JPS6111222B2 - - Google Patents

Info

Publication number
JPS6111222B2
JPS6111222B2 JP52086225A JP8622577A JPS6111222B2 JP S6111222 B2 JPS6111222 B2 JP S6111222B2 JP 52086225 A JP52086225 A JP 52086225A JP 8622577 A JP8622577 A JP 8622577A JP S6111222 B2 JPS6111222 B2 JP S6111222B2
Authority
JP
Japan
Prior art keywords
palladium
catalyst
reaction
urethane
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52086225A
Other languages
Japanese (ja)
Other versions
JPS5422339A (en
Inventor
Takeshi Onoda
Kazuo Tano
Shinichi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP8622577A priority Critical patent/JPS5422339A/en
Publication of JPS5422339A publication Critical patent/JPS5422339A/en
Publication of JPS6111222B2 publication Critical patent/JPS6111222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はパラゞりム系觊媒の存圚䞋に芳銙族ニ
トロ化合物を氎酞基を含有する有機化合物および
䞀酞化炭玠ず反応させおりレタンを補造する方法
に関するものである。 芳銙族む゜シアナヌト類はポリりレタンの原料
ずしお重芁な化合物であり、埓来は芳銙族ニトロ
化合物の氎玠添加により埗られる芳銙族アミンを
ホスゲンず反応させるこずにより補造されおい
る。しかしながら、ホスゲンを䜿甚する方法は固
定費負担の倧きいこずおよびホスゲンの有する毒
性のため、近幎、ホスゲンを䜿甚しないむ゜シア
ナヌトの補造法の研究が掻発に行なわれ、すでに
数倚くのむ゜シアナヌト補造法が知られおいる。 これらの公知の方法は皮類に倧別される。第
䞀の方法は、−ゞクロロベンれンなどの䞍掻性
溶媒䞭で芳銙族ニトロ化合物をパラゞりム觊媒の
存圚䞋にカルボニル化するこずにより、盎接芳銙
族む゜シアナヌトを埗る方法であるが、この方法
においおは觊媒の掻性が䜎いため䞻觊媒である高
䟡なパラゞりムを倚量に䜿甚しなければならない
こずおよび生成する芳銙族む゜シアナヌトが䞍安
定な化合物であるため重合、分解など副反応が生
起し収率が䜎いこずなどの欠点を有しおいる。 第二の方法は、アルコヌル性たたはプノヌル
性溶媒䞭で芳銙族ニトロ化合物を貎金属觊媒たた
はセレン觊媒の存圚䞋に䞀酞化炭玠およびアルコ
ヌル類もしくはプノヌル類ず反応させるこずに
より、察応するカルバミン酞の゚ステル、いわゆ
るりレタンを埗たのち、熱分解などの方法により
りレタンを分解しお芳銙族む゜シアナヌトを埗る
方法である。 䞊蚘第二の方法においお䜿甚される觊媒ずしお
は、䟋えば、ロゞりムカルボニルクロラむド特
公昭42−1420、族金属カルボニルおよび぀
以䞊の原子䟡状態で存圚する性質を有する金属の
塩よりなる觊媒特公昭43−23939などが知ら
れおいるが、これらはいずれもりレタンの収率が
䜎く、工業的に実斜するこずは困難である。た
た、りレタン収率の改良されたパラゞりムおよび
ルむス酞よりなる觊媒を甚いる方法米囜特蚱第
3531512号も提案されおいるが、この方法は塩
化第二鉄などのルむス酞の反応容噚に察する腐蝕
性が高く、実甚化が困難である。このほかに、セ
〓〓〓〓〓
レンおよび塩基よりなる觊媒を甚いる方法特開
昭49−62420はりレタンの収率においおはすぐ
れおいるが、毒性を有するセレンあるいはセレン
化合物の回収方法が確立されおいないため、工業
化の目凊は立぀おいない。 最近にな぀お、パラゞりム、ルむス酞および第
䞉玚アミンを組合せた觊媒を甚いるこずにより、
高いりレタン収率を確保し぀぀反応噚に察する腐
蝕を抑制する方法特開昭51−98240が提案さ
れた。しかしながら、この方法においおも觊媒の
掻性の点で充分であるずは蚀えず、たた、ルむス
酞、特に塩化第二鉄ず第䞉玚アミンずが圢成する
錯䜓のアルコヌル性溶媒ぞの溶解床が小さくか぀
䜿甚量が倚いために密床の高いスラリヌを取り扱
わなければならず工業的プロセスずしおは非垞に
䞍利である。 本発明者らは䞊述した埓来技術のような欠点を
有さない觊媒に぀いお探玢した結果、パラゞり
ム、オキシ䞉塩化バナゞりムもしくはオキシ二塩
化バナゞりムおよび第䞉玚アミンよりなる觊媒が
高掻性であり、該觊媒の存圚䞋に芳銙族ニトロ化
合物を氎酞基を含有する有機化合物および䞀酞化
炭玠ず反応させるこずによりりレタンが高収率で
埗られ、か぀反応液の取扱いが容易であるこずを
芋い出し、本発明に到達したものである。 すなわち、本発明の目的は工業的有利なりレタ
ンの補造方法を提䟛するこずにあり、この目的
は、芳銙族ニトロ化合物を觊媒の存圚䞋に氎酞基
を含有する有機化合物および䞀酞化炭玠ず反応さ
せおりレタンを補造する方法においお、觊媒ずし
お金属パラゞりムたたはパラゞりム化合物、
オキシ䞉塩化バナゞりムたたはオキシ二塩化バナ
ゞりムおよび第䞉玚アミンよりなる觊媒を䜿甚
するこずにより容易に達成し埗る。 以䞋に本発明を詳现に説明する。 芳銙族ニトロ化合物ずしおは、本発明方法にお
いおはモノニトロ化合物およびポリニトロ化合物
のいずれもが䜿甚可胜である。具䜓的には、ニト
ロベンれン、−、−および−ニトロトル゚
ン、−ニトロ−−キシレン、−、−およ
び−クロロニトロベンれン、−ブロモ−−
ニトロベンれン、−、−および−ニトロフ
゚ニルカルバメヌト、−、−および−ニト
ロアニ゜ヌル、−ニトロベンズアルデヒド、
−ニトロベンゟむルクロリド、゚チル−−ニト
ロベンゟ゚ヌト、−ニトロベンれンスルホニル
クロリド、−ニトロ無氎フタル酞などのモノニ
トロベンれン類、−および−ゞニトロベンれ
ン、・−ゞニトロトル゚ン、・−ゞニト
ロトル゚ン、ゞニトロメシチレン、−クロロ−
・−ゞニトロベンれン、−フルオロ−・
−ゞニトロベンれン等のゞニトロベンれン類、
・・−トリニトロトル゚ン等のトリニトロ
ベンれン類、−ニトロナフタレン、・−ゞ
ニトロナフタレン等のモノたたはポリニトロ眮換
瞮合環化合物、・4′−ゞニトロビプニル、
・−ゞニトロビプニル、・3′−ゞメチル
−・4′−ゞニトロビプニル等のニトロビプ
ニル類、ビス−ニトロプニルメタン、
・4′−ニトロビベンゞル等のビスニトロプ
ニルアルカン類、ビス−ニトロプニル
゚ヌテル、ビス・−ゞニトロプニル゚
ヌテル等のビスニトロプニル゚ヌテル類、
ビス−ニトロプニルチオ゚ヌテル等のビ
スニトロプニルチオ゚ヌテル類、ビス
−ニトロプニルスルホン等のビスニトロフ
゚ニルスルホン類、ビス−ニトロプノキ
シ゚タン等のビスニトロプノキシアルカ
ン類、−ニトロピリミゞン等のヘテロ芳銙族ニ
トロ化合物類、あるいはα・α′−ゞニトロ−
−キシレン、α・α′−ゞニトロ−−キシレン
などが挙げられる。これらの芳銙族ニトロ化合物
の反応液䞭の初期濃床は、通垞〜70重量、奜
たしくは〜30重量の範囲内で遞択される。 氎酞基を含有する有機化合物ずしおは、本発明
方法においおは䞀䟡アルコヌル、倚䟡アルコヌ
ル、䞀䟡プノヌルおよび倚䟡プノヌルから遞
択される。具䜓的には、メタノヌル、゚タノヌ
ル、プロパノヌル、ブタノヌル、アミルアルコヌ
ル、ヘキサノヌル、ラりリルアルコヌル、セチル
アルコヌル等の盎鎖状たたは分岐鎖状のアルカノ
ヌル、シクロヘキシルアルコヌル等のシクロアル
カノヌル、ベンゞルアルコヌル、クロルベンゞル
アルコヌル、メトキシベンゞルアルコヌル等のア
ラルキルアルコヌルが䞀䟡アルコヌルずしお挙げ
られ、゚チレングリコヌル、ゞ゚チレングリコヌ
ル、プロピレングリコヌル、ゞプロピレングリコ
ヌル、グリセリン、ヘキサントリオヌル等が倚䟡
〓〓〓〓〓
アルコヌルずしお挙げられる。たた、プノヌ
ル、クロルプノヌル、クレゟヌル、゚チルプ
ノヌル、プロピルプノヌル、ブチルプノヌル
および曎に高玚のアルキルプノヌル、β−ナフ
トヌル、アントロヌル、プナントロヌルなどが
䞀䟡プノヌルずしお挙げられ、カテコヌル、レ
ゟルシン、・4′−ゞヒドロキシゞプニルメタ
ン、・2′−む゜プロピリデンゞプノヌル、ピ
ロガロヌル、フロログルシン等が倚䟡プノヌル
ずしお挙げられる。 これらのアルコヌルたたはプノヌルは、さら
にハロゲン原子、スルホキシド、スルホン、カル
ボン酞゚ステル基などの眮換基により眮換されお
いおもよい。 䞊蚘アルコヌルたたはプノヌルの䜿甚量は、
原料ずしお甚いられる芳銙族ニトロ化合物のニト
ロ基個に぀き少くずも分子の割合で䜿甚する
こずが必芁であり、通垞は芳銙族ニトロ化合物に
察しお倧過剰に䜿甚され、倚くの堎合、反応溶媒
を兌ねお䜿甚される。 本発明方法においお䜿甚される觊媒は、金属
パラゞりムたたはパラゞりム化合物、オキシ䞉
塩化バナゞりムたたはオキシ二塩化バナゞりムお
よび第䞉玚アミンの䞉成分よりなる觊媒であ
る。 觊媒の䞻成分である金属パラゞりムたたはパラ
ゞりム化合物ずしおは、パラゞりム黒などの金属
単䜓、ハロゲン化パラゞりム、シアン化パラゞり
ム、チオシアン化パラゞりム、む゜シアン化パラ
ゞりム、酞化パラゞりム、硫酞パラゞりム、硝酞
パラゞりム等の䟡のパラゞりム無機塩、酢酞パ
ラゞりム等の䟡のパラゞりム有機酞塩、䞊蚘パ
ラゞりム塩にトリ゚チルアミン、ピリゞン、む゜
キノリン等の第䞉玚アミン、トリプニルホスフ
むン等の第䞉玚有機燐化合物、䞀酞化炭玠などの
䞭性配䜍子が配䜍した䟡のパラゞりム錯䜓ある
いは䟡パラゞりム錯䜓を還元した䟡パラゞり
ム錯䜓などが挙げられ、これらはいずれも掻性
炭、グラフアむト、アルミナ、シリカ、硫酞バリ
りム、炭酞カルシりムアスベスト、ベントナむ
ト、珪藻土、むオン亀換暹脂、珪酞マグネシり
ム、珪酞アルミニりム、珪酞チタン、モレキナラ
ヌシヌブ等の担䜓に担持しお䜿甚するこずもでき
る。金属パラゞりムたたはパラゞりム化合物は、
反応液䞭の濃床がパラゞりム単䜓に換算しお
0.001〜重量、奜たしくは0.005〜0.1重量ず
なるように䜿甚される。 觊媒の第二成分であるオキシ䞉塩化バナゞりム
VOCl3たたはオキシ二塩化バナゞりム
VOCl2は、パラゞりムグラム原子に察しお少
くずもモル䜿甚するこずが必芁であるが、䜿甚
量の䞊限に぀いおは特に制埡はない。しかしなが
ら、パラゞりムグラム原子に察しお1000モルを
越えるず効果の増倧は殆んど期埅されず経枈的に
も䞍利であり、通垞はパラゞりムグラム原子に
察しお10〜100モルの範囲内で䜿甚される。 觊媒の第䞉成分である第䞉玚アミンずしおは、
トリメチルアミン、トリ゚チルアミン、トリプロ
ピルアミン、トリブチルアミン等の脂肪族第䞉玚
アミン、・−ゞメチルアニリン、・−ゞ
゚チルアニリン、・−ゞプロピルアニリン等
の脂肪芳銙族第䞉玚アミン、・−ゞメチルシ
クロヘキシルアミン、・−ゞ゚チルシクロヘ
キシルアミン、・−ゞプロピルシクロヘキシ
ルアミン等の肪環族第䞉玚アミン、・−ゞア
ザビシクロ・・−オクタン、・−
ゞアザビシクロ・・−りンデセン−
、・−ゞアザビシクロ・・−ノ
ネン−等の耇玠環匏第䞉玚アミン、トリプニ
ルアミン等の芳銙族第䞉玚アミン、ピリゞン、キ
ノリン、む゜キノリン等の耇玠芳銙族第䞉玚アミ
ンなどが挙げられる。特に、りレタンの収率向䞊
のためには耇玠芳銙族第䞉玚アミンが効果的であ
り、具䜓的には、ピリゞンあるいは−クロルピ
リゞン、−ブロムピリゞン、−フルオロピリ
ゞン、−クロルピリゞン、・−ゞクロルピ
リゞン、−プニルピリゞン、α−ピコリン、
γ−ピコリン、−メチル−−゚チルピリゞ
ン、・−ルチゞン、γ−コリゞン、−ビニ
ルピリゞン、−クロル−−メチルピリゞン、
−プニルチオピリゞン、−メトキシピリゞ
ン、・−ゞシアノピリゞン、−ゞメチルア
ミノピリゞン、α−ピコリン酞プニル、γ−ピ
コリン酞メチル、α−ピコリンアルデヒド、α−
ピコリンアミド、・2′−ゞピリゞル等のピリゞ
ン誘導䜓キノリンあるいは−クロルキノリ
ン、・・・−テトラヒドロキノリン等の
キノリン誘導䜓アクリゞン、プナントリゞ
〓〓〓〓〓
ン、・−ベンゟキノリン、・−ベンゟキ
ノリン、・−ベンゟキノリン等のベンゟキノ
リンむ゜キノリン−メチルピロヌル、−
プニルピロヌル等のピロヌル誘導䜓−メチ
ルむミダゟヌル等のむミダゟヌル誘導䜓−メ
チルむンドヌル、−プニルむンドヌル等のむ
ンドヌル誘導䜓−メチルカルバゟヌル等のカ
ルバゟヌル誘導䜓ピラゞン、・−ゞメチル
ピラゞン、ピリダゞン、ピリミゞン等のゞアゞ
ンキノキサリン、・−ゞメチルキノキサリ
ン、キナゟリン、フタラゞン、シンノリン、プ
ナゞン等のベンゟゞアゞンむンドレニンむン
ドリゞンナフチリゞンプテリゞンなどが挙げ
られる。たた、ポリビニルピリゞンなどの重合䜓
の圢態で䜿甚するこずも可胜である。第䞉玚アミ
ンの䜿甚量は、オキシ䞉塩化バナゞりムたたはオ
キシ二塩化バナゞりムモルに察しおモル以䞊
であればよいが、通垞〜50モル、奜たしくは
〜20モルの範囲内で遞択される。 本発明方法においおは、先にも述べたように、
倚くの堎合氎酞基を含有する有機化合物が溶媒を
兌ねお過剰量の存圚䞋に反応が行なわれるが、反
応に䞍掻性な溶媒をずもに甚いるこずができる。
具䜓的には、ベンれン、トル゚ン、キシレン等の
芳銙族炭化氎玠、アセトニトリル、ベンゟニトリ
ル等のニトリル、スルホラン等のスルホン、・
・−トリクロル−・・−トリフルオル
゚タン等のハロゲン化脂肪族炭化氎玠、クロルベ
ンれン、ゞクロルベンれン、トリクロルベンれン
等ハロゲン化芳銙族炭化氎玠、テトラヒドロフラ
ン、・−ゞオキサン、・−ゞメトキシ゚
タン等の゚ヌテル、あるいはケトン、゚ステルな
どを䜿甚するこずができる。 本発明を実斜するには、〜500Kg/cm2、奜たし
くは10〜200Kg/cm2の䞀酞化炭玠分圧䞋に芳銙族ニ
トロ化合物、氎酞基を含有する有機化合物、觊媒
および堎合により反応に䞍掻性な溶媒を含む反応
液を100〜240℃、奜たしくは140〜200℃の枩床に
10分間〜時間加熱すればよい。 反応終了埌、反応系より取り出される生成液䞭
には反応生成物であるりレタン以倖に觊媒、氎酞
基を含有する有機化合物および堎合により反応に
䞍掻性な溶媒が存圚し、原料である芳銙族ニトロ
化合物は通垞ほが党量が反応するために殆んど含
たれおいない。反応生成液は䟋えば過等の方法
により、固䜓状態で存圚しおいるパラゞりム成分
あるいは担䜓を分離したのち冷华するかたたは所
望により氎酞基を含有する有機化合物の郚たた
は倧郚分を蒞留等により分離したのち冷华するこ
ずにより晶析するりレタンず母液に分離するこず
ができる。母液䞭には觊媒成分が含有されおいる
ので、通垞は適宜濃床調敎を行な぀たのち反応系
に埪環される。たた、本発明方法においおは芳銙
族ニトロ化合物のニトロ基が還元されお芳銙族ア
ミンあるいは尿玠誘導䜓などが副生するが、芳銙
族アミンは芳銙族ニトロ化合物ずずもに反応に䟛
するこずにより容易にりレタンずなるので、副生
成物である芳銙族アミンなどを含む前蚘母液を反
応系に埪環するこずにより、りレタンの収率を高
めるこずができるので経枈的にも有利である。 以䞊詳述したように、本発明はその觊媒が非垞
に高掻性であるうえに反応噚に察する腐蝕性が䜎
く、たたパラゞりム成分以倖の觊媒成分の溶解性
が良奜であるので反応液が濃厚なスラリヌ状にな
るこずはなく取扱いが容易であり、か぀反応終了
埌にりレタンを晶析させる際に析出するこずもな
いのでりレタンを汚染するこずが少ないずいう利
点を有しおおり工業的利甚䟡倀が高い。 次に本発明を実斜䟋により曎に具䜓的に説明す
るが、本発明はその芁旚を越えない限り以䞋の実
斜䟋に限定されるものではない。 実斜䟋  チタンにより内匵を斜した内容積200mlの䞊䞋
撹拌匏オヌトクレヌブに、・−ゞニトロトル
゚ン25mol、゚タノヌル50ml、塩化パラゞりム
33.3mg、オキシ䞉塩化バナゞりム3.25molおよ
びピリゞン20molを装入し、30Kg/cm2の窒玠ガ
スを甚いおオヌトクレヌブ内を回眮換したのち
140℃に昇枩した。次いで、オヌトクレヌブ内に
䞀酞化炭玠を75Kg/cm2たで圧入したずころ、反応
が開始され、発熱により枩床が160℃に䞊昇し
た。オヌトクレヌブ内の枩床を160℃に保持しお
100分間反応させたのち、冷华し、オヌトクレヌ
ブを攟圧しお反応生成液を取り出した。埗られた
反応生成液を高速液䜓クロマトグラフむにより分
析した結果、・−ゞニトロトル゚ンの反応率
は100であり、ゞ゚チルトリレン−・−ゞ
カルバメヌトの収率は76であ぀た。 〓〓〓〓〓
実斜䟋  塩化パラゞりム33.3mgのかわりに担持量重量
の掻性炭に担持した金属パラゞりム以䞋、
Pdず蚘す。を䜿甚し、反応時間を
180分に倉曎したこず以倖は実斜䟋ず同様に実
隓を行な぀た。その結果、・−ゞニトロトル
゚ンの反応率は100であり、ゞ゚チルトリレン
−・−ゞカルバメヌトの収率は69であ぀
た。たた、掻性炭を陀去した反応生成液は均䞀な
溶液であ぀た。 実斜䟋  オキシ䞉塩化バナゞりムの䜿甚量を6.5mol
に、反応時間を180分にそれぞれ倉曎したこず以
倖は実斜䟋ず同様に実隓を行な぀た。その結
果、・−ゞニトロトル゚ンの反応率は100
であり、ゞ゚チルトリレン−・−ゞカルバメ
ヌトの収率は58であ぀た。 実斜䟋 〜 ピリゞンのかわりに衚−に蚘茉した皮々の第
䞉玚アミンを䜿甚したこず以倖は実斜䟋ず同様
に実隓を行な぀た。結果は衚−に瀺す。
The present invention relates to a method for producing urethane by reacting an aromatic nitro compound with an organic compound containing a hydroxyl group and carbon monoxide in the presence of a palladium catalyst. Aromatic isocyanates are important compounds as raw materials for polyurethane, and have conventionally been produced by reacting aromatic amines obtained by hydrogenating aromatic nitro compounds with phosgene. However, because the method using phosgene has a large fixed cost burden and the toxicity of phosgene, research has been actively conducted in recent years on methods for producing isocyanates that do not use phosgene, and many methods for producing isocyanates are already known. It is being These known methods are broadly classified into two types. The first method is to directly obtain aromatic isocyanates by carbonylating aromatic nitro compounds in the presence of a palladium catalyst in an inert solvent such as C-dichlorobenzene. Due to the low activity of the catalyst, a large amount of expensive palladium, which is the main catalyst, must be used, and because the aromatic isocyanate produced is an unstable compound, side reactions such as polymerization and decomposition occur, resulting in low yields. It has drawbacks such as: The second method produces esters of the corresponding carbamic acids by reacting aromatic nitro compounds with carbon monoxide and alcohols or phenols in the presence of a noble metal or selenium catalyst in an alcoholic or phenolic solvent. This is a method in which so-called urethane is obtained and then the urethane is decomposed by a method such as thermal decomposition to obtain aromatic isocyanate. Catalysts used in the second method include, for example, rhodium carbonyl chloride (Japanese Patent Publication No. 42-1420), group metal carbonyls, and catalysts consisting of salts of metals having the property of existing in two or more valence states ( Japanese Patent Publication No. 43-23939) is known, but all of these have low yields of urethane and are difficult to implement industrially. In addition, a method using a catalyst consisting of palladium and Lewis acid with improved urethane yield (U.S. Patent No.
3531512) has also been proposed, but this method is difficult to put into practical use because Lewis acids such as ferric chloride are highly corrosive to reaction vessels. In addition to this,
The method using a catalyst consisting of urethane and a base (Japanese Unexamined Patent Publication No. 49-62420) has an excellent yield of urethane, but there are no prospects for industrialization because a method for recovering toxic selenium or selenium compounds has not been established. Not standing. Recently, by using catalysts combining palladium, Lewis acids and tertiary amines,
A method was proposed (Japanese Unexamined Patent Publication No. 1982-98240) for suppressing corrosion of the reactor while ensuring a high urethane yield. However, even this method cannot be said to be sufficient in terms of catalyst activity, and the solubility of the complex formed by Lewis acids, especially ferric chloride, and tertiary amines in alcoholic solvents is low. Since the amount used is large, a slurry with high density must be handled, which is very disadvantageous for industrial processes. The present inventors searched for a catalyst that does not have the drawbacks of the prior art described above, and found that a catalyst consisting of palladium, vanadium oxytrichloride or vanadium oxydichloride, and a tertiary amine has high activity. discovered that urethane can be obtained in high yield by reacting an aromatic nitro compound with a hydroxyl group-containing organic compound and carbon monoxide in the presence of , and that the reaction solution is easy to handle, and the present invention was achieved based on this discovery. This is what I did. That is, an object of the present invention is to provide an industrially advantageous method for producing urethane, which involves reacting an aromatic nitro compound with an organic compound containing a hydroxyl group and carbon monoxide in the presence of a catalyst. In the method for producing urethane, metallic palladium or a palladium compound is used as a catalyst,
This can be easily achieved by using a catalyst consisting of vanadium oxytrichloride or vanadium oxydichloride and a tertiary amine. The present invention will be explained in detail below. As the aromatic nitro compound, both mononitro compounds and polynitro compounds can be used in the method of the present invention. Specifically, nitrobenzene, O-, m- and p-nitrotoluene, O-nitro-p-xylene, O-, m- and p-chloronitrobenzene, 1-bromo-4-
Nitrobenzene, O-, m- and p-nitrophenyl carbamate, O-, m- and p-nitroanisole, m-nitrobenzaldehyde, p
- Mononitrobenzenes such as nitrobenzoyl chloride, ethyl p-nitrobenzoate, m-nitrobenzenesulfonyl chloride, 3-nitrophthalic anhydride, m- and p-dinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitrobenzene, etc. Nitrotoluene, dinitromesitylene, 1-chloro-
2,4-dinitrobenzene, 1-fluoro-2.
dinitrobenzenes such as 4-dinitrobenzene,
Trinitrobenzenes such as 2,4,6-trinitrotoluene, mono- or polynitro-substituted condensed ring compounds such as 1-nitronaphthalene and 1,5-dinitronaphthalene, 4,4'-dinitrobiphenyl,
Nitrobiphenyl such as 2,4-dinitrobiphenyl, 3,3'-dimethyl-4,4'-dinitrobiphenyl, bis(4-nitrophenyl)methane,
Bis(nitrophenyl) alkanes such as 4,4′-nitrobenzyl, bis(4-nitrophenyl)
ether, bis(nitrophenyl) ethers such as bis(2,4-dinitrophenyl) ether,
Bis(nitrophenyl)thioethers such as bis(4-nitrophenyl)thioether, bis(4-nitrophenyl)thioether, etc.
Bis(nitrophenyl)sulfones such as -nitrophenyl)sulfone, bis(nitrophenoxy)alkanes such as bis(4-nitrophenoxy)ethane, heteroaromatic nitro compounds such as 5-nitropyrimidine, or α・α′-dinitro- p
-xylene, α·α′-dinitro-m-xylene, and the like. The initial concentration of these aromatic nitro compounds in the reaction solution is usually selected within the range of 1 to 70% by weight, preferably 5 to 30% by weight. The organic compound containing a hydroxyl group in the method of the invention is selected from monohydric alcohols, polyhydric alcohols, monohydric phenols and polyhydric phenols. Specifically, linear or branched alkanols such as methanol, ethanol, propanol, butanol, amyl alcohol, hexanol, lauryl alcohol, cetyl alcohol, cycloalkanols such as cyclohexyl alcohol, benzyl alcohol, chlorobenzyl alcohol, methoxy Aralkyl alcohols such as benzyl alcohol are listed as monohydric alcohols, and polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, hexanetriol, etc.
Listed as alcohol. In addition, monohydric phenols include phenol, chlorophenol, cresol, ethylphenol, propylphenol, butylphenol, higher alkylphenols, β-naphthol, anthrol, phenanthrol, and catechol, resorcinol, 4-4 Examples of polyhydric phenols include '-dihydroxydiphenylmethane, 2,2'-isopropylidene diphenol, pyrogallol, and phloroglucin. These alcohols or phenols may be further substituted with a substituent such as a halogen atom, sulfoxide, sulfone, or carboxylic acid ester group. The amount of alcohol or phenol used above is
It is necessary to use at least one molecule per nitro group of the aromatic nitro compound used as a raw material, and it is usually used in large excess with respect to the aromatic nitro compound, and in many cases, the reaction solvent It is also used as. The catalyst used in the process of the invention is a three-component catalyst consisting of metallic palladium or a palladium compound, vanadium oxytrichloride or vanadium oxydichloride and a tertiary amine. Metal palladium or palladium compounds that are the main components of the catalyst include simple metals such as palladium black, divalent palladium such as halogenated palladium, cyanide palladium, thiocyanide palladium, isocyanide palladium, palladium oxide, sulfate palladium, and nitrate palladium. Palladium inorganic salts, divalent palladium organic acid salts such as palladium acetate, tertiary amines such as triethylamine, pyridine, and isoquinoline, tertiary organic phosphorus compounds such as triphenylphosphine, carbon monoxide, etc. Examples include divalent palladium complexes coordinated with neutral ligands or Ovalent palladium complexes obtained by reducing divalent palladium complexes, and these include activated carbon, graphite, alumina, silica, barium sulfate, and calcium carbonate asbestos. , bentonite, diatomaceous earth, ion exchange resin, magnesium silicate, aluminum silicate, titanium silicate, molecular sieve, and the like. Metallic palladium or palladium compounds are
The concentration in the reaction solution is converted to palladium alone.
It is used in an amount of 0.001 to 1% by weight, preferably 0.005 to 0.1% by weight. Vanadium oxytrichloride (VOCl 3 ) or vanadium oxydichloride (VOCl 2 ), which is the second component of the catalyst, must be used at least 1 mole per gram atom of palladium, but there is an upper limit on the amount used. There are no particular controls on this. However, if the amount exceeds 1000 mol per gram atom of palladium, little increase in effectiveness is expected and it is economically disadvantageous, so it is usually used within the range of 10 to 100 mol per gram atom of palladium. be done. The tertiary amine, which is the third component of the catalyst, is
Aliphatic tertiary amines such as trimethylamine, triethylamine, tripropylamine, tributylamine, aliphatic tertiary amines such as N·N-dimethylaniline, N·N-diethylaniline, N·N-dipropylaniline, Alicyclic tertiary amines such as N·N-dimethylcyclohexylamine, N·N-diethylcyclohexylamine, N·N-dipropylcyclohexylamine, 1,4-diazabicyclo(2·2·2)-octane, 1・8-
Diazabicyclo(5.4.0)-undecene-
Heterocyclic tertiary amines such as 7,1,5-diazabicyclo(4,3,0)-nonene-5, aromatic tertiary amines such as triphenylamine, heteroaromatics such as pyridine, quinoline, isoquinoline, etc. Examples include tertiary amines. In particular, heteroaromatic tertiary amines are effective for improving the yield of urethane, and specifically, pyridine, 2-chloropyridine, 2-bromopyridine, 2-fluoropyridine, 3-chloropyridine , 2,6-dichloropyridine, 4-phenylpyridine, α-picoline,
γ-picoline, 2-methyl-5-ethylpyridine, 2,6-lutidine, γ-collidine, 2-vinylpyridine, 2-chloro-4-methylpyridine,
4-phenylthiopyridine, 2-methoxypyridine, 2,6-dicyanopyridine, 4-dimethylaminopyridine, α-phenyl picolinate, γ-methyl picolinate, α-picolinaldehyde, α-
Pyridine derivatives such as picolinamide, 2,2'-dipyridyl; quinoline or quinoline derivatives such as 2-chloroquinoline, 5,6,7,8-tetrahydroquinoline; acridine, phenanthridyl
benzoquinoline such as benzoquinoline, 5,6-benzoquinoline, 6,7-benzoquinoline, 7,8-benzoquinoline; isoquinoline; 1-methylpyrrole, 1-
Pyrrole derivatives such as phenylpyrrole; imidazole derivatives such as 1-methylimidazole; indole derivatives such as 1-methylindole and 1-phenylindole; carbazole derivatives such as 1-methylcarbazole; pyrazine, 2,6-dimethylpyrazine, Examples include diazines such as pyridazine and pyrimidine; benzodiazines such as quinoxaline, 2,3-dimethylquinoxaline, quinazoline, phthalazine, cinnoline, and phenazine; indolenine; indolizine; naphthyridine; and pteridine. It is also possible to use it in the form of a polymer such as polyvinylpyridine. The amount of tertiary amine used may be 1 mol or more per 1 mol of vanadium oxytrichloride or vanadium oxydichloride, but usually 1 to 50 mol, preferably 1 mol.
Selected within the range of ~20 moles. In the method of the present invention, as mentioned earlier,
In many cases, the reaction is carried out in the presence of an excess amount of an organic compound containing a hydroxyl group, which also serves as a solvent, but a solvent inert to the reaction can also be used.
Specifically, aromatic hydrocarbons such as benzene, toluene and xylene, nitriles such as acetonitrile and benzonitrile, sulfones such as sulfolane, 1.
Halogenated aliphatic hydrocarbons such as 1,2-trichloro-1,2,2-trifluoroethane, halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, 1,4-dioxane, 1 - Ethers such as 2-dimethoxyethane, ketones, esters, etc. can be used. To carry out the present invention, an aromatic nitro compound, an organic compound containing a hydroxyl group, a catalyst and optionally an inert compound for the reaction are added under a partial pressure of carbon monoxide of 1 to 500 Kg/cm 2 , preferably 10 to 200 Kg/cm 2 . The reaction solution containing the appropriate solvent is heated to a temperature of 100 to 240°C, preferably 140 to 200°C.
It may be heated for 10 minutes to 6 hours. After the completion of the reaction, the product liquid taken out from the reaction system contains, in addition to the reaction product urethane, a catalyst, an organic compound containing a hydroxyl group, and in some cases a solvent inert to the reaction, and an aromatic nitro compound as a raw material. Usually, almost all of it is reacted, so it is hardly contained. The reaction product liquid may be cooled after separating the palladium component or carrier present in a solid state by a method such as filtration, or if desired, a part or most of the organic compound containing a hydroxyl group may be separated by distillation or the like. By cooling it later, it can be separated into the urethane that crystallizes and the mother liquor. Since the mother liquor contains a catalyst component, it is normally recycled to the reaction system after appropriately adjusting its concentration. In addition, in the method of the present invention, the nitro group of the aromatic nitro compound is reduced and aromatic amines or urea derivatives are produced as by-products, but the aromatic amine easily becomes urethane by being subjected to the reaction together with the aromatic nitro compound. Therefore, by circulating the mother liquor containing by-products such as aromatic amines into the reaction system, the yield of urethane can be increased, which is economically advantageous. As detailed above, the catalyst of the present invention has extremely high activity, low corrosiveness to the reactor, and good solubility of catalyst components other than the palladium component, so that the reaction solution can be used in a concentrated slurry. It has the advantage of being easy to handle because it does not form a solid state, and does not precipitate when the urethane is crystallized after the reaction, so it is less likely to contaminate the urethane, and has high industrial value. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 25 mmol of 2,4-dinitrotoluene, 50 ml of ethanol, and palladium chloride were placed in a vertically stirred autoclave lined with titanium and having an internal volume of 200 ml.
After charging 33.3 mg of vanadium oxytrichloride, 3.25 mmol of vanadium oxytrichloride, and 20 mmol of pyridine, the inside of the autoclave was purged three times with 30 Kg/cm 2 of nitrogen gas.
The temperature was raised to 140℃. Next, when carbon monoxide was pressurized to 75 kg/cm 2 into the autoclave, the reaction started and the temperature rose to 160°C due to heat generation. Maintain the temperature inside the autoclave at 160℃
After reacting for 100 minutes, the autoclave was cooled, the pressure was released, and the reaction product liquid was taken out. As a result of analyzing the obtained reaction product liquid by high performance liquid chromatography, the reaction rate of 2,4-dinitrotoluene was 100%, and the yield of diethyltolylene-2,4-dicarbamate was 76%. Ta. 〓〓〓〓〓
Example 2 Instead of 33.3 mg of palladium chloride, metallic palladium (hereinafter referred to as 2
It is written as %Pd/C. ) using 1 g and reaction time
The experiment was conducted in the same manner as in Example 1 except that the time was changed to 180 minutes. As a result, the reaction rate of 2,4-dinitrotoluene was 100%, and the yield of diethyltolylene-2,4-dicarbamate was 69%. Furthermore, the reaction product liquid from which the activated carbon had been removed was a homogeneous solution. Example 3 The amount of vanadium oxytrichloride used was 6.5 mmol
The experiment was conducted in the same manner as in Example 1, except that the reaction time was changed to 180 minutes. As a result, the reaction rate of 2,4-dinitrotoluene was 100%.
The yield of diethyltolylene-2,4-dicarbamate was 58%. Examples 4 to 9 Experiments were conducted in the same manner as in Example 2, except that various tertiary amines listed in Table 1 were used in place of pyridine. The results are shown in Table-1.

【衚】 実斜䟋 10〜15 ピリゞンの䜿甚量を衚−に蚘茉したように
皮々倉曎し、反応時間を180分に倉曎したこず以
倖は実斜䟋ず同様に実隓を行な぀た。結果は衚
−に瀺す。
[Table] Examples 10 to 15 The experiment was conducted in the same manner as in Example 1, except that the amount of pyridine used was varied as shown in Table 2, and the reaction time was changed to 180 minutes. The results are shown in Table-2.

【衚】 〓〓〓〓〓
[Table] 〓〓〓〓〓

【衚】 実斜䟋 16 ゚タノヌルの䜿甚量を30mlに倉曎したこず、䞍
掻性溶媒ずしお−ゞクロルベンれン20mlを䜿甚
したこず、ピリゞンの䜿甚量を10molに倉曎し
たこずおよび反応時間を180分ずしたこず以倖は
実斜䟋ず同様に実隓を行な぀た。その結果、
・−ゞニトロトル゚ンの反応率は100、ゞ
゚チルトリレン−・−ゞカルバメヌトの収率
は62であ぀た。 実斜䟋 17〜19 觊媒の皮類および量、アルコヌルの皮類、反応
枩床あるいは反応時間を衚−に蚘茉したずおり
に倉曎し、実斜䟋に準じお実隓を行な぀た。
・−ゞニトロトル゚ンの反応率はいずれも
100であ぀た。ゞアルキルトリレン−・−
ゞカルバメヌトの収率は衚−に蚘す。
[Table] Example 16 The amount of ethanol used was changed to 30 ml, the amount of O-dichlorobenzene was changed to 20 ml as an inert solvent, the amount of pyridine used was changed to 10 mmol, and the reaction time was changed to 180 minutes. The experiment was conducted in the same manner as in Example 1 except for the above. the result,
The reaction rate of 2,4-dinitrotoluene was 100%, and the yield of diethyltolylene-2,4-dicarbamate was 62%. Examples 17 to 19 Experiments were conducted according to Example 2, with the type and amount of catalyst, type of alcohol, reaction temperature, or reaction time changed as shown in Table 3.
The reaction rate of 2,4-dinitrotoluene is
It was 100%. Dialkyltrilene-2,4-
The yield of dicarbamate is shown in Table 3.

【衚】 実斜䟋 20 ・−ゞニトロトル゚ン25molのかわりに
ニトロベンれン50molを䜿甚し、ピリゞンの䜿
甚量を10molに倉曎したこず以倖は実斜䟋ず
同様に実隓を行な぀た。その結果、ニトロベンれ
ンの反応率は100、゚チルカルバニレヌトの収
率は89であ぀た。 実斜䟋 21 ゚タノヌル50mlのかわりにむ゜プロピルアルコ
ヌル50mlを䜿甚し、反応時間を180分に倉曎した
こず以倖は実斜䟋20ず同様に実隓を行な぀た。そ
の結果、ニトロベンれンの反応率は100であ
り、む゜プロピルカルバニレヌトの収率は92で
あ぀た。 比范䟋 オキシ䞉塩化バナゞりム3.25molのかわりに
塩化第二鉄3.25molを䜿甚したこず以倖は実斜
䟋ず同様に実隓を行な぀た。その結果、・
−ゞニトロトル゚ンの反応率は100であり、ゞ
゚チルトリレン−・−ゞカルバメヌトの収率
は51であ぀た。たた反応生成液䞭には掻性送の
ほかに、鉄およびピリゞンを含む嵩高い結晶が析
出した。 比范䟋  オキシ䞉塩化バナゞりムを䜿甚せず、反応時間
を90分に倉曎したこず以倖は実斜䟋ず同様に実
隓を行な぀た。その結果、・−ゞニトロトル
゚ンの反応率は24であ぀たが、ゞ゚チルトリレ
ン−・−ゞカルバメヌトの生成は認められ
ず、゚チル−ニトロトリレン−モノカルバメヌト
が痕跡生成したのみであ぀た。 比范䟋  オキシ䞉塩化バナゞりムを䜿甚せず、反応時間
を105分に倉曎したこず以倖は実斜䟋ず同様に
〓〓〓〓〓
実隓を行な぀た。その結果、・−ゞニトロト
ル゚ンの反応率は31であ぀たが、ゞ゚チルトリ
レン−・−ゞカルバメヌトの生成は認められ
ず、゚チル−ニトロトリレン−モノカルバメヌト
が痕跡生成したのみであ぀た。 〓〓〓〓〓
[Table] Example 20 An experiment was carried out in the same manner as in Example 1, except that 50 mmol of nitrobenzene was used instead of 25 mmol of 2,4-dinitrotoluene, and the amount of pyridine used was changed to 10 mmol. As a result, the reaction rate of nitrobenzene was 100%, and the yield of ethyl carbanilate was 89%. Example 21 An experiment was conducted in the same manner as in Example 20, except that 50 ml of isopropyl alcohol was used instead of 50 ml of ethanol, and the reaction time was changed to 180 minutes. As a result, the reaction rate of nitrobenzene was 100%, and the yield of isopropyl carbanilate was 92%. Comparative Example An experiment was conducted in the same manner as in Example 2 except that 3.25 mmol of ferric chloride was used instead of 3.25 mmol of vanadium oxytrichloride. As a result, 2.4
The reaction rate of -dinitrotoluene was 100%, and the yield of diethyltolylene-2,4-dicarbamate was 51%. In addition to active transport, bulky crystals containing iron and pyridine were precipitated in the reaction product solution. Comparative Example 2 An experiment was conducted in the same manner as in Example 1 except that vanadium oxytrichloride was not used and the reaction time was changed to 90 minutes. As a result, the reaction rate of 2,4-dinitrotoluene was 24%, but no formation of diethyltolylene-2,4-dicarbamate was observed, and only a trace of ethyl-nitrotolylene-monocarbamate was formed. Ta. Comparative Example 3 Same as Example 2 except that vanadium oxytrichloride was not used and the reaction time was changed to 105 minutes.
I conducted an experiment. As a result, the reaction rate of 2,4-dinitrotoluene was 31%, but no formation of diethyltolylene-2,4-dicarbamate was observed, and only a trace of ethyl-nitrotolylene-monocarbamate was formed. Ta. 〓〓〓〓〓

Claims (1)

【特蚱請求の範囲】[Claims]  芳銙族ニトロ化合物を觊媒の存圚䞋に氎酞基
を含有する有機化合物および䞀酞化炭玠ず反応さ
せおりレタンを補造する方法においお、觊媒ずし
お金属パラゞりムたたはパラゞりム化合物、
オキシ䞉塩化バナゞりムたたはオキシ二塩化バナ
ゞりムおよび第䞉玚アミンよりなる觊媒を䜿甚
するこずを特城ずするりレタンの補造方法。
1. A method for producing urethane by reacting an aromatic nitro compound with an organic compound containing a hydroxyl group and carbon monoxide in the presence of a catalyst, in which metallic palladium or a palladium compound as a catalyst,
A method for producing urethane, which comprises using a catalyst consisting of vanadium oxytrichloride or vanadium oxydichloride and a tertiary amine.
JP8622577A 1977-07-19 1977-07-19 Preparation of urethanes Granted JPS5422339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8622577A JPS5422339A (en) 1977-07-19 1977-07-19 Preparation of urethanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8622577A JPS5422339A (en) 1977-07-19 1977-07-19 Preparation of urethanes

Publications (2)

Publication Number Publication Date
JPS5422339A JPS5422339A (en) 1979-02-20
JPS6111222B2 true JPS6111222B2 (en) 1986-04-01

Family

ID=13880838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8622577A Granted JPS5422339A (en) 1977-07-19 1977-07-19 Preparation of urethanes

Country Status (1)

Country Link
JP (1) JPS5422339A (en)

Also Published As

Publication number Publication date
JPS5422339A (en) 1979-02-20

Similar Documents

Publication Publication Date Title
US4186269A (en) Process for producing an aromatic urethane
US4134880A (en) Process for producing an aromatic urethane from nitro compounds, hydroxyl compounds and carbon monoxide using metal-Lewis acid-ammonia catalyst systems
JPS6111222B2 (en)
JPS6115868B2 (en)
US4262130A (en) Process for the production of urethanes
US4469882A (en) Process for the production of aromatic carbamates
US4219661A (en) Process for the production of urethanes
JPS6056132B2 (en) Production method of aromatic carbamate ester
JPH0153269B2 (en)
KR890005036B1 (en) Process for the preparation of aromatic urethane and intermediate thereof
EP0029460B1 (en) Process for preparing aromatic urethane
JPS60502209A (en) Urethane manufacturing method
JPS6312060B2 (en)
JPS6121467B2 (en)
JPH0328416B2 (en)
JPH0529349B2 (en)
JPS60193958A (en) Production of aromatic urethane
JPS60193959A (en) Production of aromatic urethane
JPS5811942B2 (en) Aromatic urethane purification method
JPS61191660A (en) Production of aromatic isocyanate
JPH0662544B2 (en) Method for producing aromatic urethane
JPH0611745B2 (en) Process for producing aromatic isocyanates
JPS5818352A (en) Preparation of aromatic carbamic ester
JPS61191666A (en) Production of aromatic carbamic acid aryl ester
JPS6228951B2 (en)