JPS61158315A - Driving method of liquid crystal - Google Patents

Driving method of liquid crystal

Info

Publication number
JPS61158315A
JPS61158315A JP59278388A JP27838884A JPS61158315A JP S61158315 A JPS61158315 A JP S61158315A JP 59278388 A JP59278388 A JP 59278388A JP 27838884 A JP27838884 A JP 27838884A JP S61158315 A JPS61158315 A JP S61158315A
Authority
JP
Japan
Prior art keywords
signal
driving
liquid crystal
period
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59278388A
Other languages
Japanese (ja)
Other versions
JPH0410050B2 (en
Inventor
Morio Oota
太田 守雄
Hideaki Inoue
秀昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Original Assignee
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Casio Electronics Manufacturing Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP59278388A priority Critical patent/JPS61158315A/en
Priority to US06/769,732 priority patent/US4755812A/en
Priority to DE19853530740 priority patent/DE3530740A1/en
Priority to GB08522290A priority patent/GB2169431B/en
Priority to FR8514281A priority patent/FR2575576B1/en
Priority to KR8509518A priority patent/KR900001585B1/en
Publication of JPS61158315A publication Critical patent/JPS61158315A/en
Publication of JPH0410050B2 publication Critical patent/JPH0410050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1238Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point
    • G06K15/1242Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line
    • G06K15/1252Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line using an array of light modulators, e.g. a linear array
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To expand a temperature range in which a liquid crystal optical shutter can be exactly operated and to increase the quantity of transmitted light in case of time division driving by adopting a signal including a signal having frequency higher than a specific frequency and a non-signal as a driving waveform setting up closed status in a selection period. CONSTITUTION:Microshutters 15a-18b to which recording signals 19, 20 and a selecting signal are impressed input a ON-ON driving signal 21 and an ON- OFF driving signal 22 which are superposed signals of both the signals as shown in Fig.C. Inthe period 21 of a selecting period TL3 in the first half Tw/2, the ON-ON driving signal 21 includes a low frequency signal fL3 and the OFF-OFF driving signal 22 includes a non-signal (O). In the period of TL3, an ON-OFF driving signal includes a low frequency signal of fL3 and an OFF-ON driving signal includes a non-signal period. Thus, the insertion of the low frequency signal of fL3 in the selecting period Tw/2 of ON driving makes it possible to orientate liquid crystal molecules more strongly to the electric field direction and strengthen the ON status moreover.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、液晶の駆動法に係り、特に液晶を時分割駆動
する際の駆動法に関するものである。 〔従来技術〕 液晶光シャフタを用いた記録装置は、制御回路により液
晶光シャッタに設けられた多数のマイクロシャッタを開
閉駆動し、光源の光を遮断または透過することにより記
録体に光書き込みを行う装置である。このような記録装
置では液晶の高速応答が要求されるため2通常電場の周
波数により誘電異方性の反転する液晶を用い、誘電異方
性を零とする周波数(以下fcと称す)より高い周波数
(以下fHと称す)と低い周波数(以下f、と称す)と
の2周波により駆動させる。このような液晶光シャッタ
では、1mmあたり10ドツト程度の密度で記録が行な
われており2例えばA4サイズの場合1行当り約3,0
00 (11のマイクロシャッタを必要としている。従
って通常、配線数、実装面積の増大を防止する為、液晶
光シャッタは時分割駆動により駆動されている。この時
分割駆動は、液晶光シャッタに共通電極と信号電極とを
互いに直交させて設け1両電極の共通部分にマイクロシ
ャッタを構成し、信号電極に記録信号を入力し、共通電
極に時分割された選択信号を入力することにより駆動し
ている。 しかしながら、このような時分割駆動1例えば2時分割
駆動では、−書き込み周期Tw間に半分の時間しか光を
透過できず、n時分割駆動ではさらに透過時間は短くな
り、被照射体に対して露光量の不足となる。そこで1選
択信号により一書き込み周期Twの選択された期間Tu
+ / nにマイクロシャッタの開又は閉を設定し、−
書き込み周期Twの残りの期間(以下非選択期間で示す
)(1−1/n ) T、JJは、設定された状態を実
質的に持続するような駆動が行われている。例えば。 2時分割駆動では第2図(a)に示すようなfH倍信号
fL倍信号fH倍信号びfL倍信号位相が180度異l
6*fH信号及び*fL信号とを−書き込み周期間に混
在する駆動パターン信号を作成し、この信号を共通電極
に与え、さらに同図(b)に示す4つの駆動パターン信
号1〜4の1つを選択して信号電極に与えることにより
同図(C1に示す4種類の重畳信号5〜8を作成し、こ
の重畳信号の1つをマイクロシャッタに与えるられるこ
とによりマイクロシャッタを開閉駆動する。また、他方
の共通電極には上述の共通電極に与えられる信号とはT
w/2位相の異なる信号が与えられる為、マイクロシャ
ッタには同図<c)に示す信号と同様の重畳信号がTw
/2位相を異ならせて与えられ、対応するマイクロシャ
ッタを開閉駆動する。 これらの重畳信号5〜8が与えられた時のマイクロシャ
ッタの光透過率特性を、同図(d)に示す。 光透過率特性9は、対をなすマイクロシャッタとともに
開とするため、信号電極にパターン信号1を与え、共通
電極に同図(alのパターン信号を与えた時作成される
重畳信号5による特性であり、光透過率特性10は対を
なす信号電極にマイクロシャッタの一方を開、他方を閉
とするため、パターン信号2を与え、共通電極に同図(
alのパターン信号を与えた時の重畳信号6による特性
である。同様にして、光透過率特性11.12について
も上述の反対に対をなすマイクロシャッタの一方を閉。 山男を開とするため、又は、マイクロシャッタをともに
閉とするためのパターン信号3.4を与えた時の重畳信
号7.8による特性である。ここで。 同図(C) ニ示し〔fL+rH〕信号はfL倍信号f
、4信号の重畳信号を示し、−(fL+*fM)信号は
fL、信号とIfH信号の重畳信号を示し。 〔0〕は無信号を示す。 このように液晶光シャッタを駆動することにより、n時
分割駆動の場合には非選択期間(1−1/n)  T、
においても選択したマイクロシャ・ツタを開状態に維持
することができ、−書き込みT、の周期最後の期間にf
L倍信号与えられマイクロシャフタを開放し、液晶特有
の履歴効果をカットシ、実質的に液晶光シャッタをスタ
ティック駆動すると同様に開閉させることができる。 〔従来技術の問題点〕 しかしながら、上述に対するような液晶光シャッタの時
分割駆動法においては、液晶の履歴効果をカットできる
としてもその適正温度範囲は2〜3 degと狭く、ま
た、液晶材料の品質差によって。 適正温度が多少異なるため記録装置毎に異なる温度設定
ををする必要が有った。また、特にCH(ゲスト・ホス
ト)形液晶剤を用いた液晶光シャッタではシャツタ開時
の透過光量が少ない欠点を有している。 〔発明の目的〕 本発明は上記従来の欠点に鑑み、液晶光シャッタを時分
割駆動した場合において、液晶光シャッタが正確に動作
する温度範囲を拡大すると共に透過光量を増大した液晶
光シャッタの駆動法を提供することを目的とするもので
ある。 〔発明の要点〕 本発明は上記目的を達成するために、特定駆動周波数で
誘電異方性が反転する液晶を゛時分割駆動する際9時分
割された選択期間に前記液晶の開閉状態を設定する駆動
波形を与え、非選択期間には直前の選択期間に設定され
た状態を実質的に継続させる駆動波形を与える駆動方法
において、前記選択期間に開状態を設定する駆動波形は
前記特定周波数より低い周波数信号と、前記特定周波数
よりも低い周波数信号と前記特定周波数よりも高い周波
数信号の重畳信号を含み、前記選択期間に閉状態を設定
する駆動波形は前記特定周波数よりも高い周波数信号と
無信号とを含む信号であることを特徴とする。 〔発明の実施例〕 以下本発明の実施例について図面を参照しながら詳述す
る。 本実施例は2時分割駆動を用いており、第3図に本発明
で用いる液晶光シャッタの一部の構成を示す。同図にお
いて、共通電極13.14と信号電極15〜18は互い
に直交して設けられ9両電極の共通部分は透明電極で構
成されるマイクロシャッタ15a、15b 〜18a、
18bが設けられ、信号電極15〜18に記録信号を入
力し、共通型+i13.14に選択信号を入力する。 第1図(a)は信号電極15〜18に入力される記録信
号を示し、同図(b)は共通電極13に入力される選択
信号を示す。また、共通電極14には共通電極13に与
えられる信号とT、、、/2位相の異なる信号が与えら
れる。また、信号電極15〜18に入力される記録信号
の中で同図(alでは特にオン−オン記録信号19はオ
フ−オフ記録信号20を示し、オン−オフ及びオフ−オ
ン記録信号はこれらの前半と後半とを組合わせたもので
1図示していないが、第2図(blの2.3の波形と同
様の組合せで構成される。また同図において、信号fL
2゜TL3はf、信号と同様、交差周波数よりも低い周
波数を表しているが2本実施例では所定期間(TL+、
TL3)に整数個の波形が収まるようにfL傷信号は異
なる周波数の信号を用いている。 従って、これらの記録信号19.20と選択信号が印加
されたマイクロシャ・ツタ15a〜18bでは、同図(
C1に示すように両信号の重畳信号であるオン−オン駆
動信号21とオフ−オフ駆動信号22が与えられること
になる。このオン−オン駆動信号21とは第2図fc)
に示す従来のオン−オン駆動信号5.オフ−オフ駆動信
号8と異なり、前半のTw/2の選択期間のTL、3の
期間21においては、TL3の低周波信号が含まれてお
り、オフ−オフ駆動信号22においては、 〔0〕の無
信号が含まれている。また2図示しないオン−オフ駆動
信号においては、T、3の期間f−L3の低周波信号が
含まれ、オフ−オン駆動信号におては無信号の期間が含
まれている。 このようにオン駆動のTw/2の選択期間にTL3の低
周波信号が挿入されることは、液晶分子をより強(電界
の方向に配向させ、よりオン傾向を強めることになる。 従って、第1図(d)の光透過率は特性に示すように、
マイクロシャッタ15a〜18bのオン−オン応答特性
23及びオン−オフ応答特性24はTL3の期間光透過
率を向上させる。すなわち、オン−オフ駆動信号21の
(fL。 +rM)信号によって、成るレベルまで低下した光透過
率を元に回復させ、よりオン光量を、増大させることが
できる。 また、オフ駆動の選択期間に〔0〕の無信号がfH倍信
号代って挿入されることにより、液晶のオンに移項する
誘電緩和を弱め、自然緩和へと向かうことになり、オフ
応答を悪化させるよう作用すると考えられるが、実際に
は同図(dlにオフ−オン応答特性25.オフ−オフ応
答特性26として示すように、大きな変化はないだけで
なく2両特性25.26のバランスが良好な方向に作用
する。 以上のように1選択期間T LIJ/ 2の一部の期間
TL3にTL3の低周波を挿入した波形を使用すること
に、より、オン駆動信号ではf、3信号により、より強
力なオン効果を得、オフ駆動信号では〔0〕の無信号に
より、いわゆる高周波履歴効果を阻止することができる
。従って、繰り返し動作を行う液晶光シャッタにおいて
は、動作効率のよい開閉駆動を行うことができる。又、
高周波成分が減り、低周波成分が増えたことにより、温
度特性が著しく改善され、広い温度範囲にわたり、適正
動作を行うことができる。第4図(a)、 (b)はこ
の結果を示すもので27.31はオン−オン駆動特性、
28.32はオン−オフ駆動特性、29.33はオフ−
オン駆動特性、30.34はオフ−オフ駆動特性をそれ
ぞれ示し、従来の駆動信号によるマイクロシャッタ透過
光量(第4図(a))と本発明の駆動信号による透過光
量(第4図(b))の温度に対する比較を示すものであ
る。すなわち、上述のようなマイクロシャッタが効率よ
く、開閉駆動を行う温度範囲は、同図(a)に示す45
℃〜48℃の狭い範囲に比べて1本発明の場合には同図
(blに示すように40℃〜50℃の広い適正温度範囲
を有しており1本発明により、温度範囲が広がったこと
を表している。 次に、第5図を用いて本発明による他の実施例を以下で
説明する。 本実施例は、第1図と比較してT1.IJ/2の選択期
間にfL3信号を挿入する期間を設けた点は同様である
が、非選択期間の選択信号に第5図(blに示すT1.
lvの期間にfHv信号を挿入した点が異なる。このf
 Hv信号を第6図(blに拡大して示す。 また、第5図(a)のオフ−オフ記録信号35のfH倍
信号一部拡大して同図(81に示す。fH倍信号f H
V信号とを合成した波形図は第6図(C)の波形となる
。すなわち、第5図(alに示す信号電極に加わる駆動
信号35と同図山)に示す共通電極に加わる駆動信号と
がマイクロシャッタに印加されると同図(C1に示す波
形となり、第6図(C1の波形は第5図Cの(f、−f
、、)信号を拡大したものである。この信号は、従来の
(rL”rs)信号に比べて、デユーティが小さく、従
って実効値の低い重畳信号となる。また、第5図(al
のオン−オン駆動信号36のfL倍信号同図(b)の選
択信号がマイクロシャッタに印加されることにより作成
されるオン−オン駆動信号37及び図示しないオフ−オ
ン駆動信号の(f −、f N−)信号も同様な信号と
なる。 このようにf M V信号を非選択期間に挿入すること
により、オン駆動ではオンの持続をやや弱める方向に、
オフ駆動では、高温下で開き気味にならないように作用
する。この事は同図(d)に示すように期間TL3の間
、開動作を幾分性めるように働く。 以上のように、液晶の有する誘電特性及び温度特性に最
も適合すべく1選択期間の7.3期間にfL]信号を加
えさらに非選択期間にfH9信号を含む選択信号を与え
ることにより、広い塩度範囲で繰り返し動作が良好な液
晶光シャッタの時分割駆動を提供することができる。ま
た、この場合にもT、3期間に加えられるfL3信号効
果により、オフ特性を悪化させずにオン特性を著しく改
善でき、明るい液晶光シャッタを実現することができる
。 また、液晶材料の変更、変化に対しても、動作温度が敏
感でなくなり、より柔軟性が向上する。 〔発明の効果〕 以上詳細に説明したように本発明によれば、液晶光シャ
ッタを正確に制御できる適正動作温度範囲が従来の2〜
3 degに比ベロ deg以上に広くなると共に被記
録体への照射光量を増加することができる。 また、動作温度が広くなったため、液晶材料の変更等に
対し融通性が増すことになる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for driving a liquid crystal, and particularly to a method for driving a liquid crystal in a time division manner. [Prior art] A recording device using a liquid crystal light shutter uses a control circuit to open and close a large number of microshutters provided in the liquid crystal light shutter, and performs optical writing on a recording medium by blocking or transmitting light from a light source. It is a device. In such a recording device, a high-speed response of the liquid crystal is required.2 Normally, a liquid crystal whose dielectric anisotropy is inverted depending on the frequency of the electric field is used, and a frequency higher than the frequency at which the dielectric anisotropy becomes zero (hereinafter referred to as fc) is used. It is driven by two frequencies: (hereinafter referred to as fH) and a low frequency (hereinafter referred to as f). In such a liquid crystal optical shutter, recording is performed at a density of about 10 dots per 1 mm2, and for example, in the case of A4 size, the density is about 3.0 dots per line.
00 (Requires 11 micro-shutters. Therefore, in order to prevent an increase in the number of wiring lines and mounting area, liquid crystal optical shutters are normally driven by time-division driving. This time-division driving is common to liquid crystal optical shutters. The electrode and the signal electrode are arranged perpendicularly to each other, and a micro-shutter is formed in the common part of the two electrodes, and the recording signal is input to the signal electrode, and the time-divided selection signal is input to the common electrode to drive the shutter. However, in such time-division driving (1, for example, 2-time division driving), the light can only be transmitted for half the time during the - writing period Tw, and in n-time division driving, the transmission time becomes even shorter, and the light is not transmitted to the irradiated object. Therefore, the selected period Tu of one writing cycle Tw is caused by the 1 selection signal.
Set the micro shutter open or close to +/n, and -
During the remaining period of the write cycle Tw (hereinafter referred to as a non-selection period) (1-1/n), T and JJ are driven so as to substantially maintain the set state. for example. In two-time division driving, the phases of the fH times signal, fL times signal, fH times signal, and fL times signal differ by 180 degrees as shown in Fig. 2(a).
6. Create a drive pattern signal in which the *fH signal and *fL signal are mixed during the writing cycle, apply this signal to the common electrode, and then apply the four drive pattern signals 1 to 4 shown in FIG. By selecting one of these signals and applying them to the signal electrodes, four types of superimposed signals 5 to 8 shown in FIG. Furthermore, the signal given to the other common electrode is T.
Since signals with different phases of w/2 are given, the micro shutter receives a superimposed signal similar to the signal shown in <c) in the same figure.
/2 phases are applied to open and close the corresponding micro shutters. The light transmittance characteristics of the microshutter when these superimposed signals 5 to 8 are applied are shown in FIG. 4(d). The light transmittance characteristic 9 is a characteristic based on the superimposed signal 5 created when the pattern signal 1 is applied to the signal electrode and the pattern signal shown in the same figure (al) is applied to the common electrode in order to open the paired micro-shutter. In light transmittance characteristic 10, pattern signal 2 is applied to the pair of signal electrodes to open one of the microshutters and close the other, and the pattern signal 2 is applied to the common electrode (
This is the characteristic of the superimposed signal 6 when the pattern signal of al is applied. Similarly, for light transmittance characteristics 11 and 12, one of the paired micro shutters is closed in the opposite manner as described above. This is the characteristic due to the superimposed signal 7.8 when the pattern signal 3.4 for opening the mountain man or for closing both the micro shutters is applied. here. The signal shown in Fig. 2 (C) [fL+rH] is fL times the signal f
, indicates a superimposed signal of four signals, and the -(fL+*fM) signal indicates a superposed signal of fL, signal and IfH signal. [0] indicates no signal. By driving the liquid crystal optical shutter in this way, in the case of n time division driving, the non-selection period (1-1/n) T,
The selected microshape can also be kept open during the last period of the cycle of - writing T,
When the microshutter is opened in response to the L times signal and the hysteresis effect peculiar to the liquid crystal is cut out, the liquid crystal light shutter can be opened and closed in the same way as statically driven. [Problems with the prior art] However, in the time-division driving method of the liquid crystal optical shutter as described above, even if the hysteresis effect of the liquid crystal can be cut, the appropriate temperature range is as narrow as 2 to 3 degrees. Due to quality difference. Since the appropriate temperature differs somewhat, it was necessary to set a different temperature for each recording device. In addition, a liquid crystal light shutter using a CH (guest-host) type liquid crystal agent has the disadvantage that the amount of transmitted light is small when the shutter is open. [Object of the Invention] In view of the above-mentioned conventional drawbacks, the present invention provides a driving method for a liquid crystal light shutter that expands the temperature range in which the liquid crystal light shutter operates accurately and increases the amount of transmitted light when the liquid crystal light shutter is time-divisionally driven. The purpose is to provide law. [Summary of the Invention] In order to achieve the above object, the present invention sets the open/closed state of the liquid crystal in 9 time-divided selection periods when time-divisionally driving a liquid crystal whose dielectric anisotropy is reversed at a specific driving frequency. In a driving method that provides a driving waveform that substantially continues the state set in the immediately preceding selection period during a non-selection period, the driving waveform that sets the open state during the selection period is higher than the specific frequency. The drive waveform includes a low frequency signal, a superimposed signal of a frequency signal lower than the specific frequency, and a frequency signal higher than the specific frequency, and the drive waveform that sets the closed state in the selected period is a frequency signal higher than the specific frequency. The signal is characterized in that it is a signal that includes a signal. [Embodiments of the Invention] Examples of the present invention will be described in detail below with reference to the drawings. This embodiment uses two-time division driving, and FIG. 3 shows a partial configuration of the liquid crystal optical shutter used in the present invention. In the figure, common electrodes 13, 14 and signal electrodes 15 to 18 are provided perpendicularly to each other, and the common portions of the two electrodes are micro shutters 15a, 15b to 18a, which are made of transparent electrodes.
18b is provided to input a recording signal to the signal electrodes 15 to 18, and input a selection signal to the common type +i13.14. FIG. 1(a) shows recording signals input to the signal electrodes 15 to 18, and FIG. 1(b) shows a selection signal input to the common electrode 13. Further, the common electrode 14 is provided with a signal having a phase different from that of the signal provided to the common electrode 13 by T, . . . /2. Also, among the recording signals input to the signal electrodes 15 to 18, the on-on recording signal 19 indicates the off-off recording signal 20, and the on-off and off-on recording signals are It is a combination of the first half and the second half, which is not shown in Figure 1, but is composed of the same combination as the waveform in 2.3 of Figure 2 (bl).In the same figure, the signal fL
2゜TL3 represents a frequency lower than the crossover frequency like f and the signal, but in this embodiment, the predetermined period (TL+,
The fL flaw signal uses signals of different frequencies so that an integer number of waveforms can fit in TL3). Therefore, in the microshafts 15a to 18b to which these recording signals 19, 20 and selection signals are applied,
As shown in C1, an on-on drive signal 21 and an off-off drive signal 22, which are superimposed signals of both signals, are provided. What is this on-on drive signal 21?
The conventional on-on drive signal shown in 5. Unlike the off-off drive signal 8, a low frequency signal of TL3 is included in the first half Tw/2 selection period TL, period 21 of 3, and the off-off drive signal 22 contains [0] Contains no signal. Further, the on-off drive signal (not shown) includes a low frequency signal of period f-L3 of T and 3, and the off-on drive signal includes a no-signal period. Inserting the low frequency signal of TL3 into the selection period of Tw/2 of the on drive in this way makes the liquid crystal molecules stronger (orientate in the direction of the electric field) and strengthens the on tendency. As shown in the characteristics, the light transmittance in Figure 1 (d) is
The on-on response characteristics 23 and the on-off response characteristics 24 of the micro shutters 15a to 18b improve the light transmittance during TL3. That is, by using the (fL.+rM) signal of the on-off drive signal 21, the light transmittance that has decreased to a certain level can be restored to the original level, and the amount of on-light can be further increased. In addition, by inserting a no signal of [0] in place of the fH multiplied signal during the off-drive selection period, the dielectric relaxation that shifts the liquid crystal to on is weakened, and the transition to natural relaxation occurs, resulting in an off-response. However, in reality, as shown in the same figure (dl as off-on response characteristic 25 and off-off response characteristic 26), there is not only no major change but also the balance between the two characteristics 25 and 26. As described above, by using a waveform in which the low frequency of TL3 is inserted into a part of period TL3 of one selection period TLIJ/2, the f,3 signal is , a stronger ON effect can be obtained, and the so-called high frequency hysteresis effect can be prevented by the no signal of [0] in the OFF drive signal.Therefore, in a liquid crystal optical shutter that operates repeatedly, it is possible to achieve a more efficient opening/closing effect. Drive can be performed.Also,
By reducing high-frequency components and increasing low-frequency components, temperature characteristics are significantly improved and proper operation can be performed over a wide temperature range. Figures 4(a) and (b) show the results; 27.31 is the on-on drive characteristic;
28.32 is on-off drive characteristic, 29.33 is off-
The on-drive characteristic and 30.34 indicate the off-off drive characteristic, and the amount of light transmitted through the micro-shutter by the conventional drive signal (Figure 4(a)) and the amount of transmitted light by the drive signal of the present invention (Figure 4(b)) are shown. ) shows a comparison with respect to temperature. In other words, the temperature range in which the micro-shutter as described above can be efficiently opened and closed is 45°C as shown in Figure (a).
Compared to the narrow range of ℃ to 48℃, the present invention has a wide appropriate temperature range of 40℃ to 50℃ as shown in the same figure (bl). Next, another embodiment according to the present invention will be described below using FIG. 5. Compared to FIG. 1, this embodiment shows that fL3 is It is similar in that a period for inserting a signal is provided, but T1.
The difference is that the fHv signal is inserted into the lv period. This f
The Hv signal is shown enlarged in FIG. 6 (bl). Also, the fH multiplied signal of the off-off recording signal 35 in FIG. 5(a) is partially enlarged and shown in the same figure (81).
The waveform diagram obtained by combining the V signal and the V signal becomes the waveform shown in FIG. 6(C). That is, when the drive signal 35 applied to the signal electrode shown in FIG. (The waveform of C1 is (f, -f
,,) is an enlarged version of the signal. This signal has a smaller duty than the conventional (rL"rs) signal, and therefore becomes a superimposed signal with a low effective value. Also, FIG.
The on-on drive signal 37 is created by applying the fL times the on-on drive signal 36 of FIG. The fN-) signal is also a similar signal. By inserting the fMV signal into the non-selection period in this way, the on-duration is slightly weakened in the on-drive.
In off-drive, it works to prevent it from opening too much under high temperatures. This works to somewhat delay the opening operation during the period TL3, as shown in FIG. 4(d). As described above, by adding the fL] signal to the 7.3 period of one selection period and providing the selection signal including the fH9 signal to the non-selection period in order to best match the dielectric characteristics and temperature characteristics of the liquid crystal, a wide range of It is possible to provide time-division driving of a liquid crystal optical shutter with good repeatability over a range of degrees. Furthermore, in this case as well, due to the fL3 signal effect added to the T,3 period, the on-characteristics can be significantly improved without deteriorating the off-characteristics, and a bright liquid crystal light shutter can be realized. Additionally, the operating temperature becomes less sensitive to changes in the liquid crystal material, resulting in greater flexibility. [Effects of the Invention] As explained in detail above, according to the present invention, the proper operating temperature range for accurately controlling the liquid crystal light shutter is lower than that of the conventional 2~
The beam width becomes wider than 3 degrees, and the amount of light irradiated onto the recording medium can be increased. Furthermore, since the operating temperature range has been widened, there is increased flexibility in changing the liquid crystal material, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図+8)〜(C)は本発明の駆動法による信号波形
図、(d)は本発明の駆動法による光透過特性図。 第2図(a)〜(C)は従来の駆動法による信号波形図
。 (d>は従来の駆動法による光透過特性図。 第3図は液晶光シャッタの一部を示す構成図。 第4図(a)、 (b)は本発明と従来の駆動法による
温度変化に対する透過光量特性図。 第5図(al〜(C)は本発明の他の実施例の信号波形
図、(d)は本発明の光透過特性図。 第6図(a)〜(C)はF HX信号を説明するための
波形図である。 13.14・・・共通電極。 15〜18・・・信号電極。 15a、15b〜18a、  18b・−・マイクロシ
ャッタ。 19.20.35.36・・・記録信号。 21.22,37.38・・・駆動信号。 23〜26.39〜42・・・応答特性。 27〜30.31〜34・・・駆動特性。 第1図 第1図 第2図 第2図(C) 第2図 第3図 1コ      1r 第4図 温良°C〕 温11’c] 第5図
Figures 1+8) to (C) are signal waveform diagrams according to the driving method of the present invention, and (d) is a light transmission characteristic diagram according to the driving method of the present invention. FIGS. 2(a) to 2(C) are signal waveform diagrams according to the conventional driving method. (d> is a light transmission characteristic diagram using the conventional driving method. Figure 3 is a configuration diagram showing a part of the liquid crystal optical shutter. Figures 4 (a) and (b) are temperature changes according to the present invention and the conventional driving method. FIG. 5 (al to (C) are signal waveform diagrams of other embodiments of the present invention, (d) is a light transmission characteristic diagram of the present invention. is a waveform diagram for explaining the F HX signal. 13.14... Common electrode. 15-18... Signal electrode. 15a, 15b-18a, 18b... Micro shutter. 19.20.35 .36... Recording signal. 21.22, 37.38... Drive signal. 23-26. 39-42... Response characteristics. 27-30. 31-34... Driving characteristics. Figure 1 Figure 2 Figure 2 (C) Figure 2 Figure 3 Figure 1 1 r Figure 4 Temperature: 11'C] Figure 5

Claims (1)

【特許請求の範囲】[Claims] 特定駆動周波数で誘電異方性が反転する液晶を時分割駆
動する際、時分割された選択期間に前記液晶の開閉状態
を設定する駆動波形を与え、非選択期間には直前の選択
期間に設定された状態を実質的に継続させる駆動波形を
与える駆動方法において、前記選択期間に開状態を設定
する駆動波形は前記特定周波数より低い周波数信号と、
前記特定周波数よりも低い周波数信号と前記特定周波数
よりも高い周波数信号の重畳信号を含み、前記選択期間
に閉状態を設定する駆動波形は前記特定周波数よりも高
い周波数信号と無信号とを含む信号であることを特徴と
する液晶の駆動法。
When time-divisionally driving a liquid crystal whose dielectric anisotropy is reversed at a specific drive frequency, a drive waveform is applied to set the open/closed state of the liquid crystal during the time-divided selection period, and the non-selection period is set to the immediately previous selection period. In the driving method that provides a driving waveform that substantially continues the opened state, the driving waveform that sets the open state during the selection period is a frequency signal lower than the specific frequency;
A drive waveform that includes a superimposed signal of a frequency signal lower than the specific frequency and a frequency signal higher than the specific frequency, and the drive waveform that sets the closed state in the selected period is a signal that includes a frequency signal higher than the specific frequency and no signal. A liquid crystal driving method characterized by:
JP59278388A 1984-08-31 1984-12-29 Driving method of liquid crystal Granted JPS61158315A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59278388A JPS61158315A (en) 1984-12-29 1984-12-29 Driving method of liquid crystal
US06/769,732 US4755812A (en) 1984-08-31 1985-08-27 Method of driving a recording apparatus
DE19853530740 DE3530740A1 (en) 1984-08-31 1985-08-28 METHOD FOR DRIVING A RECORDING DEVICE
GB08522290A GB2169431B (en) 1984-12-29 1985-09-09 Method of driving a liquid crystal apparatus
FR8514281A FR2575576B1 (en) 1984-12-29 1985-09-26 METHOD FOR OPERATING A LIQUID CRYSTAL APPARATUS
KR8509518A KR900001585B1 (en) 1984-12-29 1985-12-18 Driving method of lcd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278388A JPS61158315A (en) 1984-12-29 1984-12-29 Driving method of liquid crystal

Publications (2)

Publication Number Publication Date
JPS61158315A true JPS61158315A (en) 1986-07-18
JPH0410050B2 JPH0410050B2 (en) 1992-02-24

Family

ID=17596645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278388A Granted JPS61158315A (en) 1984-08-31 1984-12-29 Driving method of liquid crystal

Country Status (4)

Country Link
JP (1) JPS61158315A (en)
KR (1) KR900001585B1 (en)
FR (1) FR2575576B1 (en)
GB (1) GB2169431B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386836A (en) * 1979-12-28 1983-06-07 Kabushiki Kaisha Suwa Seikosha Electro-photographic printer
US4641156A (en) * 1983-12-30 1987-02-03 Casio Computer Co., Ltd. Recording apparatus with double frequency driven liquid crystal shutter
US4614954A (en) * 1984-01-23 1986-09-30 Casio Computer Co., Ltd. Recording apparatus

Also Published As

Publication number Publication date
GB2169431B (en) 1988-11-16
JPH0410050B2 (en) 1992-02-24
KR900001585B1 (en) 1990-03-15
FR2575576B1 (en) 1990-11-02
GB8522290D0 (en) 1985-10-16
GB2169431A (en) 1986-07-09
FR2575576A1 (en) 1986-07-04

Similar Documents

Publication Publication Date Title
US4671616A (en) Diagonally offset, dielectric anisotropy inversion, liquid crystal, microshutters
US6052017A (en) Method and circuit for enabling rapid flux reversal in the coil of a write head associated with a computer disk drive, or the like
JPS5845005B2 (en) Modulation degree stabilization device for optical modulation
US4641156A (en) Recording apparatus with double frequency driven liquid crystal shutter
US3560955A (en) Birefringent display systems
US6552838B2 (en) LiNbO3 Mach-Zehnder modulator with low drive voltage requirement and adjustable chirp
US5095376A (en) Apparatus and method for driving an optical printer having a liquid crystal optical switch
US4614954A (en) Recording apparatus
JPS61158315A (en) Driving method of liquid crystal
US4755812A (en) Method of driving a recording apparatus
US4902111A (en) Method and device for driving electro-optical light shutter array
US4896945A (en) Liquid crystal cell array and method for driving the same
JPH0548887B2 (en)
JPS6040612B2 (en) lcd light bulb
JPS62247338A (en) Liquid crystal light valve
JPS5858728B2 (en) information modulation device
JPS5993426A (en) Liquid crystal light valve
JPS6042457B2 (en) printing device
JPS5993424A (en) Liquid crystal light valve
JPS62150231A (en) Driving method for liquid crystal element
JPH0333827A (en) Method for driving liquid crystal shutter
JPH01188825A (en) Method for driving optical shutter array
JPH0333826A (en) Method for driving liquid crystal shutter
SU1278950A1 (en) Device for optical recording of sound track
JPS632021A (en) Driving system for liquid crystal shutter