to rust, have low heat conductivity, and have excellent wear resistance, and are used as tools such as electric irons, files, and cutlery.

idl  ロータリーポンプシリンダーなどの機械材料
において、金属外型と内面のセラミックスとを接合させ
る。
idl In mechanical materials such as rotary pump cylinders, the metal outer mold and inner ceramic material are joined together.

(el  セラミックスエンジンにおいてセラミックス
部品をエンジン本体と接合させる。
(el) In a ceramic engine, ceramic parts are joined to the engine body.

山セラミックスと銅板とを接合させることにより、大電
流用プリント基板などの電気材料として使用する。
By bonding Yama ceramics to a copper plate, it can be used as an electrical material for large current printed circuit boards, etc.

(如 セラミックスとめっき皮膜とを接合することにJ
す、10セラミツクス基板やプリンタ一部品の製造、セ
ラミックス上の電極形成などに利用する。
(As for bonding ceramics and plating film, J
It is used for manufacturing ceramic substrates, parts for printers, and forming electrodes on ceramics.

実   施   例 以下、実施例を示して本発明を更に詳細に説明する。Example Hereinafter, the present invention will be explained in more detail by showing examples.

実施例1 粒径的20μmのTiN100重置部、粒径的51m(
D 8i02600重量部、粒径的5 amのB20a
aO重証部、粒径約5μ晶のcaoioo重蓋部、粒径
的10μmのTiO220重量部及び粒径的10μmの
Al2O580重1に部からなるガラス組成物をsxa
xtcmの96%アルミナ焼結板上に0.2i/Cm 
 の割合で塗布した後、この上に直径1cmのジルコニ
ア焼結体の棒を垂直に置いて、880℃で25分間加熱
してアルミナ焼結板とジルコニア焼結棒との接合を行な
つ念。次いで25℃及び450℃の各温度でジルコニア
捧をアルミナ板に対して垂直に引張り、@離した時の強
度を測定することにより、接合強度を求めた。結果を第
1表に示す。
Example 1 TiN 100 overlapping part with a particle size of 20 μm, a particle size of 51 m (
D 8i02600 parts by weight, B20a with a particle size of 5 am
A glass composition consisting of an aO layered part, a caoiooo layered part with a grain size of about 5 μm, 20 parts by weight of TiO2 with a grain size of 10 μm, and 1 part by weight of Al2O5 with a grain size of 10 μm was sxa
0.2i/Cm on 96% alumina sintered plate of xtcm
After coating the alumina sintered plate at a ratio of 1 cm, a zirconia sintered rod with a diameter of 1 cm was placed vertically on top of the alumina sintered plate and heated at 880°C for 25 minutes to bond the alumina sintered plate and the zirconia sintered rod. Next, the bonding strength was determined by pulling the zirconia plate perpendicularly to the alumina plate at each temperature of 25°C and 450°C and measuring the strength when the plate was released. The results are shown in Table 1.

実施例2 粒径的50μmのTiB2100重量部、粒径的’;l
 Q pmのsio、tso重麓部、粒径的10 am
のB2O340重量部、粒径的20 μmのNa202
0重量部、l!lfr&約20 am (7)Ba01
21筐部、粒子的15μmのPb060重量部及び粒径
的20μmのBi 20B 12 tm 置部からなる
ガラス組成物を 8X8X1cmのステンレス・辱結合
金板にl 970m2の割合で溶射した後、この上に直
径I Crn の窒化ケイ素焼結体の俸を当直に立てて
670℃10分間加熱してステンレス焼結合li板と窒
化ケイ素焼結体との接合を行なり几。実施例1と同様の
方法により接合強度を求め之結果を第1表に示す。
Example 2 100 parts by weight of TiB with a particle size of 50 μm, particle size ';l
Q pm sio, tso heavy base, particle size 10 am
40 parts by weight of B2O3, 20 μm particle size Na202
0 parts by weight, l! lfr & approx. 20 am (7) Ba01
A glass composition consisting of a part by weight of Pb060 with a grain size of 15 μm and a Bi 20B 12 tm part with a grain size of 20 μm was thermally sprayed onto an 8 x 8 x 1 cm stainless steel/bonded metal plate at a ratio of 970 m2, and then sprayed onto this. A silicon nitride sintered body with a diameter I Crn was placed on duty and heated at 670°C for 10 minutes to join the stainless steel sintered Li plate and the silicon nitride sintered body. The bonding strength was determined by the same method as in Example 1, and the results are shown in Table 1.

実施例8 粒径的1 #rn 0) 81027ら重量部、粒子的
0.5pmのBg03201汝部、と径約0.5μmの
Li2゜x7.5im部、粒径的1 μmのMgO7,
5重麓部、粒径的1μmのpbo 12.5重量部及び
粒径的3μmのZrO2101麓部を混合した粉末を白
金ルツボに入れて1300℃80分間加熱して、溶徹し
次。この溶融物をボールミルで粉砕して5〜30μmの
粉末とした後、粒径的10μmのA/N 100重量部
と混合し本発明ガラス組成物を得た。次いで該ガラス組
成物80重量部をメタノール10重量部及びイソプロピ
ルアルコール10重量部からなる混合溶媒に入れて、機
械撹拌しながら、3×8XI Cmの96%アルミナ焼
結板にスプレー塗装により、該組成物賦が0.5J//
Cm”となるように塗布し比。引き続き、この上に直径
t cmの銅棒を垂直に立てて窒素ガス中で600℃、
5分間加熱して、アルミナ板と銅棒との接合を行なった
Example 8 Particle size 1 #rn 0) Part by weight of 81027, part of Bg03201 with particle size of 0.5 pm, part of Li2° x 7.5 im with particle size of about 0.5 μm, MgO7 with particle size of 1 μm,
A powder consisting of a five-layer base, 12.5 parts by weight of PBO with a grain size of 1 μm, and a ZrO2101 base with a grain size of 3 μm was placed in a platinum crucible, heated at 1300°C for 80 minutes, and then melted. This melt was ground in a ball mill to form a powder of 5 to 30 μm, and then mixed with 100 parts by weight of A/N having a particle size of 10 μm to obtain a glass composition of the present invention. Next, 80 parts by weight of the glass composition was added to a mixed solvent consisting of 10 parts by weight of methanol and 10 parts by weight of isopropyl alcohol, and the composition was sprayed onto a 96% alumina sintered plate of 3×8XI Cm while stirring mechanically. Equipment is 0.5J//
Then, a copper rod with a diameter of t cm was placed vertically on top of this and heated at 600°C in nitrogen gas.
The alumina plate and the copper rod were joined by heating for 5 minutes.

実施例1と同様の方法により接合強度を求めた結果を第
1表に示す。
Table 1 shows the results of determining the bonding strength using the same method as in Example 1.

実施例4 粒径的5 μmのnNtoo車短部、粒径的5gnのs
io、 100重量部、粒径的8 jlrn (7) 
B20g 7重量部、粒径的5μmのKgo 10重量
部、粒径的1 μmのZnOa重量部、粒径的10 μ
mのMn O23重量部及び粒径的8μmのAl!20
B 4重量部からなる本発明ガラス組成物、80重量部
とエチルセルロース70重麓%及びパインオイル80重
量%からなる有機ビヒクル2(11部とをよく混合し、
8 X 8 X I Cmの炭化ケイ素焼結板に1本発
明ガラス組成物がQ、l Ii/Cm2となるようには
け塗りした。次いでこの上に直径1 cmの炭化ケイ素
焼結体の棒を垂直に立てて、920℃で40分間加熱し
て、炭化ケイ素焼結板と炭化ケイ素棒とを接合し次。実
施例1と同様の方法により接合強度を求めた結果を第1
表に示す。
Example 4 Ntoo car short part with particle size of 5 μm, s with particle size of 5gn
io, 100 parts by weight, particle size 8 jlrn (7)
7 parts by weight of B20g, 10 parts by weight of Kgo with a particle size of 5 μm, parts by weight of ZnOa with a particle size of 1 μm, 10 μm in particle size
3 parts by weight of Mn O2 and 8 μm in particle size Al! 20
A glass composition of the present invention consisting of 4 parts by weight of B, 80 parts by weight and an organic vehicle 2 (11 parts by weight) consisting of 70% by weight of ethyl cellulose and 80% by weight of pine oil are mixed well;
A glass composition of the present invention was brushed onto a silicon carbide sintered plate of 8×8×1 cm to give a ratio of Q, l Ii/Cm2. Next, a rod of silicon carbide sintered body with a diameter of 1 cm was vertically placed on top of this and heated at 920° C. for 40 minutes to join the silicon carbide sintered plate and the silicon carbide rod. The results of determining the bonding strength using the same method as in Example 1 are shown in the first example.
Shown in the table.

実施例5 粒径的60μmのsic 1o o重量部、粒径的20
 、gmの5i02186重量部、粒径的25#mのB
20fi61t:ht部、粒、径約5 μmのZrO2
141址部及び粒径的10μmのAlzOs 20重量
部からなるガラス組成物を白金ルツボに入れて1500
℃で45分間加熱溶融させ次後、冷却し念ものをボール
ミルで粉砕して粒径10〜10011mの粉末を得た。
Example 5 10 parts by weight of SIC of 60 μm in particle size, 20 parts by weight in particle size
, 5i02186 parts by weight of gm, B of particle size 25#m
20fi61t: ht part, grain, ZrO2 with a diameter of about 5 μm
A glass composition consisting of 141 parts by weight and 20 parts by weight of AlzOs with a particle size of 10 μm was placed in a platinum crucible and heated to 1500
The mixture was melted by heating at ℃ for 45 minutes, and then cooled and ground in a ball mill to obtain a powder having a particle size of 10 to 10011 m.

この粉末をa X 8 X 1 cmの炭化ケイ3c焼
結体に0.08 、p/cm!の割合で塗布した後、1
200℃で5分間加熱した。炭化ケイ素焼結体が室温ま
で冷却し念後、次に示す方法で無電解銅めっきを行なっ
た。
This powder was applied to a silicon carbide 3c sintered body of a x 8 x 1 cm at a density of 0.08 p/cm! After applying at the rate of 1
Heated at 200°C for 5 minutes. After the silicon carbide sintered body was cooled to room temperature, electroless copper plating was performed using the method described below.

(1)脱脂:アルコール液中に5分間浸漬し次。(1) Degreasing: Immerse in alcohol solution for 5 minutes and then.

Ti1l  触媒付与:センシタイザ−液に25℃、8
分間浸漬後、水洗し、アクチベーター液に25℃、2分
間浸漬後水洗した。センシタイザ−液としては、センシ
タイザ−(商標” T M Pセンシタイザ−″奥野製
薬工業■製) 100 mz7z水溶液を使用し、アク
チベーター液としては、アクチベータ−(商標” T 
M Pアクチベーター″奥野製薬工業■製) 100 
ml/l水溶液を使用し友。
Addition of Ti1l catalyst: sensitizer liquid at 25℃, 8
After being immersed for a minute, it was washed with water, and after being immersed in an activator solution at 25° C. for 2 minutes, it was washed with water. As the sensitizer liquid, a 100 mz7z aqueous solution of Sensitizer (trademark "TMP Sensitizer" manufactured by Okuno Pharmaceutical Co., Ltd.) was used, and as the activator liquid, Activator (trademark "T") was used.
M P Activator” (manufactured by Okuno Pharmaceutical Co., Ltd.) 100
Use ml/l aqueous solution.

1[111無電解ニッケルめつき:無電解ニッケルめっ
き液(商標”トップニコロンEL−70”、奥野製薬工
業■製) 4 o Oml/l水溶液に90℃80分間
浸漬した。
1 [111 Electroless nickel plating: Electroless nickel plating solution (trademark "Top Nicolon EL-70", manufactured by Okuno Pharmaceutical Co., Ltd.) 4 o ml/l Aqueous solution was immersed at 90°C for 80 minutes.

無電解ニッケルめっき反映形成後、この上に直径1 c
mの鉄製の棒を垂直に立てて850℃でろう付けし、2
5℃及び450℃の各温度で鉄製の棒を炭化ケイ素焼結
体に対して垂直に引張り、めっき皮膜が炭化ケイ素焼結
板から#J犀し次ときの強度を測定することにより、め
っき皮膜の接合強度を求めた。結果を第1表に示す。
After electroless nickel plating is formed, a diameter of 1 cm is applied on top of this.
m iron rods are stood vertically and brazed at 850℃,
By pulling an iron rod perpendicularly to the silicon carbide sintered body at each temperature of 5°C and 450°C, the strength of the plating film was measured when #J was removed from the silicon carbide sintered board. The joint strength was determined. The results are shown in Table 1.

実施例6 粒径的80#mの8j02189重蓋郁、粒径的10 
am O) B20g 28重量部、粒径的10 am
の0dO14重量部、粒径的20 amのTio、  
s重駕部及び粒径約5μmのB120a 28重量部 
からなる粉末を白金ルツボで1450℃、30分加熱し
て溶融し比。次いで、この溶融物が冷却した後。
Example 6 8j02189 heavy lid with particle size of 80#m, particle size of 10
am O) B20g 28 parts by weight, particle size 10 am
0 dO 14 parts by weight, particle size 20 am Tio,
28 parts by weight of B120a with a heavy weight and a particle size of approximately 5 μm
A powder consisting of was heated and melted in a platinum crucible at 1450°C for 30 minutes. Then, after this melt has cooled.

ボールミルで粉砕して1〜10μmの粉末とし、これに
粒径l〜10#mのSi3N466 imjt部、AJ
Bi17重量部及びB2O17重を部を加えて混合して
、ガラス組成物を得々。次いで該ガラス組成物100富
菫部に、エチルセルロース851麓′%及びバインオイ
ル151盆%からなる有機ビヒクル191址部を加えて
混合し、3本ロールに8回通して得られた組成物を15
0メツシユスクリーンにより、5×6×1cmの窒化ケ
イ素焼結体の一平面部に本発明組成物が0.02 y/
cm2  となるようにスクリーン印刷し、150℃で
5分間予備加熱した後、900℃で5分間加熱した。こ
のようにしてガラス組成物をコーティングした面の4カ
所に直径1cmの円形に金属スズを0.00877/C
m @  蒸着した後、静電解ニッケルめっき液中に6
0℃、60分間浸漬して金4114スズ上にニッケルめ
っき皮膜を形成させた。実施例5と同様の方法で窒化ケ
イ素暁結体とニッケルめっきfy、膜との接合強度を測
定し念!8果を裏1表に示す。
Pulverize with a ball mill to obtain a powder of 1 to 10 μm, and add Si3N466 imjt part and AJ with a particle size of 1 to 10 #m.
17 parts by weight of Bi and 17 parts by weight of B2O were added and mixed to obtain a glass composition. Next, 191 parts of an organic vehicle consisting of 851% ethyl cellulose and 151% Vine oil were added to 100 parts of the glass composition and mixed, and the resulting composition was passed through 3 rolls 8 times.
Using a mesh screen, the composition of the present invention was applied to one plane of a 5 x 6 x 1 cm silicon nitride sintered body at a rate of 0.02 y/cm.
cm2, and preheated at 150°C for 5 minutes, then heated at 900°C for 5 minutes. Metal tin was applied in a circular shape with a diameter of 1 cm at 0.00877/C on four places on the surface coated with the glass composition in this way.
m @ After vapor deposition, 6 is added to electrostatic nickel plating solution.
A nickel plating film was formed on the gold 4114 tin by immersion at 0°C for 60 minutes. The bonding strength between the silicon nitride compact, the nickel plating fy, and the film was measured using the same method as in Example 5. Eight fruits are shown on the back and front.

実施例7 実施例6と同様にして有機ビヒクルとガラス組成物とを
混合して得友組成物を5 X 5 X O,1cmのア
ルミナ板に200メツシユスクリーンで本発明組成物が
0.008 g/Cm2となるように スクリーン印刷
した後、150℃lO分間予備加熱してから、870℃
20分間加熱しfc、lアルミナ板が室温に冷却後、無
電解めっき用噸媒付与汲(商標”C0P−4280”、
奥!!ヤ製薬工業■製)中に25℃、5分間浸関して、
200℃lO分間加熱し、続いて室温となってから蕪電
解銅めつき液(商標”OPOカッパー″、奥し製薬工業
際製)中に55℃30分間浸漬して銅めっき皮膜を形成
させた。次いで電気帽めつきを行ない銅めっき厚を40
μmとした後、銅めっき表面に、2重2皿の正方形の形
状にマスキングインキ(商標″トップレジストG ″奥
野製薬工業■製)を5ケ所スクリーン印刷し、次にUV
照射を10秒間行なってマスキングインキを硬化させた
。この試料を塩化第2鉄水溶液中に50℃で浸漬して、
マスキング部分以外の銅めっき部分を溶解し、次いで塩
化メチレン液中に浸漬してマスキングインキを剥離除去
した。残った銅めっき皮膜とアルミナ板との接合強度を
実施例5と同様の方法で測定した結果を第1表に示す。
Example 7 In the same manner as in Example 6, an organic vehicle and a glass composition were mixed to obtain a composition of 5 x 5 x O, and a 200 mesh screen was applied to a 1 cm alumina plate to obtain a composition of the present invention of 0.008. g/Cm2 After screen printing, preheat at 150°C for 10 minutes and then heat to 870°C.
After heating for 20 minutes and cooling the alumina plate to room temperature, it was coated with an electroless plating medium (trademark "C0P-4280").
Back! ! 25°C for 5 minutes,
It was heated at 200°C for 10 minutes, and then, after reaching room temperature, it was immersed in a Kabu electrolytic copper plating solution (trademark "OPO Copper", manufactured by Okushi Pharmaceutical Industry Co., Ltd.) at 55°C for 30 minutes to form a copper plating film. . Next, conduct electric cap plating to achieve a copper plating thickness of 40 mm.
μm, screen-print masking ink (trademark "Top Resist G" manufactured by Okuno Pharmaceutical Co., Ltd.) in 5 places on the copper plating surface in a double layer square shape, and then UV
The masking ink was cured by irradiation for 10 seconds. This sample was immersed in a ferric chloride aqueous solution at 50°C,
The copper-plated parts other than the masking parts were dissolved and then immersed in a methylene chloride solution to peel off the masking ink. The bonding strength between the remaining copper plating film and the alumina plate was measured in the same manner as in Example 5, and the results are shown in Table 1.

比較例1 実施例1で用いたガラス組成物からTiN  を除いた
組成物を使用する以外は実施例1と同様にしてジルコニ
ア棒とアルミナ板との接合強度を測定した結果を第1表
に示す。
Comparative Example 1 Table 1 shows the results of measuring the bonding strength between the zirconia rod and the alumina plate in the same manner as in Example 1 except that a composition obtained by removing TiN from the glass composition used in Example 1 was used. .

汁l腔a9 実施例2で用いたガラス組成物からTiB2を除いた組
成物を使用する以外は実施例2と同様にしてステンレス
焼結合金板と窒化ケイ素棒との接合強度を求めた結果を
第1表に示す。
Juice l cavity a9 The results of determining the bonding strength between the stainless steel sintered alloy plate and the silicon nitride rod in the same manner as in Example 2 except that a composition was used in which TiB2 was removed from the glass composition used in Example 2. Shown in Table 1.

比較例3 実施例8のガラス組成物からAI!Nを除いた組成物を
使用する以外は実施例8と同様にして、アルミナ板と銅
棒との接合強度を求め九結果を第1表に示す。
Comparative Example 3 AI! from the glass composition of Example 8! The bonding strength between the alumina plate and the copper rod was determined in the same manner as in Example 8 except that a composition excluding N was used, and the results are shown in Table 1.

比較例4 実施例4のガラス組成物からBNを除いた組成物を使用
する以外は実施例4と同様にして、炭化ケイ素焼結体と
欠化ケイ素棒との接合強度を求めた結果を第1表に示す
Comparative Example 4 The bonding strength between the silicon carbide sintered body and the oxidized silicon rod was determined in the same manner as in Example 4 except that a composition in which BN was removed from the glass composition of Example 4 was used. It is shown in Table 1.

比較例5 実施例5のガラス組成物からSiCを除いた組成物を使
用する以外は実施例5と同様にして炭化ケイ素焼結体と
釦めっき皮膜との接合強度を測定し次結果を第1表に示
す。
Comparative Example 5 The bonding strength between the silicon carbide sintered body and the button plating film was measured in the same manner as in Example 5 except for using the glass composition of Example 5 except that SiC was removed. Shown in the table.

比軟例6 天施例5のガラス組成物を使用せず、その他は冥施例5
と同様にして炭化ケイ素焼結体と銅めっき皮膜との接合
強度を測定した結果をWt表に示す。
Comparative Example 6 The glass composition of Example 5 was not used, and the rest was Example 5.
The results of measuring the bonding strength between the silicon carbide sintered body and the copper plating film in the same manner as above are shown in the Wt table.

比較例7 実施例6のガラス組成物から811N4、A/B、及び
B4Cを除いた組成物を使用する以外は実施例6と同様
にして窒化ケイ素焼結体とニッケルめっき皮膜との接合
強度を測定した結果を第1表に示す。
Comparative Example 7 The bonding strength between the silicon nitride sintered body and the nickel plating film was determined in the same manner as in Example 6 except that a composition in which 811N4, A/B, and B4C were removed from the glass composition of Example 6 was used. The measured results are shown in Table 1.

比軟例8 V化ケイ素焼結体にガラス組成物と有機ビヒクルとから
なる組成物によるスクリーン印刷をすることなく、その
他は実施例6と同様にして窒化ケイ素焼結体とニッケル
めっき皮膜との接合強度を測定した結果を第1表に示す
Ratio Example 8 A silicon nitride sintered body and a nickel plating film were formed in the same manner as in Example 6, except that the silicon Vide sintered body was not screen-printed with a composition consisting of a glass composition and an organic vehicle. Table 1 shows the results of measuring the bonding strength.

比較例9 実施例6のガラス組成物から81gN4、A7B2及び
B4Cを除いた組成物を使用する以外は実施例7と同様
にしてアルミナ板と銅めっき皮膜との接合強度を測定し
た結果を第1表に示す。
Comparative Example 9 The bonding strength between the alumina plate and the copper plating film was measured in the same manner as in Example 7 except that 81 g of N4, A7B2 and B4C were removed from the glass composition of Example 6. Shown in the table.

比較例10 アルミナ板にガラス組成物と有機ビヒクルとからなる組
成物による叩刷をすることなく、その他は実施例7と同
様にしてアルミナ板と銅めっき皮膜との接合強度を測定
した結果を第1表に示す。
Comparative Example 10 The bonding strength between the alumina plate and the copper plating film was measured in the same manner as in Example 7, except that the alumina plate was not patted with a composition consisting of a glass composition and an organic vehicle. It is shown in Table 1.

第1表 @1表から、本発明組成物を使用した場合には、高い接
合強度の接合体か得られ、晶温においても接合強度の低
下が少ないことか明らかである、これに対して比較例で
は、25℃では高い接合強度が得られた場合においても
、450℃では接合強度が著しく低下することが明らか
である。
From Table 1 @ Table 1, it is clear that when the composition of the present invention is used, a bonded body with high bonding strength can be obtained, and there is little decrease in bonding strength even at the crystal temperature. In the example, it is clear that even if high bonding strength is obtained at 25°C, the bonding strength significantly decreases at 450°C.

(以上) 2゛−一(that's all) 2゛-1

Claims (1)

【特許請求の範囲】[Claims] (1)(i)TiN、TiB_2、AlN、AlB_2
、BN、B_4C、SiC及びSi_3N_4の少なく
とも1種の粉末100重量部、 (ii)SiO_2粉末20〜1600重量部、(ii
i)B_2O_3粉末1〜600重量部、及び(iv)
(R_1)_2O、(R_2)O、(R_3)O_2及
び(R_4)_2O_2(ただし、R_1はNa、Kま
たはLi、R_2はMg、Ca、Ba、Zn、Pbまた
はCd、R_3はTi、ZrまたはMn、R_4はAl
またはBiである)の少なくとも1種の粉末1〜160
0重量部 からなるセラミックス接合用ガラス組成物。
(1) (i) TiN, TiB_2, AlN, AlB_2
, 100 parts by weight of at least one powder of BN, B_4C, SiC and Si_3N_4, (ii) 20 to 1600 parts by weight of SiO_2 powder, (ii
i) 1 to 600 parts by weight of B_2O_3 powder, and (iv)
(R_1)_2O, (R_2)O, (R_3)O_2 and (R_4)_2O_2 (R_1 is Na, K or Li, R_2 is Mg, Ca, Ba, Zn, Pb or Cd, R_3 is Ti, Zr or Mn, R_4 is Al
or Bi) powder 1-160
A glass composition for bonding ceramics consisting of 0 parts by weight.
JP59279028A 1984-12-12 1984-12-28 Glass composition Granted JPS61158839A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59279028A JPS61158839A (en) 1984-12-28 1984-12-28 Glass composition
US07/158,051 US4917958A (en) 1984-12-12 1988-02-12 Metal coated ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279028A JPS61158839A (en) 1984-12-28 1984-12-28 Glass composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5898189A Division JPH0227832B2 (en) 1989-03-10 1989-03-10 SERAMITSUKUSUKIBAN

Publications (2)

Publication Number Publication Date
JPS61158839A true JPS61158839A (en) 1986-07-18
JPH0149652B2 JPH0149652B2 (en) 1989-10-25

Family

ID=17605385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279028A Granted JPS61158839A (en) 1984-12-12 1984-12-28 Glass composition

Country Status (2)

Country Link
US (1) US4917958A (en)
JP (1) JPS61158839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128975A (en) * 1985-11-29 1987-06-11 京セラ株式会社 Adhesive composition for bonding ceramics and method therefor
JPH02217332A (en) * 1989-02-17 1990-08-30 Shimadzu Corp Oxynitride glass and glass fiber thereof
JP2010059048A (en) * 2008-09-01 2010-03-18 Commiss Energ Atom Method for assembling moderately refractory article made of sic-based material by non-reactive brazing of brazing composition in oxidizing atmosphere, and refractory joint and assembly obtained by the method

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089172A (en) * 1987-08-31 1992-02-18 Ferro Corporation Thick film conductor compositions for use with an aluminum nitride substrate
US5139594A (en) * 1990-06-26 1992-08-18 The United States Of America As Represented By The United States Department Of Energy Method for joining ceramic shapes
JPH04215292A (en) * 1990-09-01 1992-08-06 Fuji Electric Co Ltd Electroluminescence display panel and manufacture thereof
WO1992008606A1 (en) * 1990-11-19 1992-05-29 The Carborundum Company Microelectronics package
US5288769A (en) * 1991-03-27 1994-02-22 Motorola, Inc. Thermally conducting adhesive containing aluminum nitride
GB9203394D0 (en) * 1992-02-18 1992-04-01 Johnson Matthey Plc Coated article
US6696103B1 (en) * 1993-03-19 2004-02-24 Sumitomo Electric Industries, Ltd. Aluminium nitride ceramics and method for preparing the same
US5503703A (en) * 1994-01-10 1996-04-02 Dahotre; Narendra B. Laser bonding process
US6267835B1 (en) * 1999-07-27 2001-07-31 Eastman Kodak Company Bonding materials using polycrystalline magnesium orthosilicate
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US20020086102A1 (en) * 2001-01-02 2002-07-04 John Grunwald Method and apparatus for improving interfacial chemical reactions in electroless depositions of metals
JP4362597B2 (en) * 2003-05-30 2009-11-11 Dowaメタルテック株式会社 Metal-ceramic circuit board and manufacturing method thereof
AU2005327164B2 (en) * 2004-11-30 2010-12-02 The Regents Of The University Of California Braze system with matched coefficients of thermal expansion
WO2006127045A2 (en) 2004-11-30 2006-11-30 The Regents Of The University Of California Sealed joint structure for electrochemical device
AU2005327925B2 (en) * 2004-11-30 2011-01-27 The Regents Of The University Of California Joining of dissimilar materials
US20110268975A1 (en) * 2005-01-25 2011-11-03 Massachusetts Institute Of Technology Transient Migrating Phase Low Temperature Joining of Co-Sintered Particulate Materials Including a Chemical Reaction
CA2504831C (en) * 2005-04-21 2010-10-19 Standard Aero Limited Wear resistant ceramic composite coatings and process for production thereof
WO2007061436A1 (en) * 2005-11-28 2007-05-31 University Of South Carolina Self calibration methods for optical analysis system
US9170154B2 (en) 2006-06-26 2015-10-27 Halliburton Energy Services, Inc. Data validation and classification in optical analysis systems
AU2006346775A1 (en) * 2006-07-28 2008-02-07 The Regents Of The University Of California Joined concentric tubes
US8153934B2 (en) * 2006-09-15 2012-04-10 Lincoln Global, Inc. Saw flux system for improved as-cast weld metal toughness
WO2008057912A2 (en) * 2006-11-02 2008-05-15 University Of South Carolina Multi-analyte optical computing system
US8212216B2 (en) * 2007-03-30 2012-07-03 Halliburton Energy Services, Inc. In-line process measurement systems and methods
US8213006B2 (en) * 2007-03-30 2012-07-03 Halliburton Energy Services, Inc. Multi-analyte optical computing system
US8184295B2 (en) * 2007-03-30 2012-05-22 Halliburton Energy Services, Inc. Tablet analysis and measurement system
KR20100065296A (en) * 2007-07-25 2010-06-16 더 리전트 오브 더 유니버시티 오브 캘리포니아 High temperature electrochemical device with interlocking structure
ATE540133T1 (en) * 2008-02-04 2012-01-15 Univ California CU-BASED CERMET FOR HIGH TEMPERATURE FUEL CELLS
US8212213B2 (en) * 2008-04-07 2012-07-03 Halliburton Energy Services, Inc. Chemically-selective detector and methods relating thereto
JP5335068B2 (en) 2008-04-18 2013-11-06 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Electrochemical device configuration and manufacturing method
CN107721180A (en) * 2017-10-31 2018-02-23 西安琦丰光电科技有限公司 A kind of high temperature protection enamel coating and preparation method
CN115108817B (en) * 2022-06-17 2023-04-18 无锡畾田陶瓷科技有限公司 Environment-friendly wear-resistant ceramic brick and preparation process thereof
CN116041082B (en) * 2022-09-08 2023-10-10 哈尔滨工业大学 Method for packaging ferrite ceramic and microwave dielectric ceramic by using low-temperature glass solder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004937A (en) * 1972-10-24 1977-01-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for producing a sintered silicon nitride base ceramic and said ceramic
US4097295A (en) * 1976-10-26 1978-06-27 Corning Glass Works Silica-alumina-nitrogen containing glasses for production of glass-ceramics
JPS5837274B2 (en) * 1980-08-26 1983-08-15 工業技術院長 High strength composite sintered material
US4384909A (en) * 1981-11-16 1983-05-24 United Technologies Corporation Bonding Si3 N4 ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128975A (en) * 1985-11-29 1987-06-11 京セラ株式会社 Adhesive composition for bonding ceramics and method therefor
JPH02217332A (en) * 1989-02-17 1990-08-30 Shimadzu Corp Oxynitride glass and glass fiber thereof
JPH0579617B2 (en) * 1989-02-17 1993-11-04 Shimadzu Corp
JP2010059048A (en) * 2008-09-01 2010-03-18 Commiss Energ Atom Method for assembling moderately refractory article made of sic-based material by non-reactive brazing of brazing composition in oxidizing atmosphere, and refractory joint and assembly obtained by the method

Also Published As

Publication number Publication date
JPH0149652B2 (en) 1989-10-25
US4917958A (en) 1990-04-17

Similar Documents

Publication Publication Date Title
JPS61158839A (en) Glass composition
KR100271396B1 (en) A meta powder having a vitreous thin layer on the surface threrof and method of producing it, and conductor paste comprising said powder, and ceramic electronic component and a multilayer ceramic subtrate comprising said a conductor layer
US4772346A (en) Method of bonding inorganic particulate material
TW562781B (en) Glass and conductive paste using the same
JPS6410468B2 (en)
JPS6119583B2 (en)
JPS58213070A (en) Manufacture of surface coated with conductive pigment
WO1988001259A1 (en) Aluminum nitride sinter and semiconductor substrate formed therefrom
US4780332A (en) Process for producing adherent, electrochemically reinforcible and solderable metal layers on an aluminum-oxide containing ceramic substrate
JP2002121605A (en) Method for forming coating on refractory structural member and use of the coating
KR890003856B1 (en) Ceramic compositions
US5304517A (en) Toughened glass ceramic substrates for semiconductor devices subjected to oxidizing atmospheres during sintering
JPH0345014B2 (en)
JPH08897B2 (en) Heat-resistant binder as coating material or adhesive
US4748086A (en) Formation of copper electrode on ceramic oxide
JPS5927553A (en) Substrate used for electronic device
JPH01272192A (en) Ceramics substrate
JPS62136501A (en) Metallized powder for ceramics and metallized paste for ceramics using said powder
JPS6191086A (en) Treatment of ceramics
JP7434420B2 (en) Method for producing metal-ceramic substrates
JPH0676268B2 (en) Aluminum nitride sintered body having metallized layer and method for producing the same
JPS60145980A (en) Ceramic sintered body with metallized coating and manufacture
JPH03112874A (en) Junction between ceramic base and copper
JPS62182183A (en) Aluminum nitride sintered body with metallized surface
JPH05186285A (en) Substrate for heat treatment and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees