JPS6115841B2 - - Google Patents

Info

Publication number
JPS6115841B2
JPS6115841B2 JP53037218A JP3721878A JPS6115841B2 JP S6115841 B2 JPS6115841 B2 JP S6115841B2 JP 53037218 A JP53037218 A JP 53037218A JP 3721878 A JP3721878 A JP 3721878A JP S6115841 B2 JPS6115841 B2 JP S6115841B2
Authority
JP
Japan
Prior art keywords
powder
talc
pesticide
calcium carbonate
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53037218A
Other languages
Japanese (ja)
Other versions
JPS54129128A (en
Inventor
Toshiie Nakamura
Hiromichi Shimizu
Kenji Yasui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP3721878A priority Critical patent/JPS54129128A/en
Publication of JPS54129128A publication Critical patent/JPS54129128A/en
Publication of JPS6115841B2 publication Critical patent/JPS6115841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は散布時散布機噴管部への静電帯性を抑
制した農薬粉剤に関する。 一般に農薬粉剤を動力散布機で散布するとき、
塩化ビニール製あるいはナイロン製などの噴管部
に静電気の帯電が発生するが、この帯電電位が±
30KVを越す場合には噴管部と散布作業者の間に
火花放電が発生し、散布作業者は強い電撃を受け
るといわれる。この電撃は電圧は高くても電流が
少ないため直接人命にかかわるようなものではな
いが、散布作業者の恐怖を招きまた足をふみはず
すなど散布作業の安全上重大な問題となる。 農薬散布時の帯電に関しては、過去若干の研究
がなされている。たとえば農薬担体による噴管部
の帯電は炭酸カルシウム、クレー類に比較して、
タルク、ベントナイトなどが少なく、また補助剤
として使用されるホワイトカーボンに帯電防止効
果があること(農薬生産技術、No.25、9頁、
1971)、あるいは特殊カチオン界面活性剤を含有
する帯電防止剤(デンキル・TS)を噴管部に被
覆すると帯電防止効果が認められる(農薬機械化
研究所報告、昭和48年3月、多口ホース噴頭用帯
電防止剤に関する研究)などの研究結果が開示さ
れている。 一方炭酸カルシウムは農薬粉剤の担体としてき
わめて有用である。一般に不安定といわれる有機
リン系およびカーバメート系の農薬主剤に対する
安定性も良好であり、かつ我国の炭酸カルシウム
鉱物の埋蔵量は豊富であり、従つてその供給性も
安定しており安価である。その上純度が高く狭雑
物が少ないなど農薬用担体として有利な点が多
い。しかし炭酸カルシウム粉末を主担体とした農
薬粉剤は散布時に噴管部などの静電帯電が強く、
散布作業者にしばしば強い電撃を与える欠点があ
る。 前記のように噴頭部に帯電防止剤を被覆する方
法もあるが、帯電防止効果も必らずしも充分では
なく、効果の持続性にも欠け、その上農薬粉剤の
散布に先立つて噴管部を帯電防止剤で処理する作
業もはん雑であるためかあまり実用されていな
い。 発明者等はかかる炭酸カルシウムを主担体とす
る農薬粉剤の散布時における静電帯電の抑制を、
農薬粉剤の処方構成の上で解決する方法につき研
究を重ねた結果、意外にも製剤中にタルクを若干
量配合することによつて特異的にこの帯電を抑制
し得ることを見出して本発明を完成した。 農薬粉剤の散布時に発生する帯電現象は充分明
らかではないが、散布機より吐出する粉体が散噴
管の内壁への衝突、摩擦あるいは剥離などによつ
て発生する静電気が原因とされており、手動の散
布機のように吐出する粉体の流速が遅いときは静
電気の発生量も少ないが、動力散布機のように高
速で吐出される場合には発生量が大となる。また
噴管部の材質が導電性であれば、発生した静電気
は遂次漏洩して帯電電位は低く維持されるが、塩
化ビニール製などの高絶縁材料からなる散噴管を
使用するときは電荷の漏洩が少なく帯電電位は高
くなる。 その他静電気発生は吐出粉体の種類、大気中の
湿度などによつても大きく影響を受けることが知
られているが、詳細な発生機構は明らかでなく、
防止対策のきわめて困難な技術領域の1つとなつ
ている。 一般に農薬粉剤は、1〜5%程度の有効成分と
若干量の主剤に対する安定化剤あるいは粉体の流
動性、付着性、凝集性など物理的性質を改善する
目的の補助剤および担体とから構成されている。
静電気の発生に対し主剤、補助剤の影響を無視す
ることは出来ないが、農薬粉剤の大部分を構成す
る担体の影響が最も強く現われるのは当然であ
る。本発明者等の検討でも、担体としてクレー、
タルク、ベントナイト、ゼオライト、ジークライ
ト、カオリン、珪石粉あるいはこれらの混合物を
使用する場合に比較して、炭酸カルシウムを使用
する農薬粉剤における静電帯電は概して強く現わ
れる傾向があつた。特に10ミクロン以下の微粉を
分級によりカツトした炭酸カルシウムを用いる場
合にこの傾向が明らかであつた。この10ミクロン
以下の微粉をカツトした炭酸カルシウムは、農薬
粉剤の散布時のドリフトを抑制し、環境汚染を防
止する上できわめて有用な農薬担体である。農薬
粉剤に使用される担体の粒度は、46ミクロンの篩
を95%以上通過するものであつて、ドリフト発生
に強く影響する10ミクロン以下の微粒子を可能な
かぎり分級などの手段によつてカツトしたものが
好ましい。しかし10ミクロン以下をカツトするに
は、高度の製造技術が要求され、かつ生産能率の
低下につながるので完全にカツトすることはかえ
つて担体の価格を上昇せしめ好ましくない。普通
20%、好ましくは15%以下となるまでカツトされ
た担体であればドリフト抑制上有利に使用出来
る。 具体的には、炭酸カルシウムあるいはその10ミ
クロン以下の微粉を分級カツトした炭酸カルシウ
ムを主担体として使用した農薬粉剤を、背負式動
力散布機で直噴管を装着して散布するとき、直噴
管部に発生する静電帯電の電位が−50KV以上に
も達することがあり、しばしば散布作業者に強い
電撃を与えた。普通空気中の物体が30KV以上の
高電位に帯電すると空気は絶縁性が破壊されて放
電が起るとされているので、帯電電位を少なくと
も±30KV以下、好ましくは±20KV以下に抑制出
来れば散布作業者に対する強い電撃をさけること
が出来、実用上帯電防止の目的を達することが出
来る。 かくの如く強い静電帯電を示す炭酸カルシウム
に対し、配合によつて帯電抑制効果を示すものを
種々検索した結果、意外にもタルクに予想外の効
果を見出すことが出来た。タルクを5%配合した
ときには電位を下げることが可能であるが、好ま
しくは10%以上の配合量で顕著な抑制効果が認め
られ±20KV以下とすることが充分可能である。
しかし農薬有効成分の種類、補助剤の構成によつ
ては5%以上であれば充分実用効果をあげること
は可能である。 その他では既に知られているホワイトカーボン
が有効であつたが、銘柄変動が大きくかつ効果も
本発明のタルクには及ばず、かつ、ホワイトカー
ボンはかなり高価な補助剤であるため経済的な効
果はタルクに比してはるかに劣る。その他の鉱物
質微粉、有機質または無機質粉体、高分子物質、
液状添加剤で見るべき効果を有するものは皆無で
あつた。 炭酸カルシウムを使用する農薬粉剤にタルクを
配合することによつて、好ましい範囲にまで帯電
を抑制出来る機構は全く不明である。たとえば炭
酸カルシウムを散布するとき直噴管の表面電位は
負に帯電し、タルクの場合には正に帯電するので
荷電の中和が起ることによることが推測される
が、このことはタルク以上に強く正に帯電される
物質を配合してもその効果が弱いか、殆んど認め
られない場合があることによつて否定される。タ
ルクにのみかかる帯電抑制効果がみられることは
全く驚くべきことである。 本発明で使用されるタルクについては、その純
度あるいは銘柄による限定はなく、普通農薬粉剤
に使用されているものであれば充分その効果を発
揮する。 また主剤の種類についても特に限定はなく、殺
菌剤、殺虫剤、除草剤、植物生長調節剤などいず
れの主剤にも適用出来る。補助剤についても、普
通農薬粉剤に使用されている種類のものであつ
て、その配合量の範囲内であれば本発明の目的を
そこなうものではない。 本発明の農薬粉剤を製造するには、何等特別な
機械、装置は必要でなく、一般に農薬粉剤を製造
する設備であればよく、原料全体を混合後粉砕す
る方式であつても、2倍あるいはそれ以上の濃厚
品を粉砕した後に担体で稀釈する方式であつても
いずれも適用出来、またタルクを配合する時期に
も特に限定はなく製造出来る。 次に試験例、実施例をあげて本発明を具体的に
説明する。記載中に%あるいは部とあるのはいず
れも重量基準である。 試験例 1 各種担体の帯電電位 (1) 装置 背負式動力散布機(共立農機製、DM−9
型)に直噴管(塩化ビニール製、40cm直管3本
と20cm曲管1本を接合した全長140cm)を装着
し、散布機を鉄製架台に、直噴管はその先端を
鉄製のスタンドでそれぞれ固定し、直噴管が地
上約1mになるようにした。直噴管のほゞ中央
部に発生する電位を、集電式電位測定器(春日
電気製、KS−325型)に記録計(春日電気製、
KR−500型)を接続した装置によつて測定出来
るように設置した。 (2) 測定 動力散布機のエンジン回転調節用スロツトル
レバーを5/10に、粉体吐出量調節用調量レバー
を5/10に設定し、試験粉体1Kgを散布し直噴管
表面に発生する帯電電位を測定記録した。電位
の記録値は散布開始時および散布終了時の散布
機内に残存する稀薄な粉体が吐出される時に異
常に高い電位を示すことがあるが、これら異常
値は削除し、定常状態で散布される時間内の記
録値(この定常状態においても上下に変動す
る)の上限値と下限値を平均した値を帯電電位
とした。また測定値は大気の温度、湿度の影響
が強く、日間変動が大きいので、基準粉体を設
定しその測定値が異常である測定日のデーター
は削除した。 (3) 測定結果
TECHNICAL FIELD The present invention relates to an agrochemical powder that suppresses electrostatic charging to the spout tube of a sprayer during spraying. Generally, when spraying pesticide powder with a power spreader,
Static electricity is generated in the jet tube made of vinyl chloride or nylon, but this charged potential is ±
If the voltage exceeds 30KV, spark discharge will occur between the jet pipe and the sprayer, and the sprayer will receive a strong electric shock. Although this electric shock is not a direct threat to human life because the voltage is high but the current is low, it poses a serious safety problem for spraying work, as it can frighten sprayers and cause them to lose their feet. Some research has been conducted in the past regarding electrostatic charges during pesticide spraying. For example, compared to calcium carbonate and clays, the charging of the spout tube by pesticide carriers is
It contains less talc, bentonite, etc., and the white carbon used as an adjuvant has an antistatic effect (Pesticide Production Technology, No. 25, p. 9,
1971), or when the jet tube is coated with an antistatic agent (Denkyl/TS) containing a special cationic surfactant, an antistatic effect is observed (Agrochemical Mechanization Research Institute report, March 1971, multi-mouthed hose jet). The results of research such as research on antistatic agents for antistatic agents have been disclosed. On the other hand, calcium carbonate is extremely useful as a carrier for pesticide powders. It has good stability against organic phosphorus and carbamate pesticide base agents, which are generally said to be unstable, and Japan has abundant reserves of calcium carbonate minerals, so its supply is stable and inexpensive. Moreover, it has many advantages as a carrier for agricultural chemicals, such as high purity and few impurities. However, pesticide powders containing calcium carbonate powder as a main carrier are strongly electrostatically charged in the jet tube and other areas during spraying.
It has the disadvantage of often giving the sprayer a strong electric shock. As mentioned above, there is a method of coating the spray head with an antistatic agent, but the antistatic effect is not always sufficient and the effect is not long lasting. It is not put into practical use, perhaps because the process of treating the parts with an antistatic agent is complicated. The inventors have developed a method for suppressing electrostatic charging during spraying of pesticide powders containing calcium carbonate as a main carrier.
As a result of repeated research into ways to solve the problem in the formulation of pesticide powders, we unexpectedly discovered that this electrostatic charge could be specifically suppressed by incorporating a small amount of talc into the formulation, and the present invention was developed. completed. The charging phenomenon that occurs when spraying pesticide powder is not fully understood, but it is thought to be caused by static electricity generated when the powder discharged from the sprayer collides with the inner wall of the spray tube, rubs, or peels off. When powder is discharged at a slow flow rate, such as in a manual spreader, the amount of static electricity generated is small, but when powder is discharged at high speed, as in a power spreader, the amount generated is large. Furthermore, if the material of the spout tube is conductive, the generated static electricity will leak out and the charged potential will be maintained low, but when using a spout tube made of highly insulating material such as vinyl chloride, the charge There is less leakage and the charged potential becomes higher. It is also known that the generation of static electricity is greatly affected by the type of discharged powder and the humidity in the atmosphere, but the detailed generation mechanism is not clear.
This is one of the technical areas in which preventive measures are extremely difficult. Pesticide powders generally consist of about 1 to 5% of active ingredients and a small amount of stabilizers for the main ingredient or auxiliary agents and carriers for the purpose of improving physical properties such as fluidity, adhesion, and cohesion of the powder. has been done.
Although the influence of the main agent and auxiliary agents on the generation of static electricity cannot be ignored, it is natural that the influence of the carrier, which constitutes the majority of the pesticide powder, appears most strongly. The present inventors also investigated clay as a carrier,
Electrostatic charges generally tended to be stronger in pesticide powders using calcium carbonate than when using talc, bentonite, zeolite, ziecrite, kaolin, silica powder, or mixtures thereof. This tendency was especially obvious when using calcium carbonate that had been classified into fine particles of 10 microns or less. Calcium carbonate, which has been cut into fine particles of 10 microns or less, is an extremely useful pesticide carrier that suppresses drift during spraying of pesticide powders and prevents environmental pollution. The particle size of the carrier used in pesticide powders is such that at least 95% of the particles pass through a 46 micron sieve, and as much as possible, fine particles of 10 microns or less, which strongly affect the occurrence of drift, are removed by means such as classification. Preferably. However, cutting to a size of 10 microns or less requires advanced manufacturing technology and leads to a decrease in production efficiency, so cutting completely is not preferable as it increases the price of the carrier. usually
A carrier cut to 20%, preferably 15% or less can be advantageously used to suppress drift. Specifically, when spraying pesticide powder that uses calcium carbonate or calcium carbonate, which is a finely divided powder of 10 microns or less, as the main carrier, with a backpack-type power sprayer equipped with a direct injection tube, The potential of the electrostatic charge generated in the area could reach -50KV or more, often giving the sprayer a strong electric shock. It is said that when an object in the air is charged to a high potential of 30KV or more, the insulation of the air is broken and discharge occurs, so if the charged potential can be suppressed to at least ±30KV or less, preferably ±20KV or less, spraying is possible. Strong electric shock to workers can be avoided, and the purpose of preventing static electricity can be achieved in practice. For calcium carbonate, which exhibits such a strong electrostatic charge, as a result of various searches for compounds that exhibit a charge-suppressing effect by blending, it was surprisingly possible to discover an unexpected effect in talc. When 5% of talc is added, it is possible to lower the potential, but preferably when the amount of talc is 10% or more, a remarkable suppressing effect is observed, and it is sufficiently possible to reduce the potential to below ±20 KV.
However, depending on the type of agricultural chemical active ingredient and the composition of the adjuvant, it is possible to achieve sufficient practical effects if the amount is 5% or more. In other cases, the already known white carbon was effective, but the brand fluctuation was large and the effect was not as good as the talc of the present invention, and white carbon is a fairly expensive auxiliary agent, so it has no economic effect. Much inferior to talc. Other fine mineral powders, organic or inorganic powders, polymeric substances,
None of the liquid additives had any noticeable effect. The mechanism by which electrification can be suppressed to a preferable range by adding talc to an agrochemical powder using calcium carbonate is completely unknown. For example, when spraying calcium carbonate, the surface potential of a direct injection pipe becomes negatively charged, while in the case of talc, it becomes positively charged, so it is assumed that this is due to the neutralization of the charge, but this is more than the case with talc. This is denied because even if a strongly positively charged substance is added to the battery, the effect may be weak or hardly noticeable at all. It is quite surprising that only talc has an antistatic effect. The talc used in the present invention is not limited by its purity or brand, and any talc commonly used in agrochemical powders will exhibit sufficient effects. There is also no particular limitation on the type of base agent, and any base agents such as fungicides, insecticides, herbicides, and plant growth regulators can be used. The adjuvants are also of the type commonly used in agricultural powders, and as long as they are blended in amounts within the range, they do not impede the purpose of the present invention. In order to produce the agrochemical powder of the present invention, no special machinery or equipment is required; any equipment that generally produces agrochemical powder may be used, and even if the entire raw material is mixed and then pulverized, Even if a more concentrated product is pulverized and then diluted with a carrier, any method can be applied, and there are no particular restrictions on the timing of blending talc. Next, the present invention will be specifically explained with reference to test examples and examples. All percentages and parts in the description are based on weight. Test example 1 Charged potential of various carriers (1) Equipment Back-type power spreader (manufactured by Kyoritsu Noki, DM-9
Attach a direct injection pipe (made of vinyl chloride, total length 140cm, consisting of three 40cm straight pipes and one 20cm curved pipe) to the mold), place the sprayer on a steel pedestal, and attach the tip of the direct injection pipe to an iron stand. Each was fixed so that the direct injection pipe was approximately 1 m above the ground. The potential generated approximately in the center of the direct injection pipe was measured using a current collector potential measuring device (Kasuga Electric, Model KS-325) and a recorder (Kasuga Electric, Model KS-325).
KR-500 model) was installed so that it could be measured by a device connected to it. (2) Measurement Set the throttle lever for adjusting the engine rotation of the power spreader to 5/10 and the metering lever for adjusting the powder discharge amount to 5/10, and spread 1 kg of test powder onto the surface of the direct injection pipe. The generated charging potential was measured and recorded. The recorded potential value may show an abnormally high potential when the dilute powder remaining in the sprayer is discharged at the start and end of spraying, but these abnormal values were deleted and the potential was sprayed in a steady state. The average value of the upper and lower limits of the recorded values (which fluctuate up and down even in this steady state) within a period of time was taken as the charging potential. In addition, since the measured values are strongly influenced by atmospheric temperature and humidity and vary widely from day to day, a reference powder was set and data on measurement days where the measured values were abnormal were deleted. (3) Measurement results

【表】 上表の如く殆んどの担体類が正の帯電であつ
たが、炭酸カルシウムは負に帯電しその電位も
高い。 試験例 2 各種添加物の効果 炭酸カルシウム(カツト品)に、次表に示す各
種添加物を配合し粉砕混合した後、試験例1に示
す方法によつて帯電電位を測定し、帯電抑制効果
をみた。
[Table] As shown in the table above, most carriers were positively charged, but calcium carbonate was negatively charged and its potential was high. Test Example 2 Effects of Various Additives Calcium carbonate (cut products) was blended with the various additives shown in the table below, ground and mixed, and then the charging potential was measured using the method shown in Test Example 1 to determine the charging suppression effect. saw.

【表】【table】

【表】 上記の通りタルクに顕著な帯電抑制効果が認め
られた。ただしホワイトカーボンの一部にも効果
は認められたが、ホワイトカーボンの多量の配合
は農薬粉剤のドリフトを助長し環境汚染につなが
るので好ましくない。 実施例 1 次表の処方で、農薬主剤のラブサイド(呉羽化
学、商品名)ドリフト防止剤のドリレスA(三共
株式会社、商品名)、吸収性担体のカープレツク
ス#80(塩野義製薬、商品名)およびタルク(蝶
印)を混合した後アトマイザーで粉砕して濃厚物
を得た。この濃厚物20部と炭酸カルシウム(カツ
ト品)80部をリボンミキサーで混合し本発明のラ
ブサイド粉剤を得た。 ラブサイド 2.5部 ドリレスA 0.5〃 カープレツクス#80 0.5〃 タルク(蝶印) 16.5〃 炭酸カルシウム(カツト品) 80.0〃 この農薬粉剤は散布時のドリフトも少なく、か
つ静電帯電も好ましい電位に抑されていた。 実施例 2 次表の処方で、農薬主剤のダイアジノン、同メ
オバール(住友化学、商品名)、ドリレスA吸収
性担体のソーレツクスCM(徳山曹達、商品名)
およびタルク(太平)を混合しアトマイザーで粉
砕して得られる濃厚物20部と炭酸カルシウム(カ
ツト品)80部をリボンミキサーで混合し本発明の
ダイアジノン、メオバール混合粉剤を得た。 ダイアジノン 1.0部 メオバール 1.5〃 ドリレスA 1.0〃 ソーレツクスCM 3.0〃 タルク(太平) 13.5〃 炭酸カルシウム(カツト品) 80.0〃 この農薬粉剤は、散布時のドリフトも少なく、
かつ静電帯電も好ましい程度に抑制されていた。 実施例 3 次表の処方で、ラブサイド、ダイアジノン、メ
オバール、ドリレスA、吸収性担体のカープレツ
クス#1120(塩野義製薬、商品名)およびタルク
(埼玉)を混合粉砕して得られた濃厚物30部と炭
酸カルシウム(カツト品)70部を混合して本発明
のラブサイド、ダイアジノン、メオバール混合粉
剤を得た。 ラブサイド 2.5部 ダイアジノン 1.0〃 メオバール 1.5〃 ドリレスA 1.5〃 カープレツクス#1120 1.5〃 タルク(埼玉) 22.0〃 炭酸カルシウム(カツト品) 70.0〃 この農薬粉剤は、散布時のドリフトも少なく、
静電帯電も抑制されていた。 実施例 4 次表の処方で、ラブサイド、スミチオン(往友
化学、商品名)、農薬主剤のバツサ、ドリレス
A、カープレツクス#80およびタルク(蝶印)を
混合粉砕して得た濃厚物40部と炭酸カルシウム
(カツト品)60部を混合して本発明の混合粉剤を
得た。 ラブサイド 2.5部 スミチオン 2.0〃 パツサ 2.0〃 ドリレスA 1.5〃 カープレツクス#80 3.0〃 タルク(蝶印) 29.0〃 炭酸カルシウム(カツト品) 60.0〃 この農薬粉剤は散布時、ドリフト、静電帯電と
もに好ましく抑制されていた。 参考例 1−1 タルク(蝶印)が炭酸カルシウム(重質)以外
は実施例1と同じ農薬粉剤。 参考例 1−2 タルク(蝶印)がクレーである以外は実施例1
と同じ農薬粉剤。 参考例 2−1 タルク(太平)が炭酸カルシウム(重質)であ
る以外は実施例2と同じ農薬粉剤。 参考例 2−2 タルク(太平)がクレーである以外は実施例2
と同じ農薬粉剤。 参考例 3−1 タルク(埼玉)が炭酸カルシウム(重質)であ
る以外は実施例3と同じ農薬粉剤。 参考例 3−2 タルク(埼玉)がクレーである以外は実施例3
と同じ農薬粉剤。 参考例 4−1 タルク(蝶印)が炭酸カルシウム(重質)であ
る以外は実施例4と同じ農薬粉剤。 参考例 4−2 タルク(蝶印)がクレーである以外は実施例4
と同じ農薬粉剤。 試験例 3 実施例および参考例で調製した農薬粉剤の散布
時の帯電電位を試験例1と同様に測定した。
[Table] As mentioned above, talc was found to have a remarkable antistatic effect. However, although some effects of white carbon were recognized, mixing a large amount of white carbon is not preferable because it promotes drift of the pesticide powder and leads to environmental pollution. Example 1 Using the formulations shown in the table below, the pesticide base Rabside (Kureha Chemical Co., Ltd., trade name), the anti-drift agent Drireless A (Sankyo Co., Ltd., trade name), and the absorbent carrier Carplex #80 (Shionogi & Co., Ltd., trade name) were used. ) and talc (butterfly) were mixed and ground with an atomizer to obtain a concentrate. 20 parts of this concentrate and 80 parts of calcium carbonate (cut product) were mixed with a ribbon mixer to obtain a rubside powder of the present invention. Loveside 2.5 parts Drillless A 0.5〃 Carplex #80 0.5〃 Talc (butterfly mark) 16.5〃 Calcium carbonate (cut product) 80.0〃 This pesticide powder has little drift during spraying, and electrostatic charge is suppressed to a favorable potential. Ta. Example 2 Using the formulation shown in the table below, the pesticide main ingredient Diazinon, the same Meoval (Sumitomo Chemical, trade name), and the Drileless A absorbent carrier Sorex CM (Tokuyama Soda, trade name) were used.
20 parts of a concentrate obtained by mixing and talc (Taihei) and pulverizing with an atomizer and 80 parts of calcium carbonate (cut product) were mixed with a ribbon mixer to obtain a mixed powder of diazinon and meoval of the present invention. Diazinon 1.0 parts Meoval 1.5〃 Driles A 1.0〃 Sorex CM 3.0〃 Talc (Taihei) 13.5〃 Calcium carbonate (cut product) 80.0〃 This pesticide powder has little drift during spraying,
Moreover, electrostatic charging was also suppressed to a desirable degree. Example 3 Concentrate 30 obtained by mixing and pulverizing Loveside, Diazinon, Meobal, Driles A, the absorbent carrier Carplex #1120 (Shionogi & Co., Ltd., trade name) and talc (Saitama) according to the formulation shown in the following table. and 70 parts of calcium carbonate (cut product) to obtain a mixed powder of rubcide, diazinon, and meovar of the present invention. Loveside 2.5 parts Diazinon 1.0〃 Meoval 1.5〃 Driles A 1.5〃 Carplex #1120 1.5〃 Talc (Saitama) 22.0〃 Calcium carbonate (cut product) 70.0〃 This pesticide powder has less drift during spraying,
Electrostatic charging was also suppressed. Example 4 40 parts of a concentrate obtained by mixing and pulverizing Loveside, Sumithion (trade name, Oyu Kagaku), pesticide base Batsa, Dorileth A, Carplex #80, and talc (butterfly stamp) according to the formulation shown in the following table. and 60 parts of calcium carbonate (cut product) were mixed to obtain a mixed powder of the present invention. Loveside 2.5 parts Sumithion 2.0 Patsa 2.0 Drillless A 1.5 Carplex #80 3.0 Talc (butterfly) 29.0 Calcium carbonate (cut product) 60.0 This agricultural chemical powder suppresses both drift and electrostatic charge during spraying. was. Reference Example 1-1 Agrochemical powder as in Example 1 except that talc (butterfly) is calcium carbonate (heavy). Reference example 1-2 Example 1 except that the talc (butterfly stamp) is clay
The same pesticide powder. Reference Example 2-1 The same pesticide powder as in Example 2 except that talc (Taihei) is calcium carbonate (heavy). Reference example 2-2 Example 2 except that talc (Taihei) is clay
The same pesticide powder. Reference Example 3-1 The same pesticide powder as in Example 3 except that talc (Saitama) is calcium carbonate (heavy). Reference example 3-2 Example 3 except that talc (Saitama) is clay
The same pesticide powder. Reference Example 4-1 The same pesticide powder as in Example 4 except that talc (butterfly) is calcium carbonate (heavy). Reference example 4-2 Example 4 except that the talc (butterfly stamp) is clay
The same pesticide powder. Test Example 3 The charged potential during spraying of the pesticide powders prepared in Examples and Reference Examples was measured in the same manner as in Test Example 1.

【表】 上表の通り本発明の農薬粉剤はいずれも好まし
い電位(±20KV)以内に帯電が抑制された。 試験例 4 試験例1で使用した背負式動力散布機に直噴管
を装着し、実施例および参考例で調製した農薬粉
剤のうちから選んだ6種類のサンプル3Kgを実際
に散布し、散布者に感ずる放電による電撃の程度
を調査した。散布者はゴム製運動靴、軍手を着用
して散布機を背負い直噴管を保持した。またこの
時の気温は12℃で相対湿度は38%の低温乾燥の気
象条件下であつた。
[Table] As shown in the table above, all of the agrochemical powders of the present invention suppressed charging to within the preferred potential (±20 KV). Test Example 4 A direct injection tube was attached to the backpack-type power sprayer used in Test Example 1, and 3 kg of six types of agricultural chemical powders prepared in Examples and Reference Examples were actually sprayed, and the sprayer The degree of electric shock caused by discharge was investigated. The sprayer wore rubber sports shoes and work gloves, carried the sprayer on his back, and held the direct injection pipe. Also, the temperature at this time was 12°C and the relative humidity was 38%, which was a low and dry weather condition.

【表】【table】

【表】 静電気の発生しやすい気象条件下であつたが、
本発明の農薬粉剤は顕著に帯電を抑制出来た。
[Table] Although the weather conditions were such that static electricity was easily generated,
The agrochemical powder of the present invention was able to significantly suppress electrification.

Claims (1)

【特許請求の範囲】 1 炭酸カルシウム粉末を主担体とする農薬粉剤
に、タルクが5%以上配合されたことを特徴とす
る農薬粉剤。 2 炭酸カルシウム粉末が、実質的に46ミクロン
以下であり、かつ全粉末中における10ミクロン以
下の粉末の含量が20%以下である特許請求の範囲
第1項記載の農薬粉剤。
[Scope of Claims] 1. A pesticide powder comprising calcium carbonate powder as a main carrier and 5% or more of talc. 2. The agrochemical powder according to claim 1, wherein the calcium carbonate powder is substantially 46 microns or less, and the content of powder of 10 microns or less in the total powder is 20% or less.
JP3721878A 1978-03-30 1978-03-30 Powered pesticide having suppressed static electrification Granted JPS54129128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3721878A JPS54129128A (en) 1978-03-30 1978-03-30 Powered pesticide having suppressed static electrification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3721878A JPS54129128A (en) 1978-03-30 1978-03-30 Powered pesticide having suppressed static electrification

Publications (2)

Publication Number Publication Date
JPS54129128A JPS54129128A (en) 1979-10-06
JPS6115841B2 true JPS6115841B2 (en) 1986-04-26

Family

ID=12491444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3721878A Granted JPS54129128A (en) 1978-03-30 1978-03-30 Powered pesticide having suppressed static electrification

Country Status (1)

Country Link
JP (1) JPS54129128A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491533A (en) * 1972-05-09 1974-01-08
JPS498263A (en) * 1972-03-23 1974-01-24
JPS4917577A (en) * 1972-06-12 1974-02-16
JPS4928981A (en) * 1972-07-14 1974-03-14
JPS50154431A (en) * 1974-05-20 1975-12-12
JPS5462324A (en) * 1977-10-25 1979-05-19 Nippon Nohyaku Co Ltd Non-medical powdered agent
JPS5744644A (en) * 1980-06-27 1982-03-13 Ciba Geigy Ag Pyrrole-stabilized chlorine-containing thermoplastic resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498263A (en) * 1972-03-23 1974-01-24
JPS491533A (en) * 1972-05-09 1974-01-08
JPS4917577A (en) * 1972-06-12 1974-02-16
JPS4928981A (en) * 1972-07-14 1974-03-14
JPS50154431A (en) * 1974-05-20 1975-12-12
JPS5462324A (en) * 1977-10-25 1979-05-19 Nippon Nohyaku Co Ltd Non-medical powdered agent
JPS5744644A (en) * 1980-06-27 1982-03-13 Ciba Geigy Ag Pyrrole-stabilized chlorine-containing thermoplastic resin

Also Published As

Publication number Publication date
JPS54129128A (en) 1979-10-06

Similar Documents

Publication Publication Date Title
CN106665569A (en) Flight control auxiliary and preparation method thereof
CN103688971B (en) A kind of big granule of paddy field weed-killer and preparation method thereof
CN101755735B (en) Ultra-low volume liquid medicament for controlling cotton noctuidae pest
CA2064157A1 (en) Sprayable agricultural compositions
JPS6115842B2 (en)
US2858250A (en) Pesticidal composition containing a water dispersible lignin sulfonic acid
JPS6115841B2 (en)
CN101703066A (en) Ultralow-volume compound medicament for preventing and controlling cotton aphids
CN101755733B (en) Prochloraz electrostatic oiling agent
JP4514212B2 (en) Agrochemical active ingredient controlled release agricultural chemical composition
CN101731256B (en) Electrostatic oil agent of binary composition of prochloraz and tebuconazole
US3253985A (en) Process for applying gelled compositions of insecticides
JPS6116241B2 (en)
CN101755832A (en) Ultra-low volume combination medicament for controlling rice-stem borer
CN112167256A (en) Compound granule containing thifluzamide and fluazinam and preparation method and application thereof
CN108835108A (en) Trifloxystrobin electrostatic oil agent and preparation method thereof
CN104604875A (en) Bactericide composition comprising sedaxane and picoxystrobin as well as application of bactericide composition
US3164516A (en) Insecticidal compositions containing lignin sulfonic acid
JPS6027642B2 (en) Fungicide for agriculture and horticulture
US3253984A (en) Process for applying gelled compositions of fungicides
CN108849867A (en) Fluazinam electrostatic oil agent and preparation method thereof
CN108849903A (en) Isoprothiolane electrostatic oil agent and preparation method thereof
JPS644482B2 (en)
CN101755743B (en) Fenvalerate-containing ultralow-volume electrostatic oil agent
CN86101447A (en) Prescription of germicide-acaricide with sulphur suspending liquid used in agriculture