JPH0548887B2 - - Google Patents

Info

Publication number
JPH0548887B2
JPH0548887B2 JP18048884A JP18048884A JPH0548887B2 JP H0548887 B2 JPH0548887 B2 JP H0548887B2 JP 18048884 A JP18048884 A JP 18048884A JP 18048884 A JP18048884 A JP 18048884A JP H0548887 B2 JPH0548887 B2 JP H0548887B2
Authority
JP
Japan
Prior art keywords
signal
frequency
liquid crystal
electrodes
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18048884A
Other languages
Japanese (ja)
Other versions
JPS6159430A (en
Inventor
Morio Oota
Shizuo Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Original Assignee
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Casio Electronics Manufacturing Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP59180488A priority Critical patent/JPS6159430A/en
Priority to US06/769,732 priority patent/US4755812A/en
Priority to DE19853530740 priority patent/DE3530740A1/en
Priority to FR8512993A priority patent/FR2569871B1/en
Priority to GB08521589A priority patent/GB2164165B/en
Publication of JPS6159430A publication Critical patent/JPS6159430A/en
Publication of JPH0548887B2 publication Critical patent/JPH0548887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1238Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point
    • G06K15/1242Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line
    • G06K15/1252Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line using an array of light modulators, e.g. a linear array
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、液晶光シヤツタを用いた記録装置に
係り、特に液晶光シヤツタを開閉駆動する駆動法
に関するものである。 〔従来技術〕 液晶光シヤツタを用いた記録装置は、制御回路
により液晶光シヤツタに設けられた多数のマイク
ロシヤツタを開閉駆動し、光源の光を遮断または
透過することにより記録体に光書込みを行う装置
である。このような記録装置では液晶の高速応答
が要求されるため通常液晶光シヤツタは電場の周
波数により誘電異方性の反転する液晶を用い、誘
電異方性を零とする周波数fCより高い周波数fH
低い周波数fLとの二周波により駆動させる。例え
ば、1mmあたり10ドツトの密度でA3サイズの記
録を行うには一行当り約3000個のマイクロシヤツ
タを必要としている。したがつて、通常配線数、
実装面積の増大を防止する液晶光シヤツタは時分
割駆動により駆動されている。 時分割駆動は、第2図aに示す様に液晶光シヤ
ツタの共通電極1a〜1nと信号電極2a〜2n
を互いに直交させて設け、両電極の共通部分にマ
イクロシヤツタ3を構成し、同図bに示す様に信
号電極2a〜2nにS1〜Snの記録信号を入力さ
せ、共通電極1a〜1nに同図Cに示すn時に時
分割された書込み選択信号C1〜Cnを入入力する
ことにより液晶光シヤツタを駆動している。例え
ば2時分割駆動では、一列の書込みに第3図aに
示す様に2本の共通電極1a,1bを設け、これ
に信号電極2a〜2mを交差させて駆動させるこ
とにより、同図bに示す様に一書込み周期Twの
半分の時間開駆動を行い光を透過する。同図bは
このマイクロシヤツタ3aと3bを用いてどちら
も白−黒−白−白−黒と記録する例を示しており
実線は3aの応答を、点線は3bの応答を示して
いる、したがつて期間0〜Tw/2、2Tw〜
5Tw/2、3Tw/7Tw/2間開駆動を行うこと
になる。 この様な2時分割駆動では、一書込み周期Tw
間に半分の時間しか光を透過できず、n時分割駆
動ではさらに透過時間は短くなり露光量の不足と
なる。そこで、書込み選択信号により一書込み周
期Twの選択された期間にマイクロシヤツタの開
または閉を設定し一書込み周期Twの残りの期間
(非選択期間)1−Tw/n設定された状態を実
質的に持続する様な駆動が行われている。例え
ば、第4図aに示す様なfH信号、fL信号、fH信号
及びfL信号と位相が180度異なる*fH信号及び*fL
信号とを一書込周期間に混在する駆動パターン信
号を作成し、この信号を共通電極1aに与え、さ
らに同図bに示す4つの駆動パターン信号4〜7
の一つを選択して信号電極に与えることにより同
Cに示す様な重畳信号8〜11の1つがマイク
ロシヤツタ3aに与えられることになる。また、
共通電極1hには共通電極1aに与えられる信号
とはTw/2位相の異なる信号が与えられるため
マイクロロシヤツタ3bには同図3Cに示す信号
と同様の重畳信号がTw/2位相を異ならせて与
えられる。 これらの重畳信号8〜11が与えられた時のマ
イクロシヤツタ3aの光透過率特性を、同図dに
示す。光透過率特性12は、信号電極にマイクロ
シヤツタ3aと3bとをともに開とするためのパ
ターン信号4を与え、共通電極に同図aのパター
ン信号を与えた時作成される重畳信号8による特
性であり、光透過率特性13は信号電極にマイク
ロシヤツタ3aを開、3bを閉とするためのパタ
ーン信号5を与え、共通電極に同図aのパターン
信号を与えた時の重畳信号9による特性である。
同様にして、光透過率特性14,15についても
信号電極に各々3aを閉、3bを開とするための
パターン信号6、3aと3bをともに閉とするた
めのパターン信号7を与えた時の重畳信号10,
11による特性である。ここで、同図cに示す
〔fL+fH〕信号はfL信号とfH信号の重畳信号を示
し、
[Technical Field of the Invention] The present invention relates to a recording device using a liquid crystal optical shutter, and more particularly to a driving method for driving the liquid crystal optical shutter to open and close. [Prior art] A recording device using a liquid crystal optical shutter opens and closes a large number of microshutters provided on the liquid crystal optical shutter by a control circuit, and optically writes on a recording medium by blocking or transmitting light from a light source. It is a device that performs Since such recording devices require high-speed response of the liquid crystal, liquid crystal optical shutters usually use liquid crystals whose dielectric anisotropy is inverted depending on the frequency of the electric field, and are used at frequencies f higher than the frequency f C at which the dielectric anisotropy is zero. It is driven by two frequencies: H and low frequency f L. For example, to record A3 size at a density of 10 dots per mm, approximately 3000 microshutters are required per line. Therefore, the normal number of wires,
The liquid crystal optical shutter, which prevents an increase in mounting area, is driven by time-division driving. As shown in FIG. 2a, time-division driving is carried out using common electrodes 1a to 1n and signal electrodes 2a to 2n of the liquid crystal light shutter.
are arranged perpendicular to each other, and a microshutter 3 is configured in the common part of both electrodes, and recording signals S 1 to Sn are input to the signal electrodes 2a to 2n as shown in FIG. The liquid crystal light shutter is driven by inputting and inputting time-divided write selection signals C 1 to Cn at time n shown in FIG. For example, in two-time division driving, two common electrodes 1a and 1b are provided for one column of writing as shown in FIG. As shown, open driving is performed for half of one writing cycle Tw to transmit light. Figure b shows an example in which microshutters 3a and 3b are used to record white-black-white-white-black; the solid line shows the response of 3a, and the dotted line shows the response of 3b. Therefore, the period 0~Tw/2, 2Tw~
Open drive will be performed between 5Tw/2 and 3Tw/7Tw/2. In such two-time division drive, one write cycle Tw
In the n-time division drive, the light can pass through only half of the time, and the transmission time becomes even shorter, resulting in insufficient exposure. Therefore, the write selection signal sets the microshutter to open or close during the selected period of one write cycle Tw, and the set state of 1-Tw/n is effectively maintained for the remaining period (non-selected period) of one write cycle Tw. The drive is carried out in such a way that it lasts for a long time. For example, * f H signal and *f L signal whose phase is 180 degrees different from f H signal, f L signal, f H signal, and f L signal as shown in Fig. 4a.
A drive pattern signal in which the signals are mixed during one writing period is created, this signal is applied to the common electrode 1a, and the four drive pattern signals 4 to 7 shown in FIG.
By selecting one of them and applying it to the signal electrode, one of the superimposed signals 8 to 11 as shown in C in the figure is applied to the microshutter 3a. Also,
Since the common electrode 1h is given a signal that has a different phase by Tw/2 from the signal given to the common electrode 1a, a superimposed signal similar to the signal shown in FIG . It will be given to you. The light transmittance characteristics of the microshutter 3a when these superimposed signals 8 to 11 are applied are shown in FIG. The light transmittance characteristic 12 is based on a superimposed signal 8 created when a pattern signal 4 for opening both microshutters 3a and 3b is applied to the signal electrode, and a pattern signal shown in the figure a is applied to the common electrode. The light transmittance characteristic 13 is the superimposed signal 9 when the pattern signal 5 for opening the microshutter 3a and closing the microshutter 3b is applied to the signal electrode, and the pattern signal shown in figure a is applied to the common electrode. This is a characteristic due to
Similarly, for light transmittance characteristics 14 and 15, when pattern signal 6 is applied to the signal electrodes to close 3a and open 3b, and pattern signal 7 is applied to close both 3a and 3b, superimposed signal 10,
This is the characteristic according to No. 11. Here, the [f L + f H ] signal shown in c in the figure indicates a superimposed signal of the f L signal and the f H signal,

〔0〕は無信号を示す。この様に液晶光シヤ
ツタを駆動することにより、非選択期間1−
Tw/nにおいても選択したマイクロシヤツタを
開状態に維持することができ実質的に液晶光シヤ
ツタをスタテイツク駆動することができる。 また、開状態の維持時間を変える必要性がある
場合、例えば液晶光シヤツタの温度変化等により
必要な場合には第5図に示す様に非選択期間に与
える〔fH+fL〕信号の電圧値を変えた重畳信号を
入力することにより開状態の維持時間制御を行つ
ている。また、この様な駆動法を行う記録装置で
は第4図C及び第5図に示す様に、非選択期間の
最後の期間TLにfL信号を入力して実質的にスタテ
イツク駆動させる場合に用いる液晶の履歴効果を
カツトしている。 〔従来技術の問題点〕 従来の記録装置における第4図cに示す光透過
率特性14,15を比較すると、光透過率特性1
2,13を比較した場合に比べてその平均レベル
が異なり、光透過率特性15がTw/2〜Tw間
で高く、光透過率特性14,15の間にレベルの
違いが存在する。このことは、マイクロシヤツタ
3aが黒を記録する際マイクロシヤツタ3bが黒
を記録するか白を記録するかによつてマイクロシ
ヤツタ3aの記録する黒濃度が変化してしまうこ
とを示している。このレベルの違いは液晶の温度
が最適温度から外れた場合、ますます大きなもの
となり記録画像品質に悪影響を及ぼす。このレベ
ルの違いを減少させるために上述した信号の電圧
値を変化させることも考えられるが、信号の電圧
値を多値化する必要性があり、駆動回路が複雑に
なる原因ともなる。 〔発明の目的〕 本発明は上記従来の欠点に鑑み、非選択期間に
fH信号と位相差を有する信号を与えることにより
液晶光シヤツタの駆動回路を簡略化し、広い温度
範囲で記録画像品質の良い記録装置の駆動法を提
供することを目的とするものである。 〔発明の要点〕 本発明は上記目的を達成するために、n本の共
通電極と該共通電極と交差対向する複数の信号電
極とを有し、両電極間に特定周波数fCにて誘電異
方性を零とする液晶剤を封入し両電極の交差部が
マイクロシヤツタを形成し、記録すべき信号に応
じてマイクロシヤツタを開閉駆動し、光源より照
射されて前記マイクロシヤツタを通過した光を感
光体に照射して記録を行う記録装置の駆動法にお
いて、前記n本の共通電極には前記特定周波数fC
よりも高い周波数*fHの信号と低い周波数fLの信
号を組み合せた選択信号を順次書込み周期のI/
nだけ位相をずらせて供給し、前記複数の信号電
極には記録すべき信号に応じて前記特定周波数fC
よりも高い周波数fHの信号と低い周波数fLの信号
とを組み合せた信号を供給し、前記共通電極に供
給される前記特定周波数fCよりも高い周波数の信
号は前記信号電極に供給される前記特定周波数fC
よりも高い周波数*fHの信号の位相とは反転した
位相の信号であり且つ所定量ずれた位相の信号
fHXとを含んでいることを特徴とする。 〔発明の実施例〕 以下本発明の実施例について図面を参照しなが
ら詳述する。 第6図は本発明に用いるfH信号とfH信号とは位
相差を有するfHXの信号及びfH信号とfHX信号の重
畳信号を示している。THはfH信号の周期であり
fHX信号はfH信号に比べて位相がTd遅れた信号で
あり、〔fH−fX〕信号はfH信号とfHX信号の重畳信
号である。このような信号を与えると液晶は無印
加時よりも強いがfHまたはfHX信号を与えた時より
も弱い閉傾向を示す。この閉傾向の強さは位相差
Tdに応じて決る。また、第7図aはfL信号とfHX
信号より〔fL+fHX〕の重畳信号が形成され、同図
bはfH信号とfL信号より〔fL+fH〕の重畳信号が
形成され、両信号には波形上略同一であり液晶光
シヤツタの駆動には効果の差がないことを示す。 本発明は、この様なfH信号と位相がTdずれた
fHX信号またはfHHXを含む重畳信号を第4図cに示
す非選択期間に混在させたパターン信号を液晶光
シヤツタに与えるものであり、第1図aはこのパ
ターン信号を示すものである。 同図において、パターン信号16は前述の共通
電極1aに与えられる信号であり、第4図bに示
す4つのパターン信号4〜7の1つを選択して信
号電極に与えることにより液晶光シヤツタを駆動
する重畳信号17〜20を得ることができる。こ
の重畳信号17〜20を液晶シヤツタに与えるこ
とにより、第1図bに示す様な光透過率特性を得
ることができる。光透過率特性21,22,2
3,24は各々重畳信号17,18,19,20
により液晶光シヤツタを駆動した時のマイクロシ
ヤツタ3aの光透過率特性であり、光透過率特性
21はマイクロシヤツタ3a,3bをともに開と
する際の特性、光透過率特性22は3aを開、3
bを閉とする際の特性、光透過率特性23は3a
を閉、3bを開とする際の特性、光透過率特性2
4は3a,3bをともに閉とする際の特性をそれ
ぞれ示している。同図bの光透過率特性と従来の
第4図dに示す光透過率特性を比較すると光透過
率特性12,13と21,22とは大差ないもの
の光透過率特性14,15と23,24とは特性
が異なり、本発明のパターン信号16を用いた光
透過率特性23,24は非選択期間Tw/2〜
Twでオフ期間が長く、確実に液晶光シヤツタを
オフすることができることを示している。 さらに、第8図aは第4図cに示される従来の
パターン信号を与えた際の、また同図bは第1図
に示される本発明のパターン信号を与えた際のそ
れぞれマイクロシヤツタの透過光量と液晶温度の
関係を示し、25はマイクロシヤツタ3a,3b
をともに開とする際の、26は3aを開、3bを
閉とする際の、27は3aを閉、3bを開とする
際の、28は3a,3bをともに閉とする際のそ
れぞれマイクロシヤツタ3aの透過光量を示して
いる。透監光量25と26とにほとんど差がな
く、同時に27と28とにほとんど差のない最適
温度範囲29は従来の同図aに示す透過光量の最
適温度範囲30に比べて広い。例えば、最適温度
範囲29は約6degで従来の最適温度範囲30の
3degに比べて高温側に2倍広くなつている。 この様に本実施例によれば、第1図aに示すパ
ターン信号16の非選択期間における信号fHX、fL
の位置と期間の組合せにより、時分割駆動の駆動
の受け方による違いを吸収して光応答のバランス
をとり、非選択期間における液晶光シヤツタの状
態を改善することができる。さらに〔fL+fH〕信
号か〔fL+fHX〕信号が連続する場合には、fH信号
とfHX信号の周期をTHとすれば、その前後に √2Hの実行値を有する〔fH−fHXf〕信号を
挿入することによつて高温時におけるバランスを
補償して、液晶光シヤツタの駆動温度範囲を広げ
ることができる。このことは液晶光シヤツタの周
暗温度が変化した時でも従来の様にパターン信号
の電圧値を多値化する必要もなく、制御回路を簡
略化することができる。 次に本発明の他の実施例を第9図〜第12図を
用いて以下に説明する。 第9図は2時分割駆動において、一書込み期間
Twの前半のTw/2の最後の期間TL1にfL信号を
挿入したパターン信号31を用いたものである。
この場合も重畳信号は4つ形成されるが非選択期
間における組合せは重畳信号32a,32bの後
半の信号で代表される。この様な重畳信号32
a,32bを液晶光シヤツタに用いることで、液
晶剤や感光体等の記録素子の組合せを変えた場合
に上述の温度範囲が変わつてもこれに対処でき
る。例えば、期間TL1の時間を変えたり、または
fL信号の周波数を変えて最適温度範囲29を広く
確保することができる。 第10図は一書込み期間Twの前半のTw/2
の最後の期間TfL1と後半のTw/2の最後の期
間TL2の各々にfL2信号及びfL2信号と180゜位相の異
なる*fL2信号を挿入したパターン信号33を用
いたものである。この場合も2時分割駆動では重
畳信号は4つ形成されるが、非選択期間における
組合せは重畳信号34,35の後半の信号で代表
され、記録素子の組合せ等の変更によつても最適
温度範囲29を確保する信号として用いることが
できる。また、この場合fL1信号とfL2信号は一書
込み期間Twに納まる周波数であり、周波数fC
り低い周波数の信号であれば用いることができ、
本実施例では整数個の波形が納まるような周波数
を用いた。 第11図は、第10図の期間TL1をfL2信号から
fL2信号と*fH信号の組合せ信号に変えたパターン
信号36を用いたものである。この場合にも第1
0図と同様2時分割駆動における非選択期間の重
畳信号は37,38の後半の信号で代表され、液
晶光シヤツタの最適温度範囲29を確保する信号
として用いることができる。 さらに、第12図は信号電極に与えるパターン
信号の中で液晶光シヤツタを開状態に設定する為
の駆動信号の期間TL1、TL2の各々前半にfH信号を
挿入したパターン信号39と液晶光シヤツタを閉
状態に設定する為の駆動信号の期間TL1、TL2
各々前半にfL信号を重複して挿入したパターン信
号40とを信号電極に用い、共通電極には選択期
間の一部41にfHX信号を用いたパターン信号4
2により重畳信号43,44を作成し、液晶光シ
ヤツタ駆動信号に用いたものである。この場合に
も第9図〜第11図の重畳信号32a,32b,
34,35,37,38と同様液晶光シヤツタの
最適温度範囲29を広く確保することができる。 以上述べてきた様に、本発明による記録装置の
駆動法によれば液晶光シヤツタの最適温度範囲2
9を広げ、記録素子等の組合せが変わつた場合に
もこの最適温度範囲29を確保することができ
る。また、非選択期間の駆動ムラを無くし、見か
け上スタテイツク駆動に近い安定した開閉駆動を
行わせることもできる。 本発明の実施例は以上に限るわけではなく、非
選択期間におけるパターン信号は、fHX信号、fL
号(もしくはfL1信号)の位置の一部を固定して
説明したが、組合せ自在に行うことができ、重畳
信号全体に変更可能であることは勿論である。 〔発明の効果〕 以上詳細に説明したように本発明によれば、fH
信号と位相の異なるfHX信号を用いて液晶光シヤ
ツタを駆動することにより、非選択期間の信号の
組合せの違いによる駆動バランスが向上し、特に
液晶光シヤツタの閉状態を確実に行うことを可能
にし、実質的にスタテイツクと同様の開閉状態が
できる。また、従来の駆動法の様に液晶光シヤツ
タの温度変化により信号の電圧値を多値化するこ
となく最適温度範囲を確保でき、実用性の高い記
録装置の駆動法を提供することができる。さら
に、記録装置の周辺温度等により液晶温度が変化
した場合にも記録濃度の変化を起こすことなく高
品質の記録を行うことができる。
[0] indicates no signal. By driving the liquid crystal light shutter in this way, the non-selection period 1-
Even at Tw/n, the selected microshutter can be maintained in the open state, and the liquid crystal light shutter can be substantially statically driven. In addition, if it is necessary to change the open state maintenance time, for example due to a change in the temperature of the liquid crystal light shutter, the voltage of the [f H + f L ] signal applied during the non-selection period, as shown in Figure 5, may be changed. The open state maintenance time is controlled by inputting a superimposed signal with a different value. In addition, in a recording apparatus that uses such a driving method, as shown in FIGS. 4C and 5, when the f L signal is input to the last period T L of the non-selection period to perform essentially static driving. This eliminates the history effect of the liquid crystal used. [Problems with the prior art] Comparing the light transmittance characteristics 14 and 15 shown in FIG.
2 and 13, the average level is different, the light transmittance characteristic 15 is high between Tw/2 and Tw, and there is a difference in level between the light transmittance characteristics 14 and 15. This shows that when the micro-shutter 3a records black, the black density recorded by the micro-shutter 3a changes depending on whether the micro-shutter 3b records black or white. There is. When the temperature of the liquid crystal deviates from the optimum temperature, this difference in level becomes even larger and adversely affects the quality of recorded images. It is conceivable to change the voltage value of the above-mentioned signal in order to reduce this difference in level, but this requires multi-valued signal voltage values, which also causes the drive circuit to become complicated. [Object of the Invention] In view of the above-mentioned conventional drawbacks, the present invention provides
The purpose of this invention is to simplify the drive circuit of a liquid crystal optical shutter by providing a signal having a phase difference with the fH signal, and to provide a method for driving a recording device that produces high quality recorded images over a wide temperature range. [Summary of the Invention] In order to achieve the above object, the present invention has n common electrodes and a plurality of signal electrodes that cross and oppose the common electrodes, and a dielectric difference is generated between the two electrodes at a specific frequency f C. A liquid crystal agent with zero polarity is sealed, and the intersection of both electrodes forms a microshatter.The microshatter is driven to open and close according to the signal to be recorded, and the light is irradiated by a light source and passes through the microshatter. In a method of driving a recording device that performs recording by irradiating a photoreceptor with light, the n common electrodes are connected to the specific frequency f C
A selection signal that is a combination of a signal with a higher frequency *f H and a signal with a lower frequency f L is sequentially applied to I/
The specific frequency f C is supplied to the plurality of signal electrodes with a phase shift of n depending on the signal to be recorded.
A signal that is a combination of a signal with a higher frequency f H and a signal with a lower frequency f L is supplied, and a signal with a frequency higher than the specific frequency f C that is supplied to the common electrode is supplied to the signal electrode. The specific frequency f C
A signal with a phase that is inverted from the phase of the signal with a frequency higher than *f H , and whose phase is shifted by a predetermined amount.
f HX . [Embodiments of the Invention] Examples of the present invention will be described in detail below with reference to the drawings. FIG. 6 shows an f HX signal in which the f H signal and the f H signal used in the present invention have a phase difference, and a superimposed signal of the f H signal and the f HX signal. T H is the period of f H signal
The f HX signal is a signal whose phase is delayed by Td compared to the f H signal, and the [f H −f X ] signal is a superimposed signal of the f H signal and the f HX signal. When such a signal is applied, the liquid crystal exhibits a stronger closing tendency than when no voltage is applied, but weaker than when an f H or f HX signal is applied. The strength of this closing tendency is determined by the phase difference
Determined according to Td. Also, Fig. 7a shows f L signal and f HX
A superposed signal of [ f L + f H This shows that there is no difference in effectiveness when driving the liquid crystal light shutter. The present invention is capable of handling signals whose phase is shifted by Td from such fH signal.
A pattern signal in which a superimposed signal including the f HX signal or f HHX is mixed in the non-selection period shown in FIG. 4c is applied to the liquid crystal light shutter, and FIG. 1a shows this pattern signal. In the same figure, a pattern signal 16 is a signal given to the common electrode 1a mentioned above, and by selecting one of the four pattern signals 4 to 7 shown in FIG. 4b and giving it to the signal electrode, the liquid crystal light shutter is Driving superimposed signals 17-20 can be obtained. By applying these superimposed signals 17 to 20 to the liquid crystal shutter, a light transmittance characteristic as shown in FIG. 1b can be obtained. Light transmittance characteristics 21, 22, 2
3 and 24 are superimposed signals 17, 18, 19, and 20, respectively.
The light transmittance characteristic 21 is the characteristic when both the microshutters 3a and 3b are open, and the light transmittance characteristic 22 is the characteristic when the microshutter 3a is opened. Open, 3
The characteristic when b is closed, the light transmittance characteristic 23 is 3a
Characteristics when 3b is closed and 3b is open, light transmittance characteristics 2
4 shows the characteristics when both 3a and 3b are closed. Comparing the light transmittance characteristics shown in FIG. 4B with the conventional light transmittance characteristics shown in FIG. 24, the light transmittance characteristics 23 and 24 using the pattern signal 16 of the present invention are different from the non-selection period Tw/2 to
In Tw, the off period is long, indicating that the LCD light shutter can be turned off reliably. Furthermore, FIG. 8a shows the microshutter when the conventional pattern signal shown in FIG. 4c is applied, and FIG. 8b shows the microshutter when the pattern signal of the present invention shown in FIG. The relationship between the amount of transmitted light and the liquid crystal temperature is shown, and 25 indicates the micro shutters 3a and 3b.
When both are open, 26 is when 3a is open and 3b is closed, 27 is when 3a is closed and 3b is open, and 28 is when 3a and 3b are both closed. It shows the amount of light transmitted through the shutter 3a. The optimal temperature range 29, in which there is almost no difference between the amounts of transmitted light 25 and 26, and at the same time there is almost no difference between 27 and 28, is wider than the conventional optimal temperature range 30 for the amount of transmitted light shown in FIG. For example, the optimal temperature range 29 is approximately 6 degrees, which is the conventional optimal temperature range 30.
Compared to 3deg, it is twice as wide on the high temperature side. As described above, according to this embodiment, the signals f HX and f L during the non-selection period of the pattern signal 16 shown in FIG.
By combining the position and period of , it is possible to absorb differences due to the way the time-division drive is received, balance the light response, and improve the state of the liquid crystal light shutter during the non-selection period. Furthermore, when the [f L + f H ] signal or the [f L + f HX ] signal is continuous, if the period of the f H signal and the f HX signal is T H , then there is an effective value of √2 H before and after it By inserting the [f H −f HXf ] signal, the balance at high temperatures can be compensated and the operating temperature range of the liquid crystal light shutter can be expanded. This means that even when the ambient temperature of the liquid crystal light shutter changes, there is no need to multi-value the voltage value of the pattern signal as in the prior art, and the control circuit can be simplified. Next, another embodiment of the present invention will be described below using FIGS. 9 to 12. Figure 9 shows one write period in two-time division drive.
A pattern signal 31 is used in which an f L signal is inserted into the last period T L1 of Tw/2 in the first half of Tw.
In this case as well, four superimposed signals are formed, but the combination in the non-selection period is represented by the latter half of the superimposed signals 32a and 32b. Such a superimposed signal 32
By using a and 32b in the liquid crystal light shutter, it is possible to cope with changes in the above-mentioned temperature range when the combination of recording elements such as liquid crystal agent and photoreceptor is changed. For example, changing the time of period T L1 , or
By changing the frequency of the f L signal, a wide optimum temperature range 29 can be secured. Figure 10 shows Tw/2 in the first half of one write period Tw.
A pattern signal 33 is used in which an f L2 signal and an *f L2 signal having a phase difference of 180° from the f L2 signal are inserted into each of the last period TfL1 of TfL1 and the last period T L2 of Tw/2 in the second half. In this case as well, four superimposed signals are formed in the two-time division drive, but the combination in the non-selection period is represented by the latter half of the superimposed signals 34 and 35. It can be used as a signal to secure the range 29. In addition, in this case, the f L1 signal and the f L2 signal have frequencies that fall within one write period Tw, and any signal with a frequency lower than the frequency f C can be used.
In this embodiment, a frequency that accommodates an integer number of waveforms is used. Figure 11 shows the period T L1 in Figure 10 from the f L2 signal.
This uses a pattern signal 36 changed to a combination signal of the f L2 signal and the *f H signal. In this case as well, the first
Similar to FIG. 0, the superimposed signal during the non-selection period in the two-time division drive is represented by the latter half signals 37 and 38, and can be used as a signal to ensure the optimum temperature range 29 of the liquid crystal light shutter. Furthermore, FIG. 12 shows a pattern signal 39 in which an f H signal is inserted in the first half of each of the drive signal periods T L1 and T L2 for setting the liquid crystal light shutter to an open state among the pattern signals applied to the signal electrodes, and the liquid crystal light shutter. A pattern signal 40 in which the f L signal is inserted redundantly in the first half of each of the periods T L1 and T L2 of the drive signal for setting the optical shutter to the closed state is used as the signal electrode, and a pattern signal 40 with the f L signal inserted redundantly in the first half of each of the periods T L1 and T L2 of the drive signal for setting the optical shutter in the closed state is used, and the common electrode is Pattern signal 4 using f HX signal in section 41
2, superimposed signals 43 and 44 were created and used as a liquid crystal optical shutter drive signal. In this case as well, the superimposed signals 32a, 32b,
Similar to 34, 35, 37, and 38, a wide optimum temperature range 29 of the liquid crystal light shutter can be secured. As described above, according to the driving method of the recording device according to the present invention, the optimum temperature range of the liquid crystal light shutter is 2.
9, and this optimum temperature range 29 can be secured even when the combination of recording elements etc. is changed. Furthermore, it is possible to eliminate drive unevenness during non-selection periods and perform stable opening/closing drive that appears to be similar to static drive. The embodiments of the present invention are not limited to the above, and the pattern signals in the non-selection period have been explained by fixing part of the positions of the f HX signal and f L signal (or f L1 signal), but they may be freely combined. It is of course possible to change the entire superimposed signal. [Effects of the Invention] As explained in detail above, according to the present invention, f H
By driving the LCD optical shutter using the f HX signal, which has a different phase from the signal, the drive balance due to the difference in signal combination during the non-selection period is improved, and in particular, it is possible to ensure that the LCD optical shutter is in the closed state. It can be opened and closed in substantially the same way as a static one. Further, unlike conventional driving methods, an optimum temperature range can be secured without multi-leveling the voltage value of the signal due to temperature changes in the liquid crystal light shutter, and a highly practical method for driving a recording device can be provided. Furthermore, even if the liquid crystal temperature changes due to the ambient temperature of the printing apparatus, high-quality printing can be performed without causing a change in the printing density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の駆動法を説明する波形図、
第1図bは本発明の駆動法による光透過率特性
図、第2図aはn時分割駆動における液晶光シヤ
ツタの構成図、第2図bはn時分割駆動における
液晶光シヤツタの回路図、第2図Cはタイムチヤ
ート図、第3図aは2時分割駆動における液晶光
シヤツタの構成図、第3図bは2時分割駆動にお
ける光透過の構成図、第4図aは共通電極に入力
するパターン信号の波形図、第4図bは信号電極
に入力するパターン信号の波形図、第4図Cは重
畳信号の波形図、第4図dは従来の光透過率特性
図、第5図は従来の重畳信号の構成図と光透過率
特性図、第6図は位相のずれた信号を説明する構
成図、第7図a,bも位相のずれた信号を説明す
る構成図、第8図a,bは透過光量特性図、第9
図は本発明の他の実施例による駆動法を説明する
波形図、第10図〜第12図も本発明の他の実施
例による駆動法を説明する波形図である。 1a,1b〜1n……共通電極、2a,2b〜
2n……信号電極、3……マイクロシヤツタ、4
〜7,31,33,36,39,40,42……
パターン信号、8〜11,16〜20,32a,
32b,34,35,37,38,43,44…
…重畳信号、12〜14,21〜24……光透過
率特性、29,30……最適温度範囲、41……
一部。
FIG. 1a is a waveform diagram illustrating the driving method of the present invention;
Fig. 1b is a light transmittance characteristic diagram according to the driving method of the present invention, Fig. 2a is a configuration diagram of a liquid crystal light shutter in n time division driving, and Fig. 2b is a circuit diagram of a liquid crystal light shutter in n time division driving. , Figure 2C is a time chart diagram, Figure 3a is a configuration diagram of a liquid crystal light shutter in two time division drive, Figure 3b is a configuration diagram of light transmission in two time division drive, and Figure 4a is a common electrode. FIG. 4b is a waveform diagram of the pattern signal input to the signal electrode, FIG. 4C is a waveform diagram of the superimposed signal, FIG. 4d is a conventional light transmittance characteristic diagram, and FIG. FIG. 5 is a configuration diagram and light transmittance characteristic diagram of a conventional superimposed signal, FIG. 6 is a configuration diagram explaining a phase-shifted signal, and FIGS. 7a and b are also configuration diagrams explaining a phase-shifted signal. Figures 8a and b are transmitted light quantity characteristic diagrams, Figure 9
The figure is a waveform diagram illustrating a driving method according to another embodiment of the present invention, and FIGS. 10 to 12 are also waveform diagrams illustrating a driving method according to other embodiments of the present invention. 1a, 1b~1n...common electrode, 2a, 2b~
2n...Signal electrode, 3...Micro shutter, 4
~7, 31, 33, 36, 39, 40, 42...
Pattern signal, 8-11, 16-20, 32a,
32b, 34, 35, 37, 38, 43, 44...
...Superimposed signal, 12-14, 21-24...Light transmittance characteristics, 29,30...Optimum temperature range, 41...
part.

Claims (1)

【特許請求の範囲】 1 n本の共通電極と該共通電極と交差対向する
複数の信号電極とを有し、両電極間に特定周波数
fCにて誘電異方性を零とする液晶剤を封入し両電
極の交差部がマイクロシヤツタを形成し、記録す
べき信号に応じてマイクロシヤツタを開閉駆動
し、光源より照射されて前記マイクロシヤツタを
通過した光を感光体に照射して記録を行う記録装
置の駆動法において、 前記n本の共通電極には前記特定周波数fCより
も高い周波数*fHの信号と低い周波数fLの信号を
組み合せた選択信号を順次書込み周期の1/nだ
け位相をずらせて供給し、前記複数の信号電極に
は記録すべき信号に応じて前記特定周波数fCより
も高い周波数fHの信号と低い周波数fLの信号とを
組み合せた信号を供給し、前記共通電極に供給さ
れる前記特定周波数fCよりも高い周波数の信号は
前記信号電極に供給される前記特定周波数fCより
も高い周波数*fHの信号の位相とは反転した位相
の信号であり且つ所定量ずれた位相の信号fHX
を含んでいることを特徴とする記録装置の駆動
法。
[Claims] It has 1 n common electrodes and a plurality of signal electrodes that cross and oppose the common electrodes, and has a specific frequency between the two electrodes.
A liquid crystal agent with zero dielectric anisotropy is sealed at fC , and the intersection of both electrodes forms a microshutter.The microshutter is driven to open and close according to the signal to be recorded, and is irradiated by a light source. In a method of driving a recording device that performs recording by irradiating a photoreceptor with light that has passed through the microshutter, the n common electrodes are provided with a signal at a frequency *f H higher than the specific frequency f C and a signal at a lower frequency. A selection signal that is a combination of signals of f L is sequentially supplied with a phase shift of 1/n of the writing period, and a frequency f H higher than the specific frequency f C is supplied to the plurality of signal electrodes according to the signal to be recorded. and a signal with a lower frequency f L , and a signal with a frequency higher than the specific frequency f C supplied to the common electrode is supplied to the common electrode at a frequency higher than the specific frequency f C supplied to the signal electrode. A method for driving a recording device, characterized in that the method includes a signal f HX which is a signal whose phase is inverted from that of a signal having a high frequency * f H and whose phase is shifted by a predetermined amount.
JP59180488A 1984-08-31 1984-08-31 Driving method of recording device Granted JPS6159430A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59180488A JPS6159430A (en) 1984-08-31 1984-08-31 Driving method of recording device
US06/769,732 US4755812A (en) 1984-08-31 1985-08-27 Method of driving a recording apparatus
DE19853530740 DE3530740A1 (en) 1984-08-31 1985-08-28 METHOD FOR DRIVING A RECORDING DEVICE
FR8512993A FR2569871B1 (en) 1984-08-31 1985-08-30 RECORDING CONTROL METHOD
GB08521589A GB2164165B (en) 1984-08-31 1985-08-30 Method of driving a recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180488A JPS6159430A (en) 1984-08-31 1984-08-31 Driving method of recording device

Publications (2)

Publication Number Publication Date
JPS6159430A JPS6159430A (en) 1986-03-26
JPH0548887B2 true JPH0548887B2 (en) 1993-07-22

Family

ID=16084105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180488A Granted JPS6159430A (en) 1984-08-31 1984-08-31 Driving method of recording device

Country Status (3)

Country Link
JP (1) JPS6159430A (en)
FR (1) FR2569871B1 (en)
GB (1) GB2164165B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3628819C2 (en) * 1985-08-26 1994-02-17 Futaba Denshi Kogyo Kk Control device for the printhead of an optical writing device
DE3813398A1 (en) * 1988-04-21 1989-11-02 Heidelberger Druckmasch Ag METHOD AND DEVICE FOR PRODUCING A LATENT IMAGE ON A LIGHT-SENSITIVE COATING OF AN OFFSET PRINTING PLATE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993425A (en) * 1982-11-18 1984-05-29 Seiko Epson Corp Liquid crystal light valve
JPS5993424A (en) * 1982-11-18 1984-05-29 Seiko Epson Corp Liquid crystal light valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386836A (en) * 1979-12-28 1983-06-07 Kabushiki Kaisha Suwa Seikosha Electro-photographic printer
JPS57171378A (en) * 1981-04-15 1982-10-21 Suwa Seikosha Kk Liquid crystal optical device
JPS59128518A (en) * 1983-01-14 1984-07-24 Seiko Epson Corp Liquid crystal light valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993425A (en) * 1982-11-18 1984-05-29 Seiko Epson Corp Liquid crystal light valve
JPS5993424A (en) * 1982-11-18 1984-05-29 Seiko Epson Corp Liquid crystal light valve

Also Published As

Publication number Publication date
FR2569871B1 (en) 1989-12-29
GB2164165A (en) 1986-03-12
JPS6159430A (en) 1986-03-26
FR2569871A1 (en) 1986-03-07
GB8521589D0 (en) 1985-10-02
GB2164165B (en) 1988-12-29

Similar Documents

Publication Publication Date Title
KR100418088B1 (en) Liquid crystal display capable of displaying high quality moving picture
EP0070298B1 (en) Areal electronic imaging apparatus
US4958912A (en) Image forming apparatus
US4641156A (en) Recording apparatus with double frequency driven liquid crystal shutter
GB2206228A (en) Electro-optical apparatus
US4614954A (en) Recording apparatus
US4793693A (en) Ferro-electric liquid crystal electro-optical device having a drive voltage with DC and chopping components
JPH0548887B2 (en)
US4755812A (en) Method of driving a recording apparatus
US5872587A (en) Light signal generating device with reduced light leakage
JPH0410050B2 (en)
JPH02162322A (en) Method for driving ferroelectric liquid crystal panel and driving controller
JPS6042459B2 (en) printing device
JPH0679118B2 (en) Image reproduction device
US6956595B1 (en) Light shutter device and a driving method thereof
JP2502317B2 (en) Image forming device
JPH0437412B2 (en)
JPS6040612B2 (en) lcd light bulb
JPH01188825A (en) Method for driving optical shutter array
JPS6042457B2 (en) printing device
JPH0915553A (en) Method and circuit for driving liquid crystal shutter
JPH02140723A (en) Optical image storage device and recording method
JPH0438333B2 (en)
JPS62247671A (en) Method for controlling density of laser beam printer
JPS63189827A (en) Image recorder