JPS61157617A - Production of alloy steel containing cr - Google Patents

Production of alloy steel containing cr

Info

Publication number
JPS61157617A
JPS61157617A JP59278377A JP27837784A JPS61157617A JP S61157617 A JPS61157617 A JP S61157617A JP 59278377 A JP59278377 A JP 59278377A JP 27837784 A JP27837784 A JP 27837784A JP S61157617 A JPS61157617 A JP S61157617A
Authority
JP
Japan
Prior art keywords
gas
blowing
steel
molten steel
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59278377A
Other languages
Japanese (ja)
Inventor
Atsushi Ukai
敦 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59278377A priority Critical patent/JPS61157617A/en
Publication of JPS61157617A publication Critical patent/JPS61157617A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To enable the replacing operation by N2 instead of Ar, the omitting of the sampling and the shortening of the whole operation hours by refining Cr-contg. alloy steel while blowing gaseous O2 and N2 into the molten steel of Cr-contg. alloy steel after the primary melting and thereafter performing the submerged arc refining in vacuum. CONSTITUTION:While blowing O2 and gaseous N2 instead of Ar into molten steel 2 of alloy steel contg. >=2wt% Cr after the primary melting from a tuyere 3 of a furnace 1, the decarburization is performed. Then the reduction of Cr is performed under the violent stirring of slag 4 and molten steel 2 by using gaseous N2. Furthermore the molten steel 2 is transferred into a ladle 6 provided with a vacuum installation (degassing function) and the electrodes 5 and the slag off is performed and the degassing and the heating by the submerged arc refining in vacuum is performed and the fine regulation of the component is performed while heating it. The one part of the refining process which is performed while blowing gaseous N2 is desirably performed by the blowing of gaseous Ar. As the above-mentioned Cr-contg. alloy steel, stainless is preferable.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、Cr含有合金鋼の製造方法に関し、いわゆる
AOD法と’/LF法とを組合せて精錬(溶製〕を行な
う、ステンレス鋼の製造方法に関する。 〔従来の技術〕 ステンレス鋼の溶製(精錬〕に、AOD(Argon 
Oxygen Dacarburizazion )法
が行われている。この方法は、一般に、第5図に示すよ
りなAOD炉1中の、電気炉などで溶解(一次溶解〕さ
れた溶鋼2中に攪拌下Arガスと02とを羽口5から吹
込みつつ、脱炭と仕上とを行なうステンレス鋼のuj法
でめる。尚第5図、中4はスラグである。 ステンレス鋼は、周知のように、Cirを一般に10%
以上含有する合金で、コストの低減を目的として、高含
有量のGを含む溶鋼を始点として、上記のごとき脱炭を
行い(この工程は一般に脱炭期と称される〕、次いで、
0□吸込みにより酸化された酸化クロムをクロムに還元
する、いわゆるcr還元などの仕上期を経て精錬が行な
われる。 ところで、Arガスは高価であり、AOD操業費の大部
分はこのArガスの費用により占められ、このガスの価
格によりAOD操業費は太きぐ左右されるといわれてい
る。 そこで、Arガスの変りに水蒸気を用いる、いわゆるa
Lu法も提案されている。 また、上記AOD法において、脱C期に、安価なN2を
用い、Cr還元に、Arガスを用いるこ止も行われてい
る。 しかしながら、いずれにしても、これら従来例にあって
は、Arガスを使用しなければならな−1゜ 〔発明が解決しようとする問題点〕 本発明の目的は、AODにおいて、高価なArガスを使
用せずに、安いN2ガスで行なえることができる、すな
わち、AODArレス操業を確立することにある。 本発明の他の目的は、前記AOD法では、脱C期にN2
を用いと、このN量が溶鋼中増大するので、N量を低減
(Hの含有量を規格値にする)するために、Cr還元で
Arガスを多量に吹込んでいたが、このようなArガス
の吹込みを行わずに、すなわち、N量が増大したままで
も精錬が可能なcr含有合金鋼の製造方法を提供するこ
とにある。 本発明のさらに他の目的は、前記AOD法ではCr還元
後に、必ず、少なくとも一度はサンプリングを必要とし
、そのために、溶鋼が冷却するなどの難点がおったが、
本発明は、かかるAOD後のサンプリングを必要とせず
に精錬が行なえるCr含有合金鋼の製造方法を提供する
ことにある。 本発明のさらに他の目的は、成分の微調整が容易で、溶
鋼成分の厳密制御が可能なCr含有合金鋼の製造方法を
提供することを目的とする。 本発明のその他の目的は本明細薔全体の記述及び添附図
面の記載からも明らかになるであろう。 〔問題点を解決するための手段〕及び〔作用〕本発明者
は、AODについて、Arガスに代えてN2ガスを、す
なわち、Arガスを全く使用せずに、N2ガスを吹込む
方法により行なったところ、N2ガスが、例えば、at
還元に一部Arガスを使用する場合のN量が1760 
ppm+1でめったのに対し、2500 ppm程度ま
で上昇したが、この溶鋼を、真空設備を有するI、 F
 (Ladleyurnace )すなわちいわゆるV
l、F (法ンにさらにかけたところ、過剰に入った溶
鋼中のNが脱ガスされ所定のレベルまで低下できること
を知見し、さらに、上記AOD法とかかるvr、y法と
のマルチプロセスにより、VLFでの加熱により成分調
整が自由にできるので、従来性われ
[Industrial Application Field] The present invention relates to a method for producing Cr-containing alloy steel, and more particularly, to a method for producing stainless steel in which refining (melting) is performed by combining the so-called AOD method and the '/LF method. Technology] AOD (Argon) is used for melting (refining) stainless steel.
Oxygen Dacarburization) method is being used. This method generally involves injecting Ar gas and 02 under stirring into molten steel 2 melted (primary melting) in an electric furnace or the like through a tuyere 5 in an AOD furnace 1 shown in FIG. It is determined by the uj method for stainless steel, which performs decarburization and finishing. In Figure 5, 4 in the middle is slag. As is well known, stainless steel generally has a Cir of 10%.
For the purpose of reducing costs with alloys containing the above, decarburization as described above is performed starting from molten steel containing a high content of G (this process is generally referred to as the decarburization stage), and then,
0□ Refining is carried out through a finishing stage such as so-called Cr reduction, in which chromium oxide oxidized by suction is reduced to chromium. By the way, Ar gas is expensive, and most of the AOD operating cost is accounted for by the Ar gas cost, and it is said that the AOD operating cost is greatly influenced by the price of this gas. Therefore, using water vapor instead of Ar gas, so-called a
The Lu method has also been proposed. Furthermore, in the above AOD method, inexpensive N2 is used in the carbon removal period, and Ar gas is not used in the Cr reduction. However, in any case, in these conventional examples, Ar gas must be used. The objective is to establish AODAr-less operation, which can be performed using cheap N2 gas without using AODAr. Another object of the present invention is that in the AOD method, N2
When using Cr, the amount of N increases in molten steel, so in order to reduce the amount of N (bringing the H content to the standard value), a large amount of Ar gas was injected for Cr reduction. The object of the present invention is to provide a method for manufacturing a Cr-containing alloy steel that can be refined without blowing gas, that is, even with an increased amount of N. Still another object of the present invention is that the AOD method always requires sampling at least once after Cr reduction, which causes problems such as cooling of the molten steel.
An object of the present invention is to provide a method for producing Cr-containing alloy steel that can be refined without the need for sampling after AOD. Still another object of the present invention is to provide a method for producing Cr-containing alloy steel, which allows easy fine adjustment of the components and allows strict control of the molten steel components. Other objects of the present invention will become apparent from the entire description of the present specification and the accompanying drawings. [Means for Solving the Problems] and [Operation] The present inventors performed AOD by using a method of blowing N2 gas instead of Ar gas, that is, without using Ar gas at all. However, N2 gas, for example, at
The amount of N when using some Ar gas for reduction is 1760
Although it rarely reached ppm+1, it rose to about 2,500 ppm, but this molten steel was transferred to I, F, which has vacuum equipment.
(Ladleyurnace) or the so-called V
l, F (When the method was further applied to the molten steel, it was discovered that the excess N in the molten steel was degassed and could be reduced to a predetermined level. Furthermore, by the multi-process of the above AOD method and the vr, y method, , the ingredients can be adjusted freely by heating with VLF, so conventional

【いたAOD後のサ
ンプリングは行なう必要がなく、したがつ″CAOD炉
の完全無傾動化が可能で、しかも、溶鋼が冷却すること
なく精錬ができること、また、VLFでの加熱により、
成分の微調整が自在で、かつ、溶鋼成分の厳密なコント
ロールが可能であることを知った。 本発明はかかるコストの安い、かつ、優れた精錬機能を
有するcr含有合金鋼の製法を知見し、これに基づき完
成されたものである。 本発明は一次溶解後の製鋼を、酸素とアルゴンガスに代
わる窒素ガスとを吹込みつつ溶製し、次いで、真空下サ
ブマージド・アーク精錬を行なうことを%命とするcr
を2重量%以上含有する合金鋼の製造方法に存する。 尚以下の説明において、本発明ではArガスに代えてN
2ガスを使用するので、AOD法でなく、NOD法とい
う。 本発明のNOD法に続けて行なわれるVLF(法〕はL
F(法)に真空設備(脱ガス機能〕を付加したもので、
LF法は、例えば、第6図に示すように、電極5からの
アークを、取鍋6内の溶鋼7上部のスラグ8中に発生さ
せる、いわゆるサブマージド・アーク精錬を行なう方法
で、合成スラグ8を添加し、Arを取鍋6の底部9から
吹込み、このArによる攪拌を行ないなから取鍋6内を
強還元性雰囲気に維持した状態で行なえる点に特長を有
する。尚第6図中、10は炉蓋である。 本発明によるcrr有合金鋼の製造方法の概略をその二
三の例に基づいて説明する。 電気炉、転炉などによる大気中の溶解精錬(一次溶解)
を行なった溶鋼について、上記NOD法とVLF法とを
組み合せてなる炉外精錬を行なう。 上記一次溶解は電気炉製鋼法特にアーク炉により行なう
ことが好ましい。アーク炉(AF)け周知のように、炉
内でアークを発生させ、それによる放射熱と溶鋼中を流
れる電気抵抗熱とを利用するものである。 かかる電気炉で溶解後の、取鍋に受けた溶鋼を、AOD
炉に移し、NOD処鳩を開始する。 N ガス及び02ガスを吹込みつつ、cr含含有合金 鋼の脱Cを行なう。続けて、N2ガスを使用して、スラ
グと溶鋼の強列な攪拌の下にcr還元を行なう。 従来、Crr元後にサンプリングをし、その分析待ちの
時間を要したが、サンプリングは省略して、次いで、真
空装置を有するVI、Fに移行し、スラグオフ(SO)
 、成分の微調整、脱ガス、加熱、成分微調整などを行
なう。この際、Arガスを吹込みするが、溶解中のNは
SO時例えば2400 pIP■あっても、VI、Fに
よる脱ガスによりs o o ppm程度に低下してい
るので、従来、例えば5.8 N ms/ T、使用し
ていた、Arガスは、僅かに例えばQ、lNm5/を程
度の吹込みで済ませることができる。 ところで、本発明者らの検討により、VLF真空脱ガス
時の脱〔N〕挙動は、例えば、次の(1)式によりシュ
ミレートできることが判った。 Nf−説ガス后(N量 Ha−説ガス前[N) K−説(N)定数 を−説ガス時間 後述実施例に示すごとく、理論と実績とは極めて良い一
致が見られた。 本発明による製造方法は、Cr還元にArガス吹込みを
必要とするような、Crを含有する合金鋼に適用して有
利で、Crを2重量%以上含有する合金鋼例えば18−
8ステンレス鋼などに適用できる。crr有量の上限は
特に制限ないが、26重量%程度まで適用できる。他に
18%Mn −15%Cr鋼でめるMn非磁性鋼や25
%0r−0,7%T1鋼などにも適用できる。 〔実施例〕 次に、本発明の実施例を示す。 実施例1 150r (鋼種5US410)合金鋼についてNOD
及びVLF処理を行なった。 アーク炉より出鋼した溶鋼(20t)を、第5図に示す
ようなAOD炉にとり、スラグと溶鋼を激しく攪拌しつ
つ、N ガスと0゜ガスを吹込みつつ、41分間の脱C
を行ない続けて、馬ガスを吹込みつつcr 還元を4分
間行なった。 Cr 還元前の溶鋼中のN量は1750 m)p!11
であシ、cr 還元後の溶鋼中のN量は2400ppm
であった。 当該溶鋼についてSOを4分行ない、成分微調整を行な
った後に、脱ガス8分、加熱14分を行なった。 加熱に際し、成分の微調整を行なった。 また、当該VLF中のAr  ガスの吹込みは0、I 
N11l / tであった。 VLF前の溶鋼中のN量は2400 ppm+であった
が、脱ガス後800 ppmとなシ、VLF後のに量は
820 ppmとN規格に合格するものであった。 第1図に上記工程フローとN量の70−を図示した。 比較例1 実施例1と同様の合金についてAOD処理を行なった。 N2ガス及び02ガスを吹込みつつ、脱Cを41分行な
った。脱C稜の溶鋼中のN量は1760DI)mであっ
た。脱C後にArガスを吹込&つつCr還元を7分間行
なった。Cr 還元彼のN量は900 ppmであった
。 サンプリングを行ない、そのための分析待ちを16分要
した。成分微調整を行なった彼に仕上げ調整を1分間行
なった。 成分調整後にAr  ガス吹込みを行なった。Arガス
は全体で5.8祖3/を要した。 第2図に上記工程フローとN量の70−を図示した。 実施例2 Ni −Cr系会合金鋼鋼種574304、N規格0.
03 / 0.08 )について、実施例1と同様にし
て、NOD及び’l/LP処理を行なった。ただしCr
 還元を4分、VLF脱ガx (v)を10分、加熱(
H)を3分とした。 第3図に、当該工程フローと溶鋼中のN含有量の70−
を図示した。 レードル中のN量は、前記した(11式によればo、o
 (S O(600ppm )である。実績では720
ppmで、はば一致した。 実施例3 Ni −Crr5US(鋼種91.88−II 504
、N量 0,06 / o、t o )について、実施
例2と同様にしてNOD及びVLF処理を行なった。た
だし、Vを8分、Hを4分とした。レードル中のN量は
(11式によれば(1,080である。実1itは72
0 ppmとl’Aぼ一致するものであった。 実施例4 本発明のNODとl/LFとの組合せにおいて、Cr還
元をArガス吹込みによル行なってみた。 coo、1o%の15 cr  ステンレス鋼について
、実施例2と同様にして、NODとVLF処理を行なっ
た。ただし、 cr還元゛はArガス吹込みにより行な
い、また、Vを15分、Hを21分とした。 Arガス量は110 MAIL /lであった。SO後
のN量は7BOppm、V後のN量は350 E)pl
a−H後(し−ドル)のN量は540 ppmでめった
。 比較例2 実施例3と同様の1種についてAODを実施した。 脱C及びCr還元〔6分〕を通し、Arガスを吹込みし
た。Arガス量は12.4 N m5/ を要した。 実施例5 各種鋼種につ〜・て、(1)式による理論値と実績値と
の一致を調べた。その結果を、脱ガス時間【分】とN量
との関係で第4図に示す。 第4図中の各プロットは実線値、各曲線は(1)式によ
る理論値を示す。 第4図に示すように極めて良い一致が見られ、脱カスに
よるステンレス鋼の[N]コントロールは11)式によ
り精度良く実現できる。 〔発明の効果〕 fil  本発明によれば、従来のAODにおいて、高
価なArガスを使用せずに安価なN2ガス(Arガスの
約−のコスト)で行なえることができた。 (2)  本発明によれば、NOD後にN量が増大した
ままでも、その後のVLIFによりN量を低減し、N規
格値におさめることができた。 (3)  本発明では、成分調整のための、NOD後の
サンプリングを省略できる。 し九がって、AOD炉の無傾動化を果たすことができ、
ま友、サンプリングのための分析待ち時間を省略し、か
つ、溶鋼などを冷却しないで済む。 (4)  本発明によれば、VLFでの加熱により、成
分調整が行なうことができるので、サンプリングを省略
できるばかりでなく、また、従来性われていたAODで
の成分調整は必要なく、VI、Fで加熱しつつ、適宜成
分調整ができ、さらに、厳密な成分コントロールも可能
となった。 (5) 本発明によれば、全体の作業時間が短縮され、
例えば実施例1と比較例1との対比に示すごとく、従来
例ではAOD処理に65分間を要したが、本発明ではN
OD処理に45分間あればよい。 (6)  本発明において、窒素ガスを吹込みつつ行う
溶製工程(NOD)の一部(Cr還還元金アルゴンガス
を吹込んでもよい。 これによっても、Arガスは僅かの量で済むし、これと
’/LFとの組合せにより、上記したサンプリングの省
略や成分の微調整や厳密な成分コントロールも可能とな
る利点がおる。
[There is no need to perform sampling after AOD, and therefore the CAOD furnace can be made completely tilt-free, and the molten steel can be refined without being cooled. Also, by heating with VLF,
I learned that it is possible to fine-tune the composition and to precisely control the composition of molten steel. The present invention was completed based on the discovery of a method for manufacturing a Cr-containing alloy steel that is inexpensive and has excellent refining capabilities. In the present invention, steel is manufactured by blowing oxygen and nitrogen gas in place of argon gas after primary melting, and then subjected to submerged arc refining under vacuum.
A method for manufacturing an alloy steel containing 2% by weight or more of In the following explanation, in the present invention, N gas is used instead of Ar gas.
Since it uses two gases, it is called the NOD method rather than the AOD method. The VLF (method) performed following the NOD method of the present invention is L
This is F (method) with vacuum equipment (degassing function) added.
For example, as shown in FIG. 6, the LF method is a method of performing so-called submerged arc refining in which an arc from an electrode 5 is generated in the slag 8 above the molten steel 7 in the ladle 6. is added, Ar is blown into the bottom 9 of the ladle 6, and the process can be carried out while maintaining the interior of the ladle 6 in a strongly reducing atmosphere without stirring by the Ar. In FIG. 6, 10 is a furnace lid. An outline of the method for manufacturing CRR-containing alloy steel according to the present invention will be explained based on a few examples. Melting and refining in the atmosphere using electric furnaces, converters, etc. (primary melting)
The molten steel subjected to this process is subjected to out-of-furnace refining using a combination of the NOD method and the VLF method. The above-mentioned primary melting is preferably carried out using an electric furnace steelmaking method, particularly an arc furnace. As is well known in the art, an arc furnace (AF) generates an arc within the furnace and utilizes the radiant heat generated by the arc and the electrical resistance heat flowing through the molten steel. The molten steel received in the ladle after melting in such an electric furnace is AOD
Transfer to the furnace and start the NOD pigeon. The Cr-containing alloy steel is decarbonized while blowing in N 2 gas and 02 gas. Subsequently, using N2 gas, Cr reduction is performed while vigorously stirring the slag and molten steel. Conventionally, sampling was performed after CRR, and it took time to wait for analysis, but the sampling was omitted and the system was then moved to VI and F, which have a vacuum device, to perform slag-off (SO).
, fine adjustment of ingredients, degassing, heating, fine adjustment of ingredients, etc. At this time, Ar gas is blown in, but even if the N content in the solution is, for example, 2400 pIP■ when SO, it has decreased to about so ppm due to degassing by VI and F. 8 N ms/T, the Ar gas used can be blown to a level of, for example, Q, lNm5/. By the way, the inventors' studies have revealed that the de[N] behavior during VLF vacuum degassing can be simulated using the following equation (1), for example. After Nf-hypothetical gas (N amount Ha-hypothetical gas before [N) K-hypothetical (N) constant - Hypothetical gas time As shown in the examples below, there was an extremely good agreement between theory and actual results. The manufacturing method according to the present invention is advantageously applied to alloy steels containing Cr, which require Ar gas injection for Cr reduction, such as alloy steels containing 2% by weight or more of Cr, such as 18-
Applicable to 8 stainless steel, etc. There is no particular upper limit to the amount of crr, but it can be applied up to about 26% by weight. In addition, Mn non-magnetic steel made of 18%Mn-15%Cr steel and 25
It can also be applied to %0r-0.7%T1 steel. [Example] Next, an example of the present invention will be shown. Example 1 NOD for 150r (steel type 5US410) alloy steel
and VLF treatment. Molten steel (20 tons) tapped from the arc furnace was placed in an AOD furnace as shown in Figure 5, and decarbonized for 41 minutes while vigorously stirring the slag and molten steel and blowing in N gas and 0° gas.
Then, CR reduction was carried out for 4 minutes while blowing in horse gas. The amount of N in molten steel before Cr reduction is 1750 m) p! 11
Ashi, cr The amount of N in the molten steel after reduction is 2400 ppm
Met. The molten steel was subjected to SO for 4 minutes to finely adjust its composition, and then degassed for 8 minutes and heated for 14 minutes. Fine adjustments were made to the ingredients during heating. In addition, the blowing of Ar gas into the VLF was 0, I
It was N11l/t. The amount of N in the molten steel before VLF was 2400 ppm+, but after degassing it was 800 ppm, and after VLF the amount was 820 ppm, which passed the N standard. FIG. 1 shows the above process flow and the amount of N 70-. Comparative Example 1 The same alloy as in Example 1 was subjected to AOD treatment. Decarbonization was carried out for 41 minutes while blowing in N2 gas and 02 gas. The amount of N in the molten steel at the C-free edge was 1760 DI)m. After removing carbon, Cr reduction was performed for 7 minutes while blowing Ar gas. The amount of N in the Cr reduction was 900 ppm. It took 16 minutes to sample and wait for analysis. After fine-tuning the ingredients, I spent a minute making final adjustments to him. After adjusting the components, Ar gas was blown. Ar gas required a total of 5.8 sq. FIG. 2 illustrates the process flow and the amount of N at 70-. Example 2 Ni-Cr alloy steel type 574304, N standard 0.
03/0.08), NOD and 'l/LP treatments were performed in the same manner as in Example 1. However, Cr
Reduction for 4 minutes, VLF degassing x (v) for 10 minutes, heating (
H) was set to 3 minutes. Figure 3 shows the process flow and the N content in molten steel.
Illustrated. The amount of N in the ladle is as described above (according to formula 11, o, o
(S O (600 ppm).Actually 720
There was a good agreement in ppm. Example 3 Ni-Crr5US (steel type 91.88-II 504
, N amount 0,06/o,t o ), NOD and VLF treatments were performed in the same manner as in Example 2. However, V was set to 8 minutes and H was set to 4 minutes. The amount of N in the ladle is (1,080 according to formula 11.Actual 1 it is 72
0 ppm and l'A were almost identical. Example 4 In the combination of NOD and l/LF of the present invention, Cr reduction was performed by blowing Ar gas. NOD and VLF treatments were carried out in the same manner as in Example 2 for 15 cr stainless steel containing 10% coo. However, the Cr reduction was carried out by blowing Ar gas, and V was set for 15 minutes and H was set for 21 minutes. The amount of Ar gas was 110 MAIL/l. The amount of N after SO is 7BOppm, the amount of N after V is 350 E) pl
The amount of N after a-H was 540 ppm. Comparative Example 2 AOD was performed on one of the same samples as in Example 3. Ar gas was blown through the C removal and Cr reduction [6 minutes]. The amount of Ar gas required was 12.4 N m5/. Example 5 For various steel types, the agreement between the theoretical value and the actual value based on equation (1) was investigated. The results are shown in FIG. 4 in terms of the relationship between the degassing time [minutes] and the amount of N. Each plot in FIG. 4 shows a solid line value, and each curve shows a theoretical value according to equation (1). As shown in FIG. 4, an extremely good agreement is seen, and [N] control of stainless steel by descaling can be achieved with high precision using equation 11). [Effects of the Invention] fil According to the present invention, in the conventional AOD, it was possible to perform the operation using inexpensive N2 gas (about -10% of the cost of Ar gas) without using expensive Ar gas. (2) According to the present invention, even if the N amount remained increased after NOD, the N amount could be reduced by the subsequent VLIF and brought to the N standard value. (3) In the present invention, sampling after NOD for component adjustment can be omitted. As a result, it is possible to achieve non-tilting of the AOD reactor.
Well, it eliminates the analysis waiting time for sampling, and there is no need to cool the molten steel. (4) According to the present invention, component adjustment can be performed by heating with VLF, so not only can sampling be omitted, but also component adjustment with AOD, which was conventionally done, is not necessary, and VI, While heating at F, the ingredients can be adjusted as appropriate, and it is also possible to precisely control the ingredients. (5) According to the present invention, the overall working time is shortened;
For example, as shown in the comparison between Example 1 and Comparative Example 1, in the conventional example, AOD treatment required 65 minutes, but in the present invention, N
It is sufficient that the OD treatment takes 45 minutes. (6) In the present invention, part of the melting process (NOD) performed while blowing nitrogen gas (Cr reduction gold argon gas may be blown in. This also allows only a small amount of Ar gas to be used, The combination of this and '/LF has the advantage that the above-mentioned sampling can be omitted, the components can be finely adjusted, and the components can be precisely controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1におけるフロー図で、イ)は工程フ
ロー(DJは精錬ガスのフロー、PlはN量のフロー、
第2図イ](ロ)し1は、比較例1のフロー図で、(イ
)は工程フロー、(ロ)は精錬ガスのフロー、←1はN
量のフロー、第5図は実施例2のNフロー図、第4図は
本発明におけるVLF真空真空メガ1時[N]挙動を示
すグラフ、第5図はAOD炉の説明図、第6図はVL 
F炉の説明図である。 1・・・AOD炉 6・・・取鍋 第3 図 第4図 第5図 第6図
Figure 1 is a flowchart in Example 1, where a) is the process flow (DJ is the flow of refining gas, Pl is the flow of N amount,
Figure 2 A] (B) 1 is a flow diagram of Comparative Example 1, (A) is the process flow, (B) is the flow of the refining gas, ←1 is the N
Figure 5 is the N flow diagram of Example 2, Figure 4 is a graph showing the VLF vacuum mega 1 hour [N] behavior in the present invention, Figure 5 is an explanatory diagram of the AOD furnace, Figure 6 is VL
It is an explanatory view of F furnace. 1... AOD furnace 6... Ladle 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、一次溶解後の製鋼を、酸素とアルゴンガスに代わる
窒素ガスとを吹込みつつ溶製し、次いで、真空下サブマ
ージド・アーク精錬を行なうことを特徴とするCrを2
重量%以上含有する合金鋼の製造方法。 2、窒素ガスを吹込みつつ行う溶製工程の一部を、アル
ゴンガス吹込みにより行う、特許請求の範囲第1項記載
の製造方法。 3、Crを2重量%以上含有する合金鋼が、ステンレス
鋼である、特許請求の範囲第1項記載の製造方法。 4、一次溶解が、いわゆる電気炉製鋼法により行われる
、特許請求の範囲第1項記載の製造方法。 5、電気炉が、アーク炉である、特許請求の範囲第4項
記載の製造方法。
[Scope of Claims] 1. Cr steel is produced by melting the steel after primary melting while blowing oxygen and nitrogen gas in place of argon gas, and then performing submerged arc refining under vacuum.
A method for producing alloy steel containing at least % by weight. 2. The manufacturing method according to claim 1, wherein part of the melting step performed while blowing nitrogen gas is performed by blowing argon gas. 3. The manufacturing method according to claim 1, wherein the alloy steel containing 2% by weight or more of Cr is stainless steel. 4. The manufacturing method according to claim 1, wherein the primary melting is performed by a so-called electric furnace steelmaking method. 5. The manufacturing method according to claim 4, wherein the electric furnace is an arc furnace.
JP59278377A 1984-12-29 1984-12-29 Production of alloy steel containing cr Pending JPS61157617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278377A JPS61157617A (en) 1984-12-29 1984-12-29 Production of alloy steel containing cr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278377A JPS61157617A (en) 1984-12-29 1984-12-29 Production of alloy steel containing cr

Publications (1)

Publication Number Publication Date
JPS61157617A true JPS61157617A (en) 1986-07-17

Family

ID=17596486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278377A Pending JPS61157617A (en) 1984-12-29 1984-12-29 Production of alloy steel containing cr

Country Status (1)

Country Link
JP (1) JPS61157617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293016A (en) * 1988-09-29 1990-04-03 Kawasaki Steel Corp Method for refining high-n stainless steel
JP2008196025A (en) * 2007-02-14 2008-08-28 Jfe Steel Kk METHOD FOR PRODUCING LOW Cr ALLOY STEEL
CN110016535A (en) * 2019-03-01 2019-07-16 鞍钢股份有限公司 A method of it improves and nitrogen content in stability contorting stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293016A (en) * 1988-09-29 1990-04-03 Kawasaki Steel Corp Method for refining high-n stainless steel
JP2008196025A (en) * 2007-02-14 2008-08-28 Jfe Steel Kk METHOD FOR PRODUCING LOW Cr ALLOY STEEL
CN110016535A (en) * 2019-03-01 2019-07-16 鞍钢股份有限公司 A method of it improves and nitrogen content in stability contorting stainless steel

Similar Documents

Publication Publication Date Title
CN104962800B (en) Smelting method for stainless steel material
CN102978505B (en) Smelting method of high-strength IF steel
CN108411205B (en) The method of CSP process production high-magnetic induction, low-iron loss non-oriented electrical steel
NO742347L (en)
JPS5856744B2 (en) Cold-rolled non-oriented silicon steel treated with rare earth metals and its manufacturing method
US3695946A (en) Method of manufacturing oriented grain magnetic steel sheets
WO2023098919A1 (en) Manufacturing method for low-carbon nitrogen-containing austenitic stainless steel bar
CN113737095B (en) High-strength corrosion-resistant duplex stainless steel, and preparation method and application thereof
JP2024522278A (en) VIM furnace smelting method for ultra-high N content high temperature alloy
CN117230360B (en) Preparation method of single-vacuum 300M steel
US3728101A (en) Process for making stainless steel
CN108060344A (en) A kind of high chromium Melting Process for Low Carbon Steel of railway container
JPS61157617A (en) Production of alloy steel containing cr
JP6410311B2 (en) Stainless steel refining method
CN107058867A (en) A kind of energy saving transformer iron core high Si pure iron and its production method
JP2002339014A (en) Method for producing extra low sulfur steel
CN109778077B (en) Smelting method of nuclear main pump shell material
CN111705181A (en) Electric furnace primary smelting low-phosphorus 15-5PH stainless steel mother solution and smelting method thereof
KR101786931B1 (en) Method for refining of molten stainless steel
JPS61157618A (en) Production of alloy steel containing cr
CN108774663A (en) Ultra-low carbon high chrome RH decarbonizing process temperature controls protect chromium method
CN115927950B (en) Carbon-nitrogen-containing high-chromium ferrite stainless steel and manufacturing method thereof
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
US3523021A (en) Method of refining ferrochrome
CN112442624B (en) Die steel processing and smelting method