JPS6115868B2 - - Google Patents

Info

Publication number
JPS6115868B2
JPS6115868B2 JP52139735A JP13973577A JPS6115868B2 JP S6115868 B2 JPS6115868 B2 JP S6115868B2 JP 52139735 A JP52139735 A JP 52139735A JP 13973577 A JP13973577 A JP 13973577A JP S6115868 B2 JPS6115868 B2 JP S6115868B2
Authority
JP
Japan
Prior art keywords
palladium
vanadium
catalyst
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52139735A
Other languages
Japanese (ja)
Other versions
JPS5473753A (en
Inventor
Takeshi Onoda
Kazuo Tano
Shinichi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP13973577A priority Critical patent/JPS5473753A/en
Publication of JPS5473753A publication Critical patent/JPS5473753A/en
Publication of JPS6115868B2 publication Critical patent/JPS6115868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はパラジウム系触媒の存在下に芳香族ニ
トロ化合物を水酸基を含有する有機化合物および
一酸化炭素と反応させてウレタンを製造する方法
に関るものである。 芳香族イソシアナート類はポリウレタンの原料
として重要な化合物であり、従来は芳香族ニトロ
化合物の水素添加により得られる芳香族アミンを
ホスゲンと反応させることにより製造されてい
る。しかしながら、ホスゲンを使用する方法は固
定費負担の大きいことおよびホスゲンの有する毒
性のため、近年、ホスゲンを使用しないイソシア
ナートの製造法の研究が活発に行なわれ、すでに
数多くのイソシアナートの製造法が知られてい
る。 これらの公知の方法は2種類に大別される。第
一の方法は、O−ジクロロベンゼンなどの不活性
溶媒中で芳香族ニトロ化合物をパラジウム触媒の
存在下にカルボニル化することにより、直接芳香
族イソシアナートを得る方法であるが、この方法
においては触媒の活性が低いため主触媒である高
価なパラジウムを多量に使用しなければならず、
また生成する芳香族イソシアナートが不安定な化
合物であるため重合、分解など副反応が生起し収
率が低い。 第二の方法は、アルコール性またはフエノール
性溶媒中で芳香族ニトロ化合物を貴金属触媒また
はセレン触媒の存在下に一酸化炭素およびアルコ
ール類もしくはフエノール類と反応させることに
より、対応するカルバミン酸のエステル、いわゆ
るウレタンを得たのち、熱分解などの方法により
ウレタンを分解して芳香族イソシアナートを得る
方法である。 上記第二の方法において使用される触媒として
は、例えば、ロジウムカルボニルクロライド(特
公昭42−1420)、族金属カルボニルおよび2つ
以上の原子価状態で存在する性質を有する金属の
塩よりなる触媒(特公昭43−23939)などが知ら
れているが、これらはいずれもウレタンの収率が
低く、工業的に実施することは困難である。ま
た、ウレタン収率の改良されたパラジウムおよび
ルイス酸よりなる触媒を用いる方法(米国特許第
3531512号)も提案されているが、この方法は塩
化第二鉄などのルイス酸の反応容器に対する腐蝕
性が高く、実用化が困難である。このほかに、セ
レンおよび塩基よりなる触媒を用いる方法(特開
昭49−62420)はウレタンの収率においてはすぐ
れているが、毒性を有するセレンあるいはセレン
化合物の回収方法が確立されていないため、工業
化の目処は立つていない。 最近になつて、パラジウム、ルイス酸および第
三級アミンを組合せた触媒を用いることにより、
高いウレタン収率を確保しつつ反応器に対する腐
蝕を抑制する方法(特開昭51−98240)が提案さ
れた。しかしながら、この方法においても触媒の
活性の点で充分であるとは言えず、また、ルイス
酸、特に塩化第二鉄と第三級アミンとが形成する
錯体のアルコール性溶媒への溶解度が小さくかつ
使用量が多いために密度の高いスラリーを取り扱
わなければならず工業的プロセスとしては非常に
不利である。 本発明者らは上述した従来技術のような欠点を
有さない触媒について探索した結果、パラジウ
ム、バナジウム化合物、第三級アミンおよび塩化
水素よりなる触媒が高活性であり、該触媒の存在
下に芳香族ニトロ化合物を水酸基を含有する有機
化合物および一酸化炭素と反応させることにより
ウレタンが高収率が得られ、かつ反応液の取扱い
が容易であることを見い出し、本発明に到達した
ものである。 すなわち、本発明の目的は工業的有利なウレタ
ンの製造方法を提供することにあり、この目的
は、芳香族ニトロ化合物を触媒の存在下に水酸基
を含有する有機化合物および一酸化炭素と反応さ
せてウレタンを製造する方法において、触媒とし
て金属パラジウムまたはパラジウム化合物、
バナジウム化合物、第三級アミンおよび塩化
水素よりなる触媒を使用することにより容易に達
成し得る。 以下に本発明を詳細に説明する。 芳香族ニトロ化合物としては、本発明方法にお
いてはモノニトロ化合物およびポリニトロ化合物
のいずれもが使用可能である。具体的には、ニト
ロベンゼン、O−、m−およびp−ニトロトルエ
ン、O−ニトロ−p−キシレン、O−、m−およ
びp−クロロニトロベンゼン、1−ブロモ−4−
ニトロベンゼン、O−、m−およびp−ニトロフ
エニルカルバメート、O−、m−およびp−ニト
ロアニソール、m−ニトロベンズアルデヒド、p
−ニトロベンゾイルクロリド、エチル−p−ニト
ロベンゾエート、m−ニトロベンゼンスルホニル
クロリド、3−ニトロ無水フタル酸などのモノニ
トロベンゼン類、m−およびp−ジニトロベンゼ
ン、2・2−ジニトロトルエン、2・6−ジニト
ロトルエン、ジニトロメシチレン、1−クロロ−
2・4−ジニトロベンゼン、1−フルオロ−2・
4−ジニトロベンゼン等のジニトロベンゼン類、
2・4・6−トリニトロトルエン等のトニトロベ
ンゼン類、1−ニトロナフタレン、1・5−ジニ
トロナフタレン等のモノまたはポリニトロ置換縮
合環化合物、4・4′−ジニトロビフエニル、2・
4−ジニトロビフエニル、3・3′−ジメチル−
4・4′−ジニトロビフエニル等のニトロビフエニ
ル類、ビス(4−ニトロフエニル)メタン、4・
4′−ジニトロビベンジル等のビス(ニトロフエニ
ル)アルカン類、ビス(4−ニトロフエニル)エ
ーテル、ビス(2・4−ジニトロフエニル)エー
テル等のビス(ニトロフエニル)エーテル類、ビ
ス(4−ニトロフエニル)チオエーテル等のビス
(ニトロフエニル)チオエーテル類、ビス(4−
ニトロフエニル)スルホン等のビス(ニトロフエ
ニル)スルホン類、ビス(4−ニトロフエノキ
シ)エタン等のビス(ニトロフエノキシ)アルカ
ン類、5−ニトロピリミジン等のヘテロ芳香族ニ
トロ化合物類、あるいはα・α′−ジニトロ−p
−キシレン、α・α′−ジニトロ−m−キシレン
などが挙げられる。これらの芳香族ニトロ化合物
の反応液中の初期濃度は、通常1〜70重量%、好
ましくは5〜30重量%の範囲内で選択される。 水酸基を含有する有機化合物としては、本発明
方法においては一価アルコール、多価アルコー
ル、一価フエノールおよび多価フエノールから選
択される。具体的には、メタノール、エタノー
ル、プロパノール、ブタノール、アミルアルコー
ル、ヘキサノール、ラウリルアルコール、セチル
アルコール等の直鎖状または分岐鎖状のアルカノ
ール、シクロヘキシルアルコール等のシクロアル
カノール、ベンジルアルコール、クロルベンジル
アルコール、メトキシベンジルアルコール等のア
ラルキルアルコールが一価アルコールとして挙げ
られ、エチレングリコール、ジエチレングリコー
ル、プロピレングリコール、ジプロピレングリコ
ール、グリセリン、ヘキサントリオール等が多価
アルコールとして挙げられる。また、フエノー
ル、クロルフエノール、クレゾール、エチルフエ
ノール、プロピルフエノール、ブチルフエノール
および更に高級のアルキルフエノール、β−ナフ
トール、アントロール、フエナントロールなどが
一価フエノールとして挙げられ、カテコール、レ
ゾルシン、4・4′−ジヒドロキシジフエニルメタ
ン、2・2′−イソプロピリデンジフエノール、ピ
ロガロール、フロログルシン等が多価フエノール
として挙げられる。 これらのアルコールまたはフエノールは、さら
にハロゲン原子、スルホキシド、スルホン、カル
ボン酸エステル基などの置換基により置換されて
いてもよい。 上記アルコールまたはフエノールの使用量は、
原料として用いられる芳香族ニトロ化合物のニト
ロ基1個につき少くとも1分子の割合で使用する
ことが必要であり、通常は芳香族ニトロ化合物に
対して大過剰に使用され、多くの場合、反応溶媒
を兼ねて使用される。 本発明方法において使用される触媒は、金属
パラジウムまたはパラジウム化合物、バナジウ
ム化合物、第三級アミンおよび塩化水素の各
成分よりなる触媒である。 触媒の主成分である金属パラジウムまたはパラ
ジウム化合物としては、パラジウム黒などの金属
単体、ハロゲン化パラジウム、シアン化パラジウ
ム、チオシアン化パラジウム、イソシアン化パラ
ジウム、酸化パラジウム、硫酸パラジウム、硝酸
パラジウム、硝酸パラジウム等の2価のパラジウ
ム無機塩、酢酸パラジウム等の2価のパラジウム
有機酸塩、上記パラジウム塩にトリエチルアミ
ン、ピリジン、イソキノリン等の第三級アミン、
トリフエニルホスフイン等の第三級有機燐化合
物、一酸化炭素などの中性配位子が配位した2価
のパラジウム錯体あるいは2価パラジウム錯体を
還元したO価パラジウム錯体などが挙げられ、こ
れはいずれも活性炭、グラフアイト、アルミナ、
シリカ、硫酸バリウム、炭酸カルシウム、アスベ
スト、ベントナイト、珪藻土、イオン交換樹脂、
珪酸マグネシウム、珪酸アルミニウム、珪酸チタ
ン、モレキユラーシーブ等の担体に担持して使用
することもできる。金属パラジウムまたはパラジ
ウム化合物は、反応液中の濃度がパラジウム単体
に換算して0.001〜1重量%、好ましくは0.005〜
0.1重量%となるように使用される。 触媒の第二成分であるバナジウム化合物として
は任意のバナジウム化合物を選択することができ
る。また、本発明方法における反応は、酸化力の
強いニトロ化合物の還元反応と還元力の強い一酸
化炭素の酸化反応との組み合わせであるため、バ
ナジウム化合物は反応中に原子価が変化したり、
ある分布をもつていくつかの原子価状態で存在す
るものと考えられる。従つて、用いることのでき
るバナジウム化合物のバナジウムの原子価は特に
限定されない。 本発明方法において使用し得るバナジウム化合
物を具体的に例示すると、三塩化バナジウム、四
塩化バナジウム等の塩化物、塩化バナジウム
()カリウム等の塩化物の塩、オキシ二塩化バ
ナジウム、オキシ三塩化バナジウム等のオキシ塩
化物、酸化バナジウム()、酸化バナジウム
()、酸化バナジウム()等の酸化物、ピロバ
ナジン酸、メタバナジン酸等のバナジン酸、オル
トバナジン酸ナトリウム、メタバナジン酸アンモ
ニウム、メタバナジン酸カリウム等のバナジン酸
塩、硫酸バナジウム()アンモニウム、蓚酸バ
ナジウム()カリウム等の酸のバナジウム塩、
オキシ硫酸バナジウム()、オキシ蓚酸バナジ
ウム等の酸のバナジル塩、バナジウム()オキ
シアセチルアセトナート等のアセチルアセトン
塩、V(CO)6、KV(CO)6
The present invention relates to a method for producing urethane by reacting an aromatic nitro compound with an organic compound containing a hydroxyl group and carbon monoxide in the presence of a palladium-based catalyst. Aromatic isocyanates are important compounds as raw materials for polyurethane, and have conventionally been produced by reacting aromatic amines obtained by hydrogenating aromatic nitro compounds with phosgene. However, because the method using phosgene has a large fixed cost burden and the toxicity of phosgene, research has been actively conducted in recent years on methods for producing isocyanates that do not use phosgene, and there are already many methods for producing isocyanates. Are known. These known methods are broadly classified into two types. The first method is to directly obtain aromatic isocyanates by carbonylating aromatic nitro compounds in the presence of a palladium catalyst in an inert solvent such as O-dichlorobenzene. Due to the low activity of the catalyst, large amounts of expensive palladium, which is the main catalyst, must be used.
Furthermore, since the aromatic isocyanate produced is an unstable compound, side reactions such as polymerization and decomposition occur, resulting in a low yield. The second method produces esters of the corresponding carbamic acids by reacting aromatic nitro compounds with carbon monoxide and alcohols or phenols in the presence of a noble metal or selenium catalyst in an alcoholic or phenolic solvent. This is a method in which so-called urethane is obtained and then the urethane is decomposed by a method such as thermal decomposition to obtain aromatic isocyanate. Catalysts used in the second method include, for example, rhodium carbonyl chloride (Japanese Patent Publication No. 42-1420), group metal carbonyls, and catalysts consisting of salts of metals having the property of existing in two or more valence states ( Japanese Patent Publication No. 43-23939) is known, but all of these have low yields of urethane and are difficult to implement industrially. In addition, a method using a catalyst consisting of palladium and Lewis acid with improved urethane yield (U.S. Patent No.
3531512) has also been proposed, but this method is difficult to put into practical use because Lewis acids such as ferric chloride are highly corrosive to reaction vessels. In addition, a method using a catalyst consisting of selenium and a base (Japanese Unexamined Patent Publication No. 49-62420) has an excellent yield of urethane, but a method for recovering toxic selenium or selenium compounds has not been established. There is no prospect of industrialization. Recently, by using catalysts combining palladium, Lewis acids and tertiary amines,
A method was proposed (Japanese Unexamined Patent Publication No. 1982-98240) for suppressing corrosion of the reactor while ensuring a high urethane yield. However, even this method cannot be said to be sufficient in terms of catalyst activity, and the solubility of the complex formed by Lewis acids, especially ferric chloride, and tertiary amines in alcoholic solvents is low. Since the amount used is large, a slurry with high density must be handled, which is very disadvantageous for industrial processes. The present inventors searched for a catalyst that does not have the drawbacks of the prior art described above, and found that a catalyst consisting of palladium, a vanadium compound, a tertiary amine, and hydrogen chloride was highly active. The present invention was achieved by discovering that a high yield of urethane can be obtained by reacting an aromatic nitro compound with an organic compound containing a hydroxyl group and carbon monoxide, and that the reaction solution is easy to handle. . That is, an object of the present invention is to provide an industrially advantageous method for producing urethane, which involves reacting an aromatic nitro compound with an organic compound containing a hydroxyl group and carbon monoxide in the presence of a catalyst. In the method for producing urethane, metallic palladium or a palladium compound is used as a catalyst,
This can be easily achieved by using a catalyst consisting of a vanadium compound, a tertiary amine and hydrogen chloride. The present invention will be explained in detail below. As the aromatic nitro compound, both mononitro compounds and polynitro compounds can be used in the method of the present invention. Specifically, nitrobenzene, O-, m- and p-nitrotoluene, O-nitro-p-xylene, O-, m- and p-chloronitrobenzene, 1-bromo-4-
Nitrobenzene, O-, m- and p-nitrophenyl carbamate, O-, m- and p-nitroanisole, m-nitrobenzaldehyde, p
-Nitrobenzenes such as nitrobenzoyl chloride, ethyl p-nitrobenzoate, m-nitrobenzenesulfonyl chloride, 3-nitrophthalic anhydride, m- and p-dinitrobenzene, 2,2-dinitrotoluene, 2,6-di Nitrotoluene, dinitromesitylene, 1-chloro-
2,4-dinitrobenzene, 1-fluoro-2.
dinitrobenzenes such as 4-dinitrobenzene,
Tonitrobenzenes such as 2,4,6-trinitrotoluene, mono- or polynitro-substituted condensed ring compounds such as 1-nitronaphthalene and 1,5-dinitronaphthalene, 4,4'-dinitrobiphenyl, 2,
4-dinitrobiphenyl, 3,3'-dimethyl-
Nitrobiphenyls such as 4,4'-dinitrobiphenyl, bis(4-nitrophenyl)methane, 4,
Bis(nitrophenyl) alkanes such as 4'-dinitrobibenzyl, bis(nitrophenyl) ethers such as bis(4-nitrophenyl) ether, bis(2,4-dinitrophenyl) ether, bis(4-nitrophenyl) thioether, etc. Bis(nitrophenyl)thioethers, bis(4-
Bis(nitrophenyl)sulfones such as nitrophenyl)sulfone, bis(nitrophenoxy)alkanes such as bis(4-nitrophenoxy)ethane, heteroaromatic nitro compounds such as 5-nitropyrimidine, or α・α′-dinitro-p
-xylene, α·α′-dinitro-m-xylene, and the like. The initial concentration of these aromatic nitro compounds in the reaction solution is usually selected within the range of 1 to 70% by weight, preferably 5 to 30% by weight. The organic compound containing a hydroxyl group in the method of the invention is selected from monohydric alcohols, polyhydric alcohols, monohydric phenols and polyhydric phenols. Specifically, linear or branched alkanols such as methanol, ethanol, propanol, butanol, amyl alcohol, hexanol, lauryl alcohol, cetyl alcohol, cycloalkanols such as cyclohexyl alcohol, benzyl alcohol, chlorobenzyl alcohol, methoxy Aralkyl alcohols such as benzyl alcohol are mentioned as monohydric alcohols, and ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, hexanetriol and the like are mentioned as polyhydric alcohols. In addition, monohydric phenols include phenol, chlorophenol, cresol, ethylphenol, propylphenol, butylphenol, higher alkylphenols, β-naphthol, anthrol, phenanthrol, and catechol, resorcinol, 4-4 Examples of polyhydric phenols include '-dihydroxydiphenylmethane, 2,2'-isopropylidene diphenol, pyrogallol, and phloroglucin. These alcohols or phenols may be further substituted with a substituent such as a halogen atom, sulfoxide, sulfone, or carboxylic acid ester group. The amount of alcohol or phenol used above is
It is necessary to use at least one molecule per nitro group of the aromatic nitro compound used as a raw material, and it is usually used in large excess with respect to the aromatic nitro compound, and in many cases, the reaction solvent It is also used as. The catalyst used in the process of the invention is a catalyst consisting of the following components: palladium metal or a palladium compound, a vanadium compound, a tertiary amine and hydrogen chloride. Metal palladium or palladium compounds that are the main components of the catalyst include simple metals such as palladium black, palladium halides, palladium cyanide, palladium thiocyanide, palladium isocyanide, palladium oxide, palladium sulfate, palladium nitrate, palladium nitrate, etc. Divalent palladium inorganic salts, divalent palladium organic acid salts such as palladium acetate, tertiary amines such as triethylamine, pyridine, isoquinoline, etc. to the above palladium salts,
Examples include tertiary organophosphorus compounds such as triphenylphosphine, divalent palladium complexes coordinated with neutral ligands such as carbon monoxide, and Ovalent palladium complexes obtained by reducing divalent palladium complexes. are activated carbon, graphite, alumina,
Silica, barium sulfate, calcium carbonate, asbestos, bentonite, diatomaceous earth, ion exchange resin,
It can also be used by being supported on a carrier such as magnesium silicate, aluminum silicate, titanium silicate, or molecular sieve. The metal palladium or palladium compound has a concentration in the reaction solution of 0.001 to 1% by weight, preferably 0.005 to 1% by weight in terms of palladium alone.
Used at 0.1% by weight. Any vanadium compound can be selected as the second component of the catalyst. In addition, since the reaction in the method of the present invention is a combination of the reduction reaction of a nitro compound with strong oxidizing power and the oxidation reaction of carbon monoxide with strong reducing power, the valence of the vanadium compound may change during the reaction.
It is thought that it exists in several valence states with a certain distribution. Therefore, the valence of vanadium in the vanadium compound that can be used is not particularly limited. Specific examples of vanadium compounds that can be used in the method of the present invention include chlorides such as vanadium trichloride and vanadium tetrachloride, chloride salts such as vanadium () potassium chloride, vanadium oxydichloride, vanadium oxytrichloride, etc. Oxychloride of, vanadium oxide (), oxides such as vanadium oxide (), vanadium oxide (), vanadic acid such as pyrovanadic acid, metavanadate, vanadic acid such as sodium orthovanadate, ammonium metavanadate, potassium metavanadate, etc. salts, vanadium salts of acids such as ammonium vanadium sulfate, potassium vanadium oxalate,
vanadyl salts of acids such as vanadium oxysulfate (), vanadium oxyoxalate, acetylacetone salts such as vanadium ()oxyacetylacetonate, V(CO) 6 , KV(CO) 6 ,

【式】【formula】

、V〔(CH32PCH2CH2P(CH323、VCl3〔S
(CH322、VCl4〔O−C6H4(As(CH3222
VO(CH2COCH2COCH32・C5H5N等の中性配位
子の配位した錯化合物などである。 これらのバナジウム化合物は、パラジウム1グ
ラム原子に対し、バナジウムに換算して少くとも
1グラム原子使用することが必要であるが、使用
量の上限については特に制限はない。しかしなが
ら、パラジウム1グラム原子に対して1000グラム
原子を越えると効果の増大は殆んど期待されず経
済的にも不利であり、通常はパラジウム1グラム
原子に対して10〜100グラム原子の範囲内で使用
される。 触媒の第三成分である第三級アミンとしては、
トリメチルアミン、トリエチルアミン、トリプロ
ピルアミン、トリブチルアミン等の脂肪族第三級
アミン、N・N−ジメチルアニリン、N・N−ジ
エチルアニリン、N・N−ジプロピルアニリン等
の脂肪芳香族第三級アミン、N・N−ジメチルシ
クロヘキシルアミン、N・N−ジエチルシクロヘ
キシルアミン、N・N−ジプロピルシクロヘキシ
ルアミン等の脂環族第三級アミン、1・4−ジア
ザビシクロ(2・2・2)−オクタン、1・8−
ジアザビシクロ(5・4・0)−ウンデセン−
7、1・5−ジアザビシクロ(4・3・0)−ノ
ネン−5等の複素環式第三級アミン、トリフエニ
ルアミン等の芳香族第三級アミン、ピリジン、キ
ノリン、イソキノリン等の複素芳香族第三級アミ
ンなどが挙げられる。特に、ウレタンの収率向上
のためには複素芳香族第三級アミンが効果的であ
り、具体的には、ピリジンあるいは2−クロルピ
リジン、2−ブロムピリジン、2−フルオロピリ
ジン、3−クロルピリジン、2・6−ジクロルピ
リジン、4−フエニルピリジン、α−ピコリン、
γ−ピコリン、2−メチル−5−エチルピリジ
ン、2・6−ルチジン、γ−コリジン、2−ビニ
ルピリジン、2−クロル−4−メチルピリジン、
4−フエニルチオピリジン、2−メトキシピリジ
ン、2・6−ジシアノピリジン、4−ジメチルア
ミノピリジン、α−ピコリン酸フエニル、γ−ピ
コリン酸メチル、α−ピコリンアルデヒド、α−
ピコリンアミド、2・2′−ジピリジル等のピリジ
ン誘導体;キノリンあるいは2−クロルキノリ
ン、5・6・7・8−テトラヒドロキノリン等の
キノリン誘導体;アクリジン、フエナントリジ
ン、5・6−ベンゾキノリン、6・7−ベンゾキ
ノリン、7・8−ベンゾキノリン等のベンゾキノ
リン;イソキノリン;1−メチルピロール、1−
フエニルピロール等のピロール誘導体;1−メチ
ルイミダゾール等のイミダゾール誘導体;1−メ
チルインドール、1−フエニルインドール等のイ
ンドール誘導体;1−メチルカルバゾール等のカ
ルバゾール誘導体;ピラジン、2・6−ジメチル
ピラジン、ピリダジン、ピリミジン等のジアジ
ン;キノキサリン、2・3−ジメチルキノキサリ
ン、キナゾリン、フタラジン、シンノリン、フエ
ナジン等のベンゾジアジン;インドレニン;イン
ドリジン;ナフチリジン;プテリジンなどが挙げ
られる。また、ポリピニルピリジンなどの重合体
の形態で使用することも可能である。第三級アミ
ンの使用量は、前記のバナジウム化合物中のバナ
ジウム1グラム原子に対して1モル以上であれば
よいが、通常1〜50モル、好ましくは1〜20モル
の範囲内で選択される。 触媒の第四成分である塩化水素は、ガス状態、
水、アルコール等の溶媒に溶解させた状態または
前記第三級アミンとの塩の状態で用いられる。塩
化水素の使用量は前記バナジウム化合物中のバナ
ジウム1グラム原子に対して1〜10モル、好まし
くは1〜5モルであるが、第三級アミンに対して
は等モル以下であることが好ましい。第三級アミ
ンに対して過剰量の塩化水素を使用しても本発明
方法における反応に特に支障はないが、過剰の塩
化水素により反応器あるいは反応器まわりの配管
が腐蝕されることがあるので過剰の塩化水素の使
用は避けるのが賢明である。 本発明方法においては、先にも述べたように、
多くの場合水酸基を含有する有機化合物が溶媒を
兼ねて過剰量の存在下に反応が行なわれるが、反
応に不活性な溶媒をともに用いることができる。
具体的には、ベンゼン、トルエン、キシレン等の
芳香族炭化水素、アセトニトリル、ベンゾニトリ
ル等のニトリル、スルホラン等のスルホン、1・
1・2−トリクロル−1・2・2−トリフルオル
エタン等のハロゲン化脂肪族炭化水素、クロルベ
ンゼン、ジクロルベンゼン、トリクロルベンゼン
等のハロゲン化芳香族炭化水素、テトラヒドロフ
ラン、1・4−ジオキサン、1・2−ジメトキシ
エタン等のエーテル、あるいはケトン、エステル
などを使用することができる。 本発明を実施するには、1〜500Kg/cm2、好まし
くは10〜200Kg/cm2の一酸化炭素分圧下に芳香族ニ
トロ化合物、水酸基を含有する有機化合物、触媒
および場合により反応に不活性な溶媒を含む反応
液を100〜240℃、好ましくは140〜200℃の温度に
10分間〜6時間加熱すればよい。 反応終了後、反応系より取り出される生成液中
には反応生成物であるウレタン以外に触媒、水酸
基を含有する有機化合物および場合により反応に
不活性な溶媒が存在し、原料である芳香族ニトロ
化合物は通常ほぼ全量が反応するために殆んど含
まれていない。反応生成液は例えば過等の方法
により、固体状態で存在しているパラジウム成分
あるいは担体を分離したのち冷却するかまたは所
望により水酸基を含有する有機化合物の1部また
は大部分を蒸留等により分離したのち冷却するこ
とにより晶析されるウレタンと母液に分離するこ
とができる。母液中には触媒成分が含有されてい
るので、通常は適宜濃度調整を行なつたのち反応
系に循環される。また、本発明方法においては芳
香族ニトロ化合物のニトロ基が還元されて芳香族
アミンあるいは尿素誘導体などが副生するが、芳
香族アミンは芳香族ニトロ化合物とともに反応に
供することにより容易にウレタンとなるので、副
生成物である芳香族アミンなどを含む前記母液を
反応系に循環することにより、ウレタンの収率を
高めることができるので経済的にも有利である。 以上詳述したように、本発明はその触媒が非常
に高活性であるうえに反応器に対する腐蝕性が低
く、またパラジウム成分以外の触媒成分の溶解性
が良好であるので反応液が濃厚なスラリー状にな
ることはなく取扱いが容易であり、かつ反応終了
後にウレタンを晶析させる際に析出することもな
いのでウレタンを汚染することが少ないという利
点を有しており工業的利用価値が高い。 次に本発明を実施例により更に具体的に説明す
るが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。 実施例 1 チタンにより内張を施した内容積200mlの上下
撹拌式オートクレーブに、2・4−ジニトロトル
エン25mmol、エタノール50ml、塩化パラジウム
33.3mg、五酸化バナジウム1.63mmolおよびピリ
ジン塩酸塩(C5H5N・HCl)10mmolを装入し、
30Kg/cm2の窒素ガスを用いてオートクレーブ内を
3回置換したのち140℃に昇温した。次いで、オ
ートクレーブ内に一酸化炭素を75Kg/cm2まで圧入
したところ、反応が開始され、発熱により温度が
160℃に上昇した。オートクレーブ内の温度を160
℃に保持して180分間反応させたのち、冷却し、
オートクレーブを放圧して反応生成液を取り出し
た。得られた反応生成液を高速液体クロマトグラ
フイにより分析した結果、2・4−ジニトロトル
エンの反応率は100%であり、ジエチルトリレン
−2・4−ジカルバメートの収率は65%であつ
た。 実施例2〜4、比較例1 ピリジン塩酸塩の使用量を変更し、ピリジン塩
酸塩と五酸化バナジウムとのモル比を表−1に記
載したように変更したこと以外は実施例1と同様
に実験を行なつた。結果は表−1に示す。
, V[(CH 3 ) 2 PCH 2 CH 2 P(CH 3 ) 2 ] 3 , VCl 3 [S
(CH 3 ) 2 ] 2 , VCl 4 [OC 6 H 4 (As(CH 3 ) 2 ) 2 ] 2 ,
These include complex compounds coordinated with neutral ligands such as VO(CH 2 COCH 2 COCH 3 ) 2・C 5 H 5 N. It is necessary to use at least 1 gram atom of these vanadium compounds in terms of vanadium per 1 gram atom of palladium, but there is no particular restriction on the upper limit of the amount used. However, if the amount exceeds 1000 gram atoms per 1 gram atom of palladium, little increase in the effect is expected and it is economically disadvantageous, and it is usually within the range of 10 to 100 gram atoms per 1 gram atom of palladium. used in The tertiary amine, which is the third component of the catalyst, is
Aliphatic tertiary amines such as trimethylamine, triethylamine, tripropylamine, tributylamine, aliphatic tertiary amines such as N·N-dimethylaniline, N·N-diethylaniline, N·N-dipropylaniline, Alicyclic tertiary amines such as N·N-dimethylcyclohexylamine, N·N-diethylcyclohexylamine, N·N-dipropylcyclohexylamine, 1,4-diazabicyclo(2·2·2)-octane, 1・8-
Diazabicyclo(5.4.0)-undecene-
Heterocyclic tertiary amines such as 7,1,5-diazabicyclo(4,3,0)-nonene-5, aromatic tertiary amines such as triphenylamine, heteroaromatics such as pyridine, quinoline, isoquinoline, etc. Examples include tertiary amines. In particular, heteroaromatic tertiary amines are effective for improving the yield of urethane, and specifically, pyridine, 2-chloropyridine, 2-bromopyridine, 2-fluoropyridine, 3-chloropyridine , 2,6-dichloropyridine, 4-phenylpyridine, α-picoline,
γ-picoline, 2-methyl-5-ethylpyridine, 2,6-lutidine, γ-collidine, 2-vinylpyridine, 2-chloro-4-methylpyridine,
4-phenylthiopyridine, 2-methoxypyridine, 2,6-dicyanopyridine, 4-dimethylaminopyridine, α-phenyl picolinate, γ-methyl picolinate, α-picolinaldehyde, α-
Pyridine derivatives such as picolinamide, 2,2'-dipyridyl; quinoline or 2-chloroquinoline, quinoline derivatives such as 5,6,7,8-tetrahydroquinoline; acridine, phenanthridine, 5,6-benzoquinoline, 6・Benzoquinoline such as 7-benzoquinoline, 7,8-benzoquinoline; Isoquinoline; 1-methylpyrrole, 1-
Pyrrole derivatives such as phenylpyrrole; imidazole derivatives such as 1-methylimidazole; indole derivatives such as 1-methylindole and 1-phenylindole; carbazole derivatives such as 1-methylcarbazole; pyrazine, 2,6-dimethylpyrazine, Examples include diazines such as pyridazine and pyrimidine; benzodiazines such as quinoxaline, 2,3-dimethylquinoxaline, quinazoline, phthalazine, cinnoline, and phenazine; indolenine; indolizine; naphthyridine; and pteridine. It is also possible to use it in the form of a polymer such as polypynylpyridine. The amount of the tertiary amine used may be 1 mol or more per 1 gram atom of vanadium in the vanadium compound, but it is usually selected within the range of 1 to 50 mol, preferably 1 to 20 mol. . Hydrogen chloride, the fourth component of the catalyst, is in a gaseous state,
It is used in the form of a solution in a solvent such as water or alcohol, or in the form of a salt with the tertiary amine. The amount of hydrogen chloride used is 1 to 10 moles, preferably 1 to 5 moles, per 1 gram atom of vanadium in the vanadium compound, but preferably equal moles or less to the tertiary amine. Although the use of hydrogen chloride in excess of the tertiary amine does not cause any particular problem in the reaction in the method of the present invention, excess hydrogen chloride may corrode the reactor or the piping around the reactor. It is wise to avoid using excess hydrogen chloride. In the method of the present invention, as mentioned earlier,
In many cases, the reaction is carried out in the presence of an excess amount of an organic compound containing a hydroxyl group, which also serves as a solvent, but a solvent inert to the reaction can also be used.
Specifically, aromatic hydrocarbons such as benzene, toluene and xylene, nitriles such as acetonitrile and benzonitrile, sulfones such as sulfolane, 1.
Halogenated aliphatic hydrocarbons such as 1,2-trichloro-1,2,2-trifluoroethane, halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, 1,4-dioxane, Ethers such as 1,2-dimethoxyethane, ketones, esters, etc. can be used. To carry out the present invention, an aromatic nitro compound, an organic compound containing a hydroxyl group, a catalyst and optionally an inert compound for the reaction are added under a partial pressure of carbon monoxide of 1 to 500 Kg/cm 2 , preferably 10 to 200 Kg/cm 2 . The reaction solution containing the appropriate solvent is heated to a temperature of 100 to 240°C, preferably 140 to 200°C.
It may be heated for 10 minutes to 6 hours. After the completion of the reaction, the product liquid taken out from the reaction system contains, in addition to the reaction product urethane, a catalyst, an organic compound containing a hydroxyl group, and in some cases a solvent inert to the reaction, and an aromatic nitro compound as a raw material. Usually, almost all of it is reacted, so it is hardly contained. The reaction product liquid may be cooled after separating the palladium component or carrier present in a solid state by a method such as filtration, or if desired, a part or most of the organic compound containing a hydroxyl group may be separated by distillation or the like. By cooling it later, it can be separated into the crystallized urethane and the mother liquor. Since the mother liquor contains a catalyst component, it is normally recycled to the reaction system after appropriately adjusting its concentration. In addition, in the method of the present invention, the nitro group of the aromatic nitro compound is reduced and aromatic amines or urea derivatives are produced as by-products, but the aromatic amine easily becomes urethane by being subjected to the reaction together with the aromatic nitro compound. Therefore, by circulating the mother liquor containing by-products such as aromatic amines into the reaction system, the yield of urethane can be increased, which is economically advantageous. As detailed above, the catalyst of the present invention has extremely high activity, low corrosiveness to the reactor, and good solubility of catalyst components other than the palladium component, so that the reaction solution can be used in a concentrated slurry. It has the advantage of being easy to handle because it does not form a solid state, and does not precipitate when the urethane is crystallized after the reaction, so it is less likely to contaminate the urethane, and has high industrial value. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 25 mmol of 2,4-dinitrotoluene, 50 ml of ethanol, and palladium chloride were placed in a vertically stirred autoclave lined with titanium and having an internal volume of 200 ml.
33.3 mg, 1.63 mmol of vanadium pentoxide, and 10 mmol of pyridine hydrochloride (C 5 H 5 N HCl) were charged.
After purging the inside of the autoclave three times with nitrogen gas at 30 kg/cm 2 , the temperature was raised to 140°C. Next, when carbon monoxide was pressurized to 75Kg/cm 2 into the autoclave, the reaction started and the temperature rose due to heat generation.
The temperature rose to 160℃. Temperature in autoclave to 160
After keeping at ℃ and reacting for 180 minutes, it was cooled.
The autoclave was depressurized and the reaction product liquid was taken out. As a result of analyzing the obtained reaction product liquid by high performance liquid chromatography, the reaction rate of 2,4-dinitrotoluene was 100%, and the yield of diethyltolylene-2,4-dicarbamate was 65%. Ta. Examples 2 to 4, Comparative Example 1 Same as Example 1 except that the amount of pyridine hydrochloride used was changed and the molar ratio of pyridine hydrochloride to vanadium pentoxide was changed as shown in Table 1. I conducted an experiment. The results are shown in Table-1.

【表】 ジカルバメート
実施例 5 塩化パラジウムの代わりに活性炭に担持した金
属パラジウム(担持率2重量%)1gを使用し、
五酸化バナジウムの代わりにオキシトリイソプロ
ポキシバナジウム〔VO(i−C3H7O)3〕3.25m
molを使用したこと以外は実施例1と同様に実験
を行なつた。その結果、2・4−ジニトロトルエ
ンの反応率は100%であり、ジエチルトリレン−
2・4−ジカルバメートの収率は45%であつた。 比較例 2 ピリジン塩酸塩を使用せずに実施例5の実験を
繰り返したところ、2・4−ジニトロトルエンの
反応率は32%であり、ジエチルトリレン−2・4
−ジカルバメートの収率は3%であつた。 実施例 6 オキシトリイソプロポキシバナジウムの代わり
にバナジルアセチルアセトナート〔VO
(CH2COCH2COCH32〕3.25mmolを使用したこ
と以外は実施例5と同様に実験を行なつた。その
結果、2・4−ジニトロトルエンの反応率は100
%であり、ジエチルトリレン−2・4−ジカルバ
メートの収率は31%であつた。 実施例 7 ピリジン塩酸塩の代わりにピリジン10mmolお
よび10mmolの塩化水素を含む37重量%濃塩酸を
使用し、塩化パラジウムの代わりに2%pd/c1
gを使用したこと以外は実施例1と同様に実験を
行なつた。その結果、2・4−ジニトロトルエン
の反応率は100%であり、ジエチルトリレン−
2・4−ジカルバメートの収率は18%であつた。 実施例 8 ピリジンの代わりにイソキノリン10mmolを使
用たこと以外は実施例7と同様に実験を行なつ
た。その結果、2・4−ジニトロトルエンの反応
率は100%であり、ジエチルトリレン−2・4−
ジカルバメートの収率は21%であつた。
[Table] Dicarbamate Example 5 Using 1 g of metallic palladium supported on activated carbon (support rate 2% by weight) instead of palladium chloride,
Oxytriisopropoxyvanadium [VO(i-C 3 H 7 O) 3 ] 3.25 m instead of vanadium pentoxide
The experiment was conducted in the same manner as in Example 1 except that mol was used. As a result, the reaction rate of 2,4-dinitrotoluene was 100%, and the reaction rate of 2,4-dinitrotoluene was 100%.
The yield of 2,4-dicarbamate was 45%. Comparative Example 2 When the experiment of Example 5 was repeated without using pyridine hydrochloride, the reaction rate of 2,4-dinitrotoluene was 32%, and the reaction rate of 2,4-dinitrotoluene was 32%.
-The yield of dicarbamate was 3%. Example 6 Vanadyl acetylacetonate [VO
An experiment was carried out in the same manner as in Example 5 except that 3.25 mmol of (CH 2 COCH 2 COCH 3 ) 2 was used. As a result, the reaction rate of 2,4-dinitrotoluene was 100
%, and the yield of diethyltolylene-2,4-dicarbamate was 31%. Example 7 37% by weight concentrated hydrochloric acid containing 10 mmol of pyridine and 10 mmol of hydrogen chloride was used instead of pyridine hydrochloride, and 2% pd/c1 was used instead of palladium chloride.
The experiment was conducted in the same manner as in Example 1 except that g was used. As a result, the reaction rate of 2,4-dinitrotoluene was 100%, and the reaction rate of 2,4-dinitrotoluene was 100%.
The yield of 2,4-dicarbamate was 18%. Example 8 An experiment was carried out in the same manner as in Example 7 except that 10 mmol of isoquinoline was used instead of pyridine. As a result, the reaction rate of 2,4-dinitrotoluene was 100%, and diethyltolylene-2,4-
The yield of dicarbamate was 21%.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族ニトロ化合物を触媒の存在下に水酸基
を含有する有機化合物および一酸化炭素と反応さ
せてウレタンを製造する方法において、触媒とし
て金属パラジウムまたはパラジウム化合物、
バナジウム化合物、第三級アミンおよび塩化
水素よりなる触媒を使用することを特徴とするウ
レタンの製造方法。
1. A method for producing urethane by reacting an aromatic nitro compound with an organic compound containing a hydroxyl group and carbon monoxide in the presence of a catalyst, in which metallic palladium or a palladium compound as a catalyst,
A method for producing urethane, characterized by using a catalyst consisting of a vanadium compound, a tertiary amine, and hydrogen chloride.
JP13973577A 1977-11-21 1977-11-21 Preparation of urethane Granted JPS5473753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13973577A JPS5473753A (en) 1977-11-21 1977-11-21 Preparation of urethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13973577A JPS5473753A (en) 1977-11-21 1977-11-21 Preparation of urethane

Publications (2)

Publication Number Publication Date
JPS5473753A JPS5473753A (en) 1979-06-13
JPS6115868B2 true JPS6115868B2 (en) 1986-04-26

Family

ID=15252148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13973577A Granted JPS5473753A (en) 1977-11-21 1977-11-21 Preparation of urethane

Country Status (1)

Country Link
JP (1) JPS5473753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64852A (en) * 1987-03-23 1989-01-05 Sekisui Chem Co Ltd Alarm system using telephone set
JPH03140086A (en) * 1989-10-26 1991-06-14 Matsushita Electric Works Ltd Telephone system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131557A (en) * 1980-03-19 1981-10-15 Mitsubishi Chem Ind Ltd Preparation of aromatic carbamic acid ester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198240A (en) * 1975-01-30 1976-08-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198240A (en) * 1975-01-30 1976-08-30

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64852A (en) * 1987-03-23 1989-01-05 Sekisui Chem Co Ltd Alarm system using telephone set
JPH03140086A (en) * 1989-10-26 1991-06-14 Matsushita Electric Works Ltd Telephone system

Also Published As

Publication number Publication date
JPS5473753A (en) 1979-06-13

Similar Documents

Publication Publication Date Title
US4186269A (en) Process for producing an aromatic urethane
JPS6115868B2 (en)
US4262130A (en) Process for the production of urethanes
US4339592A (en) Process for the production of urethanes
US4219661A (en) Process for the production of urethanes
US4469882A (en) Process for the production of aromatic carbamates
JPS6111222B2 (en)
JPS6056132B2 (en) Production method of aromatic carbamate ester
US3923850A (en) Preparation of aromatic isocyanates
US20130303740A1 (en) Method for producing urethanes
JPS60502209A (en) Urethane manufacturing method
JPS6121467B2 (en)
JPS5818352A (en) Preparation of aromatic carbamic ester
EP0029460B1 (en) Process for preparing aromatic urethane
JPS60193958A (en) Production of aromatic urethane
JPS61191660A (en) Production of aromatic isocyanate
JPH0328416B2 (en)
JPS60193959A (en) Production of aromatic urethane
US3657308A (en) Catalytic carbonylation of aromatic nitro compounds in the presence of organic carbonates
JPH0611745B2 (en) Process for producing aromatic isocyanates
JPS5811942B2 (en) Aromatic urethane purification method
JPS61191666A (en) Production of aromatic carbamic acid aryl ester
JPH0529349B2 (en)
JPS6318576B2 (en)
JPS61191664A (en) Production of aryl aromatic carbamate