JPS61157851A - Damper structure - Google Patents
Damper structureInfo
- Publication number
- JPS61157851A JPS61157851A JP28135184A JP28135184A JPS61157851A JP S61157851 A JPS61157851 A JP S61157851A JP 28135184 A JP28135184 A JP 28135184A JP 28135184 A JP28135184 A JP 28135184A JP S61157851 A JPS61157851 A JP S61157851A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- shaft
- slide member
- spring
- coil spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2232/00—Nature of movement
- F16F2232/04—Rotary-to-translation conversion
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Gears, Cams (AREA)
- Mechanical Operated Clutches (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本、発明はダンパ構造に関するものであり詳しくはシャ
フトとギヤとの間のダンパ構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a damper structure, and more particularly to a damper structure between a shaft and a gear.
たとえば、クランクシャフトの回転を、ギヤを介して出
力軸に伝達するよう構成されたエンジン等では、上記出
力軸とギヤとの間にコイルばねを介在させ、このコイル
はねに上記クランクシャフトからの衝撃や振動を吸収さ
せることにより、上記出力軸にねじり振動が生じること
や、あるいはギヤ鳴りの発生を抑制したものがあること
は既に周知である。For example, in an engine configured to transmit the rotation of the crankshaft to the output shaft via a gear, a coil spring is interposed between the output shaft and the gear, and this coil spring receives the rotation from the crankshaft. It is already well known that there are devices that suppress torsional vibrations on the output shaft or gear noise by absorbing shocks and vibrations.
ところで、上記コイルばねなギヤ内に収容するよう構成
したダンパ構造では、ギヤ径等の諸条件によって上記コ
イルばねの収容スペースが限られてしまう。このことは
、コイルばねのばね径やばね長等形状設定の自由度を着
るしく低下させるものである。これに起因して大容章つ
まり大荷重までの広い範囲でギヤに加わる力を吸収し、
かつ大変位角つまりギヤがシャフトに対して大きく角変
位をしてもダンパ効果を発揮するダンパ構造を得ること
が困難であった。By the way, in the damper structure configured to accommodate the coil spring in the gear, the accommodation space for the coil spring is limited depending on various conditions such as the gear diameter. This seriously reduces the degree of freedom in setting the shape of the coil spring, such as the spring diameter and spring length. Due to this, it absorbs the force applied to the gear over a wide range of large loads, that is, large loads.
In addition, it has been difficult to obtain a damper structure that exhibits a damping effect even when the gear undergoes a large angular displacement with respect to the shaft.
そこで本願出願人は先に衝撃吸収用のコイルばねなシャ
フトに遊嵌して配置することにより、上記コイルばねの
形状設定の自由度を増大させるとともに、ギヤのシャフ
トに対する角変位を上記コイルばねに伝達させる手段と
してカム機構を用い、該カム機構により広い変位角の範
囲で上記コイルばねを作用させることにより、上記不都
合を低減したダンパ構造を提案している。第7図および
第8図はそのダンパ構造を示し、シャツ)AにはギヤB
が回転自在かつ上記シャツ)Aの軸方向への移動が不可
能となるよう配設されている。一方上記シャフ)Aには
スライド部材Cが摺動自在にスプライン結合されており
、このスライド部材CとギヤBとの間にはカム機構りが
設けられている。Therefore, the applicant of the present application increases the degree of freedom in setting the shape of the coil spring by first loosely fitting it onto the shaft, which is a coil spring for shock absorption. We have proposed a damper structure that reduces the above-mentioned disadvantages by using a cam mechanism as a transmission means and causing the coil spring to act over a wide range of displacement angles. Figures 7 and 8 show the damper structure, and gear B is shown in shirt A.
is arranged so that it is rotatable and cannot move in the axial direction of the shirt A. On the other hand, a slide member C is slidably spline-coupled to the shaft A, and a cam mechanism is provided between the slide member C and the gear B.
また上記シャツ)AにはコイルばねEが遊嵌されており
、このコイルばねEの付勢力によって上記スライド部材
Cは、上記カム機構りを介してギヤBと当接している。A coil spring E is loosely fitted into the shirt A, and the biasing force of the coil spring E causes the slide member C to come into contact with the gear B via the cam mechanism.
ところで上記構成のダンパ構造を、ギヤBに大きな外力
が加わる条件下で使用する場合、コイルばねEのばね定
数を高く設定する必要がある。しかしこのためにはコイ
ルばねEの線径を太くする等、コイルばねEを大きく形
成しなければならず、これによりダンパ構造の大形化を
招来する虞れがあった。By the way, when the damper structure having the above configuration is used under conditions where a large external force is applied to the gear B, it is necessary to set the spring constant of the coil spring E to be high. However, for this purpose, it is necessary to make the coil spring E large, such as by increasing the wire diameter of the coil spring E, which may lead to an increase in the size of the damper structure.
上記実状に鑑みて、本発明は全体構成の大形化を伴うこ
となく、ギヤに加わる大きな外力に対応し得るダンパ構
造を提供することを目的とする。In view of the above-mentioned circumstances, an object of the present invention is to provide a damper structure that can cope with a large external force applied to a gear without increasing the size of the entire structure.
そこで本発明では、トーションスプリングとして従来の
コイルばねに換えて、その作用方向の長さが短くかつ上
記コイルばねと比較して格段にばね定数の大きい皿ばね
な用いることにより上記目的を達成している。Therefore, in the present invention, the above object is achieved by using a disc spring, which has a short length in the direction of action and has a much larger spring constant than the above-mentioned coil spring, instead of a conventional coil spring as a torsion spring. There is.
以下本発明の具体的な構成を、一実施例を示す図面に基
づいて詳細に説明する。Hereinafter, a specific configuration of the present invention will be explained in detail based on drawings showing one embodiment.
第1図および第2図は本発明に係るダンパ構造を、エン
ジンのパイロットシャフト1とパイロットドリブンギヤ
2との間のダンパ構造に適用した例である。公知の如く
クランクシャフト(図示せず)の回転力は、該クランク
シャフトに固設されたパイロットドライブギヤAとパイ
ロットドリブンギヤ2を介してパイロットシャフト1に
伝わり、さらに該パイロットシャ7)1に固設されたプ
ライマリドライブギヤ3とプライマリドリブンギヤBを
介して図示していないプライマリシャ・フトに伝達され
る。なお以下ではパイロットシャフト1を単にシャフト
1、またパイロットドリブンギヤ2を単にギヤ2と称す
る。1 and 2 are examples in which the damper structure according to the present invention is applied to a damper structure between a pilot shaft 1 and a pilot driven gear 2 of an engine. As is well known, the rotational force of a crankshaft (not shown) is transmitted to the pilot shaft 1 via a pilot drive gear A and a pilot driven gear 2 that are fixed to the crankshaft, and further to a pilot shaft 1 that is fixed to the pilot shaft 7). The signal is transmitted to a primary shaft (not shown) via the primary drive gear 3 and primary driven gear B. In the following, the pilot shaft 1 will be simply referred to as shaft 1, and the pilot driven gear 2 will be simply referred to as gear 2.
上記シャ・フト1は軸受4によって支承されている一方
、該シャフト1にはスリーブ5が固設されており、該ス
リーブ5には、その図中左方部にストッパ5aが立設さ
れている。また上記スリーブ5には上記ストッパ5aと
当接するようにギヤ2が遊嵌されており、さらにこのギ
ヤ2は、上記ストッパ5aおよびスリーブ5に嵌着され
たリング6によって、シャフト1の軸方向への移動が阻
止されている。また、このギヤ2のボス2aには、上記
シャフト1に沿った方向に突起2bが立設されている。The shaft 1 is supported by a bearing 4, and a sleeve 5 is fixed to the shaft 1, and a stopper 5a is erected on the left side of the sleeve 5. . A gear 2 is loosely fitted into the sleeve 5 so as to come into contact with the stopper 5a, and the gear 2 is moved in the axial direction of the shaft 1 by a ring 6 fitted to the stopper 5a and the sleeve 5. movement is blocked. Further, a projection 2b is provided on the boss 2a of the gear 2 in a direction along the shaft 1.
一方上記スリーブ5の図中右方部表面にはスプライン5
bが形成されており、また上記スリーブ5の右端にはリ
ング形状のばね座7が嵌着されている。さらに上記スリ
ーブ5Vcはスライド部材8が上記スプライン5bと摺
動自在に係合しており、該スライド部材8は小径部8a
および大径部8bとを有している。また上記大径部8b
の端面9c(第2図)には円弧形状を呈するカム面8d
が形成されており、該カム面8dと上記ギヤ2の突起2
bと罠よってカム機構9が構成されている。On the other hand, a spline 5 is formed on the surface of the right side of the sleeve 5 in the figure.
b is formed, and a ring-shaped spring seat 7 is fitted to the right end of the sleeve 5. Further, in the sleeve 5Vc, a slide member 8 is slidably engaged with the spline 5b, and the slide member 8 has a small diameter portion 8a.
and a large diameter portion 8b. Also, the large diameter portion 8b
The end surface 9c (Fig. 2) has a cam surface 8d having an arc shape.
is formed, and the cam surface 8d and the projection 2 of the gear 2
A cam mechanism 9 is constituted by b and the trap.
一方上記スライド部材8iCは円筒形状のスペーサ10
が遊嵌しており、該スペーサ10の一端10aは、上記
ばね座7の側面7aと当接している。また上記スペーサ
10の他端10bとスライド部材8の大径部8bの端面
8eとの間には皿ばね11が介装されている。なお、図
中3は既述の如くシャフト1に固設されたプライマリド
ライブギヤである。On the other hand, the slide member 8iC has a cylindrical spacer 10.
is loosely fitted, and one end 10a of the spacer 10 is in contact with the side surface 7a of the spring seat 7. Further, a disc spring 11 is interposed between the other end 10b of the spacer 10 and the end surface 8e of the large diameter portion 8b of the slide member 8. Note that 3 in the figure is a primary drive gear fixed to the shaft 1 as described above.
ギヤ2に回転力が作用していないとき、突起2bは第2
図に実線で示すように、円弧形状のカム面8dにおける
底部、換言すれば大径部8bにおける端面8Cから最も
深い部位に当接している。いまエンジンが運転を開始し
、ギヤ2が矢印C方向に回転すると上記突起2bは図中
下方へ移動し、2点鎖線で示す如く該突起2bがカム面
8dにおける大径部8bの端面8Cから浅い部位に位置
することにより、スライド部材8が鎖線矢印りで示すよ
うに図中右方へ押しやられる。When no rotational force is acting on the gear 2, the protrusion 2b is in the second position.
As shown by the solid line in the figure, the bottom portion of the arc-shaped cam surface 8d is in contact with the deepest portion of the large diameter portion 8b from the end surface 8C. When the engine starts operating and the gear 2 rotates in the direction of arrow C, the protrusion 2b moves downward in the figure, and as shown by the two-dot chain line, the protrusion 2b moves from the end surface 8C of the large diameter portion 8b on the cam surface 8d. By being located in a shallow area, the slide member 8 is pushed to the right in the figure as shown by the chain arrow.
かくすることによりギヤ2の回転に伴って皿ばね11が
圧縮されてゆく。かくして上記ギヤ2に働く回転力は、
上記カム機構9を介してスライド部材8に伝わり、該ス
ライド部材8からスプライン5b、スリーブ5を介して
シャフト1に伝わり、ざらにプライマリドライブギヤ3
、プライマリドリブンギヤBを介して図示しないプライ
マリシャフトに伝達される。このとき上記皿ばね11の
働きにより、ギヤ2に加わる大きな外力を有効に吸収さ
せることができる。As a result, the disc spring 11 is compressed as the gear 2 rotates. Thus, the rotational force acting on the gear 2 is:
It is transmitted to the slide member 8 via the cam mechanism 9, and from the slide member 8 to the shaft 1 via the spline 5b and the sleeve 5, and is roughly transmitted to the primary drive gear 3.
, is transmitted to a primary shaft (not shown) via primary driven gear B. At this time, the large external force applied to the gear 2 can be effectively absorbed by the action of the disc spring 11.
第3図は他の実施例を示し、スライド部材8とばね座7
どの間には、図中右方より2枚の皿ばね12 、13と
コイルばね14とが介装されている。上記皿ばね12と
13とは大径部12a、13a同志が当接し、向かい合
うように配設されている。また上記コイルばね14は、
一部を破断して示した如く、その線材が矩形断面を呈し
ている。なお上記皿ばね12゜13およびコイルばね1
4以外の構成要素は第1図、第2図で示した例と何ら変
わるところはないので同符号を付して説明を省略する。FIG. 3 shows another embodiment, in which the slide member 8 and the spring seat 7
Two plate springs 12 and 13 and a coil spring 14 are interposed between the two from the right side in the figure. The disc springs 12 and 13 are arranged so that their large diameter parts 12a and 13a abut against each other and face each other. Further, the coil spring 14 is
As shown in a partially cutaway view, the wire has a rectangular cross section. Note that the disc spring 12゜13 and the coil spring 1
Components other than 4 are no different from the examples shown in FIGS. 1 and 2, and therefore are given the same reference numerals and their explanations will be omitted.
いまギヤ2に矢印C方向の外力が加わると、既述したよ
う九スライド部材8が図中右方向へ移動し、コイルばね
14が、スライド部材8と皿ばね13との間で圧縮され
てゆく。上記コイルばね14が限界まで圧縮されると、
線材の側面同志が密着し、上記コイルばね14は、スラ
イド部材8と一体となって図中右方へ移動し、皿ばね1
2と13とを圧縮する。以上のように、ギヤ2に加わっ
た外力は、始めばね定数の小さいコイルばね14により
て受は止められ、次いでばね定数の大きい皿ばねによっ
て受は止められるので、効率のよいダンパ効果が得られ
る。When an external force is applied to the gear 2 in the direction of arrow C, the slide member 8 moves to the right in the figure as described above, and the coil spring 14 is compressed between the slide member 8 and the disc spring 13. . When the coil spring 14 is compressed to its limit,
The side surfaces of the wire rods come into close contact with each other, and the coil spring 14 moves to the right in the figure together with the slide member 8, and the disc spring 1
2 and 13 are compressed. As described above, the external force applied to the gear 2 is first stopped by the coil spring 14 with a small spring constant, and then by the disc spring with a large spring constant, so an efficient damper effect can be obtained. .
第4図は他の実施例を示し、ギヤ2におけるボス2aの
図中右方には、ワッシャ15がスプライン5bと摺動自
在に係合しており、該ワッシャ15のギヤ側の表面には
摩擦係数の大きなフェーシング16が取り付けられてい
る。また上記ワッシャ15のさらに右方にはサークリッ
プ17が嵌着されており、該サークリップ17と上記ワ
ッシャ15との間には皿ばね18が介装されている。こ
の皿ばね180弾性力により上記7エーシング16がボ
ス2aの側面に圧接されている。なお上記以外の構成お
よび動作態様は第3図に示した実施例と基本的に変わる
ところはない。上記構成によれば、エンジン始動時ある
いはエンジン停止時等、大きな角加速度つまり1時にギ
ヤ2とスライド部材8とが相対的な角変位を生じるよう
な場合でも、上記フェーシング16とボス2bの側面と
の摩擦力によって上記角加速度が低減されるのでギヤ2
における突起2bの動きを、スライド部材8が確実に追
従することができ、ダンパ効果がさらに向上する。FIG. 4 shows another embodiment, in which a washer 15 is slidably engaged with a spline 5b on the right side of the boss 2a of the gear 2, and the surface of the washer 15 on the gear side is A facing 16 with a large friction coefficient is attached. A circlip 17 is fitted further to the right of the washer 15, and a disc spring 18 is interposed between the circlip 17 and the washer 15. The elastic force of the disc spring 180 presses the seven acings 16 against the side surface of the boss 2a. Note that the configuration and operation mode other than those described above are basically the same as the embodiment shown in FIG. According to the above configuration, even when the gear 2 and the slide member 8 undergo a relative angular displacement at a large angular acceleration such as when starting or stopping the engine, the facing 16 and the side surface of the boss 2b Since the above angular acceleration is reduced by the frictional force of
The slide member 8 can reliably follow the movement of the protrusion 2b in , and the damper effect is further improved.
第5図および第6図はさらに他の実施例を示し、スライ
ド部材8の大径部8bには湾曲した長孔8fが形成され
ている。上記長孔8fの形状が、先に述べた例における
カム面8dと対応するものであることは勿論である。一
方、ギヤ2には、シャフト1に沿った方向に腕2Cが立
設されており、その先端には案内突起2dが突設されて
いる。この案内突起2dは、上記長孔8fに遊嵌してい
る。FIGS. 5 and 6 show still another embodiment, in which a large diameter portion 8b of the slide member 8 is formed with a curved elongated hole 8f. It goes without saying that the shape of the elongated hole 8f corresponds to the cam surface 8d in the example described above. On the other hand, the gear 2 has an arm 2C erected in the direction along the shaft 1, and a guide protrusion 2d protrudes from the tip of the arm 2C. This guide projection 2d is loosely fitted into the elongated hole 8f.
なお上記以外の構成要素については第3図に示した実施
例と変わるところはない。上記構成によれ−ば、ギヤ2
0角加速度が大きくてもギヤ2の動きは案内突起2dと
長孔8fとの係合部を介し℃スライド部材8に伝達され
るので、第4図に示した実施例と同様にダンパ効果を向
上させることができる。Note that the components other than those mentioned above are the same as the embodiment shown in FIG. According to the above configuration, gear 2
Even if the zero angular acceleration is large, the movement of the gear 2 is transmitted to the °C slide member 8 through the engagement portion between the guide protrusion 2d and the elongated hole 8f, so that the damper effect can be achieved similarly to the embodiment shown in FIG. can be improved.
以上詳述した如く本発明に係るダンパ構造によれば、ト
ーションスプリングとして皿ばねな用い、該皿ばねの特
性つまり、その作用方向の長さが短くかっばね定数が大
きいことを有効に活用することにより、大温化を伴うこ
となく併わせてギヤに加わる大きな外力にも相応できる
ダンパ構造が得られる。As detailed above, according to the damper structure according to the present invention, a disc spring is used as the torsion spring, and the characteristics of the disc spring, that is, its short length in the direction of action and large spring constant, can be effectively utilized. As a result, a damper structure can be obtained that can also cope with large external forces applied to the gear without causing a large temperature increase.
第1図は本発明に係るダンパ構造をエンジンのパイロッ
トシャフトに設けられたダンパに適用した例を示す側面
断面図であり、第2図は同じく概略的な側面図、第3図
は他の実施例を示す概略的な側面図、第4図はさらに他
の実施例を示す側面断面図、第5図はさらに他の実施例
を示す側面断面図、第6図は第5図に示した実施例の概
略的な側面図、第7図は従来のダンパ構造の側面断面図
であり、第8図は同じく概略的な側面図である。
1・・・パイロットシャフト、2・・・パイロットドリ
ブンギヤ、2b・・−突起、2C・・・腕(・・2d・
・・案内突起、5b・・・スプライン、8・・・スライ
ド部材、8d・・・カム面、11 、12 、13・・
・皿ばね、14−・・コイルばね。Fig. 1 is a side cross-sectional view showing an example in which the damper structure according to the present invention is applied to a damper provided on a pilot shaft of an engine, Fig. 2 is a schematic side view, and Fig. 3 is another embodiment. FIG. 4 is a side sectional view showing still another embodiment; FIG. 5 is a side sectional view showing still another embodiment; FIG. 6 is a side sectional view showing still another embodiment; FIG. An example schematic side view, FIG. 7, is a side sectional view of a conventional damper structure, and FIG. 8 is also a schematic side view. 1...Pilot shaft, 2...Pilot driven gear, 2b...Protrusion, 2C...Arm (...2d...
...Guide projection, 5b...Spline, 8...Slide member, 8d...Cam surface, 11, 12, 13...
・Disc spring, 14-...Coil spring.
Claims (1)
の移動が不可能となるように設置するとともに、上記シ
ャフトにスライド部材を摺動自在にスプライン結合させ
、かつ上記ギヤとスライド部材との間にカム機構を設け
、さらに上記シャフトに皿ばねを遊嵌し、該皿ばねによ
って上記スライド部材を上記ギヤに当接させたことを特
徴とするダンパ構造。A gear is installed on the shaft so as to be rotatable and cannot move in the axial direction of the shaft, and a slide member is slidably spline connected to the shaft, and between the gear and the slide member. A damper structure comprising: a cam mechanism; a disc spring loosely fitted onto the shaft; and the disc spring abuts the slide member against the gear.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28135184A JPS61157851A (en) | 1984-12-27 | 1984-12-27 | Damper structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28135184A JPS61157851A (en) | 1984-12-27 | 1984-12-27 | Damper structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61157851A true JPS61157851A (en) | 1986-07-17 |
Family
ID=17637899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28135184A Pending JPS61157851A (en) | 1984-12-27 | 1984-12-27 | Damper structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61157851A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007061031A (en) * | 2005-09-01 | 2007-03-15 | Kioritz Corp | Vibration-absorbing joint and portable bush cutter equipped with the same |
JP2009014200A (en) * | 2007-06-29 | 2009-01-22 | Harley-Davidson Motor Co Group Inc | Compensator assembly for motorcycle primary drive |
JP2009133439A (en) * | 2007-11-30 | 2009-06-18 | Honda Motor Co Ltd | Shift drum driving device |
JP2013021922A (en) * | 2011-07-14 | 2013-02-04 | Kaaz Corp | Vibration-absorbing joint and bush cutter equipped with the same |
JP2013053673A (en) * | 2011-09-05 | 2013-03-21 | Honda Motor Co Ltd | Cam type torque damper |
EP3100941A3 (en) * | 2015-06-02 | 2017-06-07 | Yamaha Hatsudoki Kabushiki Kaisha | Straddled electric vehicle |
-
1984
- 1984-12-27 JP JP28135184A patent/JPS61157851A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007061031A (en) * | 2005-09-01 | 2007-03-15 | Kioritz Corp | Vibration-absorbing joint and portable bush cutter equipped with the same |
JP2009014200A (en) * | 2007-06-29 | 2009-01-22 | Harley-Davidson Motor Co Group Inc | Compensator assembly for motorcycle primary drive |
DE102008064903B3 (en) * | 2007-06-29 | 2019-10-31 | Harley-Davidson Motor Company Group, Inc. | Compensator assembly for a motorcycle prime mover |
JP2009133439A (en) * | 2007-11-30 | 2009-06-18 | Honda Motor Co Ltd | Shift drum driving device |
JP2013021922A (en) * | 2011-07-14 | 2013-02-04 | Kaaz Corp | Vibration-absorbing joint and bush cutter equipped with the same |
JP2013053673A (en) * | 2011-09-05 | 2013-03-21 | Honda Motor Co Ltd | Cam type torque damper |
EP3100941A3 (en) * | 2015-06-02 | 2017-06-07 | Yamaha Hatsudoki Kabushiki Kaisha | Straddled electric vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1995493B1 (en) | Damper mechanism | |
JP2798613B2 (en) | Device for compensating rotational impact force | |
JPH034773B2 (en) | ||
US6050383A (en) | Damper disk assembly | |
US5931737A (en) | Elastic shaft coupling | |
US4210234A (en) | Torsional vibration damper | |
US5237882A (en) | Engine starter gearing with laminated cushion washers | |
JPS61157851A (en) | Damper structure | |
JPH0138985B2 (en) | ||
JP2000046111A (en) | Method for damping torsional vibration and torsional vibration damper | |
CN212028426U (en) | Vehicle damper and vehicle | |
KR100494886B1 (en) | Apparatus for damping vibrations | |
US20060201767A1 (en) | Flywheel assembly | |
KR101130912B1 (en) | Friction clutch, in particular for motor vehicle, comprising multifunctional means | |
JP3023034B2 (en) | Torsional vibration damper for drive shaft of transmission | |
JP3342952B2 (en) | Device for absorbing rotational non-uniformity | |
KR100369534B1 (en) | Flywheel for motor vehicles | |
CN112032252A (en) | Vibration damping device | |
JPH0235070Y2 (en) | ||
CN218670401U (en) | Vibration damping device | |
JPS6228524A (en) | Cam damper | |
KR920001617Y1 (en) | Vibration preventing apparatus for transmission | |
JP4120804B2 (en) | Shock absorber | |
JPS6014023Y2 (en) | friction clutch | |
KR20090043285A (en) | Device for preventing the breakdown of dual mass flywheel |