JPS6115860B2 - - Google Patents

Info

Publication number
JPS6115860B2
JPS6115860B2 JP4215278A JP4215278A JPS6115860B2 JP S6115860 B2 JPS6115860 B2 JP S6115860B2 JP 4215278 A JP4215278 A JP 4215278A JP 4215278 A JP4215278 A JP 4215278A JP S6115860 B2 JPS6115860 B2 JP S6115860B2
Authority
JP
Japan
Prior art keywords
ocf
reaction
cooch
group
clcfclcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4215278A
Other languages
Japanese (ja)
Other versions
JPS54135723A (en
Inventor
Akifumi Kondo
Tadahisa Yanagihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP4215278A priority Critical patent/JPS54135723A/en
Publication of JPS54135723A publication Critical patent/JPS54135723A/en
Publication of JPS6115860B2 publication Critical patent/JPS6115860B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は 一般式 (nは0から50の整数。Zはフツ素、ヒドロオキ
シ基、アルコオキシ基、−OM基。Mはアルカリ
金属。X及びYは、フツ素、トリフルオロメチル
基。以下同じ。)で表わす新規な化合物の製法に
関する。 パーフルオロビニルオキシ基含有のフルオロカ
ーボンに関しては特公昭39−21228号、特公昭38
−1617号、特公昭52−10851号、特開昭52−33623
号、特開昭51−136686号、特公昭42−1664号、英
国特許1145445号及び、英国特許1094500号等の明
細書に記載がある。 上記明細書の製造法は、熱分解法により、末端
にパーフルオロビニルオキシ基を作るものに関す
るものである。 本発明は上記公知例とは違い、末端にパーフル
オロアリルオキシ基、即ちCF2=CFCF2O−基を
含んだフルオロカーボンに関するものである。 例えば、代表的な例として CF2=CFCF2O−(CF(CF3)CF2O)oCF(CF3)COOCH3 CFCl=CFCF2O−(CF(CF3)CF2O)oCF(CF3)COOH CF2=CFCF2O−(CF2CF2O)oCF2COF CF2=CFCF2O−(CF2CF2O)oCF2COOCH3 等で示されるものである。 従来、末端基がCF2=CFCF2O−基を持つフル
オロ化合物については、その原料である化合物が
ないことから合成できなかつたが本発明者等は、
この原料を合成することに成功し、新規な含フツ
素不飽和エーテルの本発明法を達成したものであ
る。従来、CF2=CFO−基を得るためには、原料
を150〜500℃の高温で熱分解を行ない、その収率
も30%と低収率であり、反応中に有毒なカルボニ
ルフルオライドが発生すること等の欠点があり、
工業上、その実施には種々の制約が生じる。本発
明者等は、これら欠点を改善すべく、鋭意研究の
結果、下記の一般式で示される化合物(1)の脱塩素
化反応により温和な反応条件で簡単に70%以上の
高収率で得られる新規な含フツ素不飽和エーテル
の製法を見い出したものである。 本発明は一般式 で表わす化合物を脱塩素化反応により得ることを
特徴とするものである。 例えばCF2ClCFClCF2OCF(CF3)COOCH3
の脱塩素化反応によりCF2=CFCF2OCF
(CF3)COOCH3を製造する。 パーフルオロオレフインエポキサイドとしては
テトラフルオロエチレンオキサイド、ヘキサフル
オロプロピレンオキサイド、オクタフルオロイソ
ブチレンオキサイド等がある。 脱塩素化反応は、一般式(1)でのCF2ClCFCl−
基に結合している塩素を対象におこなう。この場
合脱塩素化剤として例えば、亜鉛、鉄、マグネシ
ウム等を用いたり、微量のヨウ素等の反応促進剤
を添加することは好ましい。亜鉛は酢酸、水素等
により活性化させて使用することも可能である。
溶媒を用いなくても反応は進行するが、溶媒を使
用した方が良い。溶媒として例えば、ジエチレン
グリコールジメチルエーテル、ジエチレングリコ
ールジブチルエーテル、メタノール、エタノール
等で、これらを混合使用しても良い。 反応温度は高い方が進行しやすいが、あまり高
すぎると副反応が起こるので通常は0℃から200
℃、好ましくは50℃から120℃である。 反応は減圧、常圧、加圧で進行する。 脱塩素化剤の量は原料である化合物(1)1モルに
対し1モル以上用いる。好ましくは1〜3倍モル
用いるのが適当である。 この反応によつて、塩化亜鉛が副生する場合
は、これは生成物を変質させるため反応終了後、
過、蒸留等で、反応溶液と固型分を分離するこ
とが好ましい。 又、反応を促進させるためにも生成物を連続的
に取り出すことが、さらに好ましい。 このようにして得られた本発明の化合物は、重
合することによりイオン交換膜等機能性高分子、
界面活性剤、繊維処理剤、金属浄化剤、溶媒、表
面処理剤等の用途に適したもので、この他、広い
用途での使用が可能である。 以下、実施例により本発明を更に説明するが、
これらの実施例のみに限定されるものではない。 尚、本実施例においては、その途中の生成物の
確認のためa〜c工程を行なつたが、通常は、こ
れら各工程を連続的に実施することは何等差しつ
かえない。 実施例 1 以下のa〜c工程を施こすことにより目的生成
物を得た。 a:原料の合成 撹拌羽根、抜気管、吹込管付200ml、鋼製オー
トクレーブに2.3−ジクロロトリフルオロプロピ
オニルフルオライド50g、乾燥フツ化セシウム1
g、及び乾燥ジエチレングリコールジメチルエー
テル50gを仕込み密封した後オートクレーブをド
ライアイス−メタノールで−50℃に冷却した。 真空ポンプでオートクレーブ内のガスを抜気後
ヘキサフルオロプロピレンオキサイド50gを仕込
んだ。 反応温度を80℃まで昇温後激しく撹拌し5時間
反応させた。オートクレーブを室温まで下げた
後、未反応のヘキサフルオロプロピレンオキシド
をガスで放出後、オートクレーブより反応液を取
り出し過後分別蒸留により、
CF2ClCFClCF2OCF(CF3)COF12.5gを得
た。メタノール10gをCF2ClCFClCF2OCF
(CF3)COF12.5gに徐々に加えた後、分別蒸留
により、CF2ClCFClCF2OCF(CF3
COOCH311gを得た。CF2ClCFClCF2OCF
(CF3)COOCH3のNMRデータを表1に示した。 表1 NMRデータ δ(TMSからのケミカルシフト) δ=123.23PPm(C(1)) δ=103.09 〃 (C(2)) δ=117.63PPm(C(3 )) δ=117.77 〃 (C(4 )) δ=100.19 〃 (C(5)) δ=158.75 〃 (CO) δ= 53.31 〃 (CH3) J=(カツプリング定数) Jc(1)F(1)=Jc(1)F(2)=301.43cps. Jc(1)F(3)=33.77cps. Jc(2)F(3)=133.83cps. Jc(2)F(1)=Jc(2)F(2)=Jc(2)F(4)= Jc(2)F(5)=33.89 Jc(3)F(4)=Jc(3)F(5)=285.32cps. Jc(3)F(3)=29.43cps. Jc(4)F(7)=Jc(4)F(8)=Jc(4)F(9) =428.74cps. Jc(4)F(6)=30.96cps. Jc(5)F(6)=131.60cps. Jc(5)F(7)=Jc(5)F(8)=Jc(5)F(9) =38.25cps. Jc(6)F(6)=32.24cps. ガス−マススペクトル(電子衝撃型イオン源及
び化学イオン化型イオン源使用)分析より
CF2ClCFClCF2OCF(CF3)COOCH3のm/e
は次の値を検出した。 m/e;
The present invention has the general formula (n is an integer from 0 to 50; Z is fluorine, hydroxyl group, alkoxy group, -OM group; M is an alkali metal; X and Y are fluorine, trifluoromethyl group; the same applies hereinafter) Concerning methods for producing compounds. Regarding fluorocarbons containing perfluorovinyloxy groups, Japanese Patent Publication No. 39-21228, Japanese Patent Publication No. 38
−1617, JP 52-10851, JP 52-33623
It is described in the specifications of JP-A-51-136686, JP-B-42-1664, British Patent No. 1145445, British Patent No. 1094500, etc. The production method described in the above specification relates to a method in which a perfluorovinyloxy group is created at the terminal by a thermal decomposition method. The present invention, unlike the above-mentioned known examples, relates to a fluorocarbon containing a perfluoroallyloxy group, that is, a CF 2 =CFCF 2 O- group at the end. For example, as a typical example, CF 2 = CFCF 2 O− (CF (CF 3 ) CF 2 O) o CF (CF 3 ) COOCH 3 CFCl = CFCF 2 O− (CF (CF 3 ) CF 2 O) o CF (CF 3 ) COOH CF 2 = CFCF 2 O− (CF 2 CF 2 O) o CF 2 COF CF 2 = CFCF 2 O− (CF 2 CF 2 O) o CF 2 COOCH 3 , etc. Conventionally, it has been impossible to synthesize a fluoro compound having a terminal group of CF 2 =CFCF 2 O- due to the lack of a raw material compound, but the present inventors have
We succeeded in synthesizing this raw material and achieved the method of the present invention for producing a new fluorine-containing unsaturated ether. Conventionally, in order to obtain CF 2 =CFO- group, raw materials are thermally decomposed at high temperatures of 150 to 500°C, and the yield is as low as 30%, and toxic carbonyl fluoride is released during the reaction. There are disadvantages such as the occurrence of
Industrially, various restrictions arise in its implementation. In order to improve these drawbacks, the present inventors have conducted intensive research and found that a high yield of 70% or more can be achieved easily under mild reaction conditions by dechlorination reaction of compound (1) represented by the following general formula. A method for producing a new fluorine-containing unsaturated ether has been discovered. The present invention is based on the general formula It is characterized in that the compound represented by is obtained by a dechlorination reaction. For example CF 2 ClCFClCF 2 OCF(CF 3 ) COOCH 3
The dechlorination reaction of CF 2 = CFCF 2 OCF
Produce (CF 3 ) COOCH 3 . Examples of perfluoroolefin epoxides include tetrafluoroethylene oxide, hexafluoropropylene oxide, and octafluoroisobutylene oxide. In the dechlorination reaction, CF 2 ClCFCl− in the general formula (1)
The target is chlorine bound to the group. In this case, it is preferable to use, for example, zinc, iron, magnesium, etc. as a dechlorination agent, or to add a trace amount of a reaction accelerator such as iodine. Zinc can also be used after being activated with acetic acid, hydrogen, or the like.
Although the reaction proceeds without using a solvent, it is better to use a solvent. Examples of the solvent include diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, methanol, and ethanol, and a mixture of these may be used. The higher the reaction temperature, the easier it will be to proceed, but if it is too high, side reactions will occur, so the reaction temperature is usually between 0°C and 200°C.
°C, preferably from 50 °C to 120 °C. The reaction proceeds under reduced pressure, normal pressure, or increased pressure. The amount of the dechlorinating agent used is 1 mol or more per 1 mol of compound (1) as a raw material. Preferably, it is appropriate to use 1 to 3 times the mole amount. If zinc chloride is produced as a by-product in this reaction, it will alter the quality of the product, so after the reaction is complete,
It is preferable to separate the reaction solution and solid components by filtration, distillation, or the like. Further, in order to accelerate the reaction, it is more preferable to take out the product continuously. The compound of the present invention thus obtained can be polymerized to form functional polymers such as ion exchange membranes.
It is suitable for use as a surfactant, fiber treatment agent, metal cleaning agent, solvent, surface treatment agent, etc., and can be used in a wide range of other applications. The present invention will be further explained below with reference to Examples.
The present invention is not limited to these examples. Incidentally, in this example, steps a to c were performed in order to confirm the product during the process, but normally, there is no problem in carrying out each of these steps continuously. Example 1 The desired product was obtained by performing the following steps a to c. a: Synthesis of raw materials 200 ml with stirring blade, vent pipe, blowing pipe, 50 g of 2,3-dichlorotrifluoropropionyl fluoride, 1 dry cesium fluoride in a steel autoclave
After charging 50 g of dry diethylene glycol dimethyl ether and sealing the autoclave, the autoclave was cooled to -50°C with dry ice-methanol. After removing the gas from the autoclave using a vacuum pump, 50 g of hexafluoropropylene oxide was charged. After raising the reaction temperature to 80°C, the mixture was stirred vigorously and reacted for 5 hours. After cooling the autoclave to room temperature and releasing unreacted hexafluoropropylene oxide as a gas, the reaction solution was removed from the autoclave and subjected to fractional distillation.
12.5 g of CF 2 ClCFClCF 2 OCF (CF 3 )COF was obtained. 10g of methanol CF 2 ClCFClCF 2 OCF
(CF 3 ) was gradually added to 12.5 g of COF, and by fractional distillation, CF 2 ClCFClCF 2 OCF (CF 3 )
11 g of COOCH 3 was obtained. CF 2 ClCFClCF 2 OCF
NMR data of (CF 3 )COOCH 3 is shown in Table 1. Table 1 NMR data δ (chemical shift from TMS) δ=123.23PPm (C (1) ) δ=103.09 〃 (C (2) ) δ=117.63PPm (C (3 ) ) δ=117.77 〃 (C (4) ) ) δ=100.19 〃 (C (5) ) δ=158.75 〃 (CO) δ= 53.31 〃 (CH 3 ) J=(Coupling constant) Jc (1) F (1) =Jc (1) F (2) =301.43cps. Jc (1) F (3) =33.77cps. Jc (2) F (3) =133.83cps. Jc (2) F (1) =Jc (2) F (2) =Jc (2) F (4) = Jc (2) F (5) = 33.89 Jc (3) F (4) = Jc (3) F (5) = 285.32cps. Jc (3) F (3) = 29.43cps. Jc ( 4) F (7) = Jc (4) F (8) = Jc (4) F (9) = 428.74cps. Jc (4) F (6) = 30.96cps. Jc (5) F (6) = 131.60 cps. Jc (5) F (7) = Jc (5) F (8) = Jc (5) F (9) = 38.25 cps. Jc (6) F (6) = 32.24 cps. Gas-mass spectrum (electron From analysis using impact type ion source and chemical ionization type ion source)
m/e of CF 2 ClCFClCF 2 OCF (CF 3 ) COOCH 3
found the following values: m/e;

【式】 85.87(CF2Cl−)、151、153、155(CF2Cl
−CFCl−)、201、203、205(CF2Cl−
CFCl−CF2−)
[Formula] 85.87 (CF 2 Cl−) + , 151, 153, 155 (CF 2 Cl
−CFCl−) + , 201, 203, 205(CF 2 Cl−
CFCl−CF 2 −) + ,

【式】 341(L−Cl)+、69(CF3+、 ただし、Lは分子量 以上の分析結果より本生成物が
CF2ClCFClCF2OCF(CF3)COOCH3であるこ
とがわかつた。 b;活性化亜鉛の合成 100ml三角フラスコに亜鉛5g、酢酸10ml、酢
酸銅0.1gを加え、80℃で5分間加熱後、吸引
過を行なつた。 エチレングリコールジメチルエーテル20mlで固
型分を洗浄した。 c;脱塩素化反応工程 撹拌装置、滴下ロート、吸引口付丸底フラスコ
(ガラス製、容量100ml)に、bで得た亜鉛とジエ
チレングリコールジメチルエーテル50mlを仕込ん
だ後80℃に加熱した。 CF2ClCFClCF2OCF(CF3)COOCH310gを
除々に滴下しながら留出液を−50℃で冷却補集し
た。 捕集した留出液をガスクロマトグラフイーにて
分析し、CF2=CFCF2OCF(CF3)COOCH36.9
g(面積比にて算出)を得た。 この生成物のガス−マススペクトル(電子衝撃
型イオン源及び化学イオン化型イオン源使用)分
析より次の値のm/e値を検出した。 m/e;
[Formula] 341(L-Cl) + , 69(CF 3 ) + , where L is the molecular weight Based on the analysis results above, this product is
It was found to be CF 2 ClCFClCF 2 OCF (CF 3 ) COOCH 3 . b; Synthesis of activated zinc 5 g of zinc, 10 ml of acetic acid, and 0.1 g of copper acetate were added to a 100 ml Erlenmeyer flask, heated at 80° C. for 5 minutes, and then filtered by suction. The solid matter was washed with 20 ml of ethylene glycol dimethyl ether. c; Dechlorination reaction step The zinc obtained in b and 50 ml of diethylene glycol dimethyl ether were charged into a round bottom flask (made of glass, capacity 100 ml) equipped with a stirring device, a dropping funnel, and a suction port, and then heated to 80°C. The distillate was cooled and collected at -50° C. while 10 g of CF 2 ClCFClCF 2 OCF (CF 3 ) COOCH 3 was gradually added dropwise. The collected distillate was analyzed by gas chromatography and found to be CF 2 = CFCF 2 OCF (CF 3 ) COOCH 3 6.9
g (calculated based on area ratio) was obtained. The following m/e values were detected from gas-mass spectrum analysis (using an electron impact ion source and a chemical ionization ion source) of this product. m/e;

【式】 131(CF2=CF−CF2−)[Formula] 131 (CF 2 = CF - CF 2 -) + ,

【式】 306(分子イオン(L))、その他69(−
CF3+ 以上の分析結果より本生成物が
CF2ClCFClCF2OCF(CF3)COOCH3であるこ
とがわかつた。 実施例 2 以下のa〜b工程を施こすことにより目的生成
物を得た。 a;原料の合成 反応温度が30℃、反応時間30時間の場合、実施
例1に準じて2・3−ジクロロジフルオロプロピ
オニルフルオライドとヘキサフルオロプロピレン
オキシドを反応させた後、未反応のヘキサフルオ
ロプロピレンオキシドを追い出し反応液を過し
た。その後メタノール50gを除去に添加した後分
別蒸留でCF2ClCFClCF2OCF(CF3
COOCH36.2g CF2ClCFClCF2OCF(CF3
CF2OCF(CF3)COOCH31.3gを得た。 それぞれの生成物の元素分析値を下に示す。 CF2ClCFClCF2OCF(CF3)COOCH3 実測値% C 22.54 H 0.97 Cl 19.01 F 45.62 CF2ClCFClCF2OCF(CF3)CF2OCF(CF3
COOCH3 実測値% C 22.82 H 0.64 Cl 12.96 F 52.31 これらの生成物はいづれも赤外線吸収スペクト
ルでメチル基含有を示す2960cm-1付近の吸収、カ
ルボニルエステルを示す1780cm-1付近の吸収を示
した。 これらのデータから上記化合物であることを確
認した。 b;脱塩素化工程 実施例1のbに準じて処理した亜鉛1gとジエ
チレングリコール5mlを撹拌装置、温度計、還流
塔、滴下ロート付丸底フラスコに入れて90℃に加
熱し、撹拌しながらCF2ClCFClCF2OCF
(CF3)CF2OCF(CF3)COOCH31gを滴下す
る。90℃で30分間加熱後、反応液をガスクロにて
分析し、CF2=CFCF2OCF(CF3)CF2OCF
(CF3)COOCH30.6g(面積比で算出)を得た。
CF2ClCFClCF2OCF(CF3)CF2OCF(CF3
COOCH3は痕跡検出された。得られたCF2
CFCF2OCF(CF3)CF2OCF(CF3)COOCH3
のガス−マススペクトル(電子衝撃型イオン源、
及び化学イオン化学イオン源使用)分析より、
m/eは次の値を検出した。 m/e;131(CF2=CF−CF2−)
[Formula] 306 (molecular ion (L) + ), others 69 (-
CF 3 ) + From the above analysis results, this product is
It was found to be CF 2 ClCFClCF 2 OCF (CF 3 ) COOCH 3 . Example 2 The desired product was obtained by performing the following steps a to b. a; Synthesis of raw materials When the reaction temperature is 30°C and the reaction time is 30 hours, after reacting 2,3-dichlorodifluoropropionyl fluoride and hexafluoropropylene oxide according to Example 1, unreacted hexafluoropropylene The oxide was expelled and the reaction solution was filtered. Then 50 g of methanol was added to remove CF 2 ClCFClCF 2 OCF (CF 3 ) by fractional distillation.
COOCH 3 6.2g CF 2 ClCFClCF 2 OCF (CF 3 )
1.3 g of CF 2 OCF (CF 3 ) COOCH 3 was obtained. The elemental analysis values for each product are shown below. CF 2 ClCFClCF 2 OCF (CF 3 ) COOCH 3 Actual measurement % C 22.54 H 0.97 Cl 19.01 F 45.62 CF 2 ClCFClCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 )
COOCH 3 Actual value % C 22.82 H 0.64 Cl 12.96 F 52.31 All of these products showed absorption in the infrared absorption spectrum around 2960 cm -1 indicating methyl group content and absorption around 1780 cm -1 indicating carbonyl ester. From these data, it was confirmed that it was the above compound. b; Dechlorination step 1 g of zinc treated according to b of Example 1 and 5 ml of diethylene glycol were placed in a round bottom flask equipped with a stirrer, a thermometer, a reflux tower, and a dropping funnel, heated to 90°C, and heated to CF while stirring. 2 ClCFClCF 2 OCF
(CF 3 )CF 2 OCF (CF 3 )COOCH 3 1g is added dropwise. After heating at 90°C for 30 minutes, the reaction solution was analyzed using gas chromatography, and CF 2 = CFCF 2 OCF (CF 3 ) CF 2 OCF
0.6 g (CF 3 )COOCH 3 (calculated by area ratio) was obtained.
CF 2 ClCFClCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 )
Traces of COOCH 3 were detected. Obtained CF 2 =
CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOCH 3
gas-mass spectrum (electron impact ion source,
and chemical ion (using chemical ion source) analysis,
The following values of m/e were detected. m/e; 131 (CF 2 = CF−CF 2 −) + ,

【式】【formula】

【式】 69(−CF3+ 225 247(CF2=CF−CF2−O−CF(CF3)−) これらの分析データより上記化合物であること
を確認した。
[Formula] 69 (−CF 3 ) + 225 247 ( CF2 = CF- CF2 -O-CF( CF3 )-) + From these analytical data, it was confirmed that it was the above compound.

Claims (1)

【特許請求の範囲】 1 一般式 (XおよびYはフツ素またはトリフルオロメチル
基。Zはフツ素、ヒドロオキシ基、アルコオキシ
基、またはOM基。Mはアルカリ金属。nは0〜
50の整数)で示される化合物を脱塩素化反応を行
なうことにより、 一般式 (X、Y、Zおよびnは前記と同じ)を得ること
を特徴とする含フツ素不飽和エーテルの製法。 2 Xがトリフルオロメチル基、Yがフツ素であ
る特許請求の範囲第1項記載の製法。 3 脱塩素化反応に亜鉛を用いる特許請求の範囲
第1項または第2項記載の製法。 4 反応をジエチレングリコールジメチルエーテ
ル溶媒中で行なう特許請求の範囲第1、2項また
は第3項記載の製法。
[Claims] 1. General formula (X and Y are fluorine or trifluoromethyl group. Z is fluorine, hydroxyl group, alkoxy group, or OM group. M is an alkali metal. n is 0 to
By performing a dechlorination reaction on the compound represented by the formula (an integer of 50), the general formula (X, Y, Z and n are the same as above) A method for producing a fluorine-containing unsaturated ether. 2. The method according to claim 1, wherein X is a trifluoromethyl group and Y is fluorine. 3. The manufacturing method according to claim 1 or 2, wherein zinc is used in the dechlorination reaction. 4. The production method according to claim 1, 2 or 3, wherein the reaction is carried out in a diethylene glycol dimethyl ether solvent.
JP4215278A 1978-04-12 1978-04-12 Preparation of fluorine-containing unsaturated ether Granted JPS54135723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215278A JPS54135723A (en) 1978-04-12 1978-04-12 Preparation of fluorine-containing unsaturated ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215278A JPS54135723A (en) 1978-04-12 1978-04-12 Preparation of fluorine-containing unsaturated ether

Publications (2)

Publication Number Publication Date
JPS54135723A JPS54135723A (en) 1979-10-22
JPS6115860B2 true JPS6115860B2 (en) 1986-04-26

Family

ID=12627959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215278A Granted JPS54135723A (en) 1978-04-12 1978-04-12 Preparation of fluorine-containing unsaturated ether

Country Status (1)

Country Link
JP (1) JPS54135723A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334082A (en) * 1980-09-26 1982-06-08 E. I. Du Pont De Nemours And Company Dialkyl perfluoro-ω-fluoroformyl diesters and monomers and polymers therefrom
CN113248699B (en) * 2021-05-20 2022-11-04 甘肃华隆芯材料科技有限公司 Method for removing metal ion impurities in perfluoropolyether carboxylic acid

Also Published As

Publication number Publication date
JPS54135723A (en) 1979-10-22

Similar Documents

Publication Publication Date Title
KR840001979B1 (en) Process for the preparation of acid fluorides and resulting monomers
KR20020012205A (en) Polyfluorinated Epoxides and Associated Polymers and Processes
IT9019585A1 (en) PERFLUOROPOLYETERS AND PROCESSES FOR THEIR PREPARATION
CA1325012C (en) Process for preparing perfluoroethers by fluorination with elemental fluorine
JP2000178224A (en) Production of perfluoropolyether containing halogen different from fluorine and acid terminal group
JPH04500520A (en) Liquid phase fluorine replacement
JPS6145972B2 (en)
JPS602291B2 (en) Production method of perfluoroalkoxypropionic acid fluoride
JPS6115860B2 (en)
JP3105313B2 (en) Method for producing fluorinated alcohol
JP4526826B2 (en) Method for producing fluorohalogen ether
JP2004002302A (en) (per)haloethers and method for producing the same
JP3869498B2 (en) Process for producing fluoroxy- or chloroxy-perfluoroacyl fluoride
JP4561120B2 (en) Method for producing 2,2,3,3-tetrafluorooxetane
Trofimenko et al. Perfluoroacetylenic ethers
US4594458A (en) Vinyl ether monomers derived from alkyl perfluoro-ω-(2-iodoethoxy) compounds
JP2792983B2 (en) Preparation of .ALPHA.-bromo-acyl-fluoride
EP2643289B1 (en) Process for producing perfluorinated organic compounds
US4531011A (en) Alkyl perfluoro-omega-(2-iodoethoxy) compounds and vinyl ethers therefrom
JP3130303B2 (en) Halohydrin
JP4369614B2 (en) Perfluorodicarbonyl compounds
JPS6136502B2 (en)
JPH0641291A (en) Production of perfluorinated ether
JPS62899B2 (en)
JP2000351751A (en) Fluorine-containing ester and production of perfluoropropionyl halide using the same