JPS61156894A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS61156894A
JPS61156894A JP59277485A JP27748584A JPS61156894A JP S61156894 A JPS61156894 A JP S61156894A JP 59277485 A JP59277485 A JP 59277485A JP 27748584 A JP27748584 A JP 27748584A JP S61156894 A JPS61156894 A JP S61156894A
Authority
JP
Japan
Prior art keywords
reflectance
end surface
semiconductor laser
diffraction grating
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59277485A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59277485A priority Critical patent/JPS61156894A/en
Publication of JPS61156894A publication Critical patent/JPS61156894A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enhance the reliability under operating conditions particularly of high temperature and high output with a large strength to reflection noise, by a method wherein the titled device has the reflectance of an end surface of higher reflectance made larger than that of a cleavage surface, and the reflectance of an end surface of lower reflectance made 10% or more. CONSTITUTION:A diffraction grating 2 is formed on an N-InP substrate 1, and an N-InGaAsP guide layer 3 of 1.3mum composition, a non-doped InGaAsP active layer 4 of 1.55mum composition, and a P-InP clad layer 5 are successively laminated thereon. This device is made hetero-structural by the process of burial growth, and one end surface is provided with an SiN film 7 and an Au high-reflection coating film 8. The reflectance at this time is 97%, and the reflectance in the emission end surface 6 is 31%; then, the characteristic of particularly high-temperature action largely improves by the difficulty of being affected by reflection noise.

Description

【発明の詳細な説明】 本発明は分布帰還型半導体レーザに関する。[Detailed description of the invention] The present invention relates to a distributed feedback semiconductor laser.

(従来技術とその問題点) Gb/sレベルの高速変調時においても安定に単一軸モ
ード発振する分布帰還屋半導体レーザ(DFB−LD)
は、長距離・大容量の光フアイバ通信用光源として急ピ
ッチな開発が進められている◎DFB−LDにおいては
その端面構造の最適化は重要な問題であ〕、DFB−L
Dの特性に大きな影響を与える。開発の比較的初期の段
階においては両端面の反射鏡での共振によシ利得スペク
トルのピーク付近て発振する7アプリ・ペローモード発
振をいかに抑制するかということに重点がおかれ、端面
傾斜型やウィンド構造、ARコート型のDFB−LDが
試作された。その後開発が進むにつれて、回折格子を深
く保存して結晶成長を行なうような適切な作製条件のも
とでは、例えば両端面をへきかいによって形成しても、
DFBモードに対するしきい値が7アプリ・ペローモー
ドに対するしきい値よりも十分小さくなって、7アプリ
・ペローモードは良好に抑制できることがわかってきた
。従来報告されている各種端面構造を有するDFB−L
D の構造模式図を第2図に示す0第2図(a)は一方
の端面にムR′:1−ティング膜9を形成したもの、(
b)はへきかい面10をそのまま利用した両面へきかい
型、(C)は一方をARコーティング膜9.他方を高反
射コーティング膜7,8を施したものである0それぞれ
の構造において30mW以上の光出力レベル、100℃
以上の高温cw動作が可能になってきている0尚、第2
図中の1は基板λは回折格子コはガイド層、4は活性層
、5はクラッド層である。
(Prior art and its problems) Distributed feedback semiconductor laser (DFB-LD) that stably oscillates in a single axis mode even during high-speed modulation at the Gb/s level
is being rapidly developed as a light source for long-distance, large-capacity optical fiber communications. Optimization of the end face structure is an important issue for DFB-LD, and DFB-L
It has a great influence on the characteristics of D. At a relatively early stage of development, emphasis was placed on how to suppress the 7-application Perot mode oscillation, which oscillates near the peak of the gain spectrum due to resonance in the reflectors on both end faces, and A prototype DFB-LD with a window structure and an AR coating was produced. Later, as development progressed, under appropriate manufacturing conditions such as preserving the diffraction grating deeply and performing crystal growth, for example, even if both end faces were formed by cleavage,
It has been found that the threshold value for the DFB mode is sufficiently smaller than the threshold value for the 7-app/Perot mode, and that the 7-app/Perot mode can be suppressed well. DFB-L with various end face structures that have been reported so far
A schematic diagram of the structure of D is shown in FIG. 2. FIG.
b) is a double-sided cleavage type that uses the cleavage surface 10 as it is, and (C) is an AR coating film 9 on one side. The other side is coated with high reflection coating films 7 and 8. Each structure has a light output level of 30 mW or more at 100°C.
It is becoming possible to operate at higher temperatures in cw.
In the figure, 1 is a substrate λ, a diffraction grating is a guide layer, 4 is an active layer, and 5 is a cladding layer.

ところでこのような初期特性の向上と相まって素子の信
頼性、特に高出力、高温動作下での信頼性が重要筏され
るようになってきた。この観点から第2図(a)(c)
に示した構造のDFB−LDは反射率の小さなARコー
ト膜99Aから光出力を取シ出せ、かつ裏面が高反射端
面となっているので光出射面6から有効に大きな光出力
を取り出すことができるので有効である。しかしながら
この構造においては外部からの光が内部の電界に結合し
やすく。
Coupled with such improvement in initial characteristics, the reliability of the device, especially reliability under high output and high temperature operation, has become important. From this point of view, Figures 2 (a) and (c)
The DFB-LD having the structure shown in FIG. 1 can extract light output from the AR coating film 99A having a small reflectance, and since the back surface is a highly reflective end face, it is possible to effectively extract a large light output from the light output surface 6. It is effective because it can be done. However, in this structure, light from the outside is easily coupled to the internal electric field.

反射雑音に弱いという欠点がおった。実際反射光量を変
えて相対雑音強度を評価したところ、へきかい面を有す
るものと比べて20 dB程度の劣化を生じることがわ
かった。第2図(b)の構造ではこの問題はないが、そ
の場合には高温動作、高出力動作の点で限界があった。
The drawback was that it was susceptible to reflected noise. When the relative noise intensity was actually evaluated by changing the amount of reflected light, it was found that there was a deterioration of about 20 dB compared to the one with a cleaved surface. Although the structure shown in FIG. 2(b) does not have this problem, it has limitations in terms of high temperature operation and high output operation.

(発明の目的) 本発明の目的は、上述の観点から、反射雑音耐性が大き
く、特に高温、高出力動作条件下での信頼性が高いDF
B−LD金提供することにあるO(発明の構成) 本発明の構成は、活性層と、活性層よりもエネルギーギ
ャップが犬きく、かつ一方の面に回折格子が形成された
光ガイド層とを少なくとも有する積層構造を2つのクラ
ッド層の間に備えている分布帰還型半導体レーザにおい
て対向する一対のレーザ端面の反射率を互いに異ならし
め1反射率の嘘 高力の端面の反射率がへきかい面の反射率よりも大きく
、反射率が低い方の端面の反射率が10%以上としたこ
とを特徴としている口 (発明の作用・原理) 高温・高出力動作を実現するには裏面の高反射コーティ
ングが有効であり、その場合しきい値電流も、例えば両
面へきかい型と比べて50%以上減少する。したがって
動作電流も小さくてすむので信頼性試験において動作の
余欲度が大きくなって信頼性が向上する。ところが第2
図(a)(C1に示したように光出射端面6の反射率が
6−1小さいと前述のように反射雑音に対して弱くなり
てしまう口そこで光出射端面6の反射率を大きくしてや
ればよいが、これは例えば10%以上の反射率であれば
アイソレージ璽ン20から3QdB程度の通常のアイソ
レータを用いることによシ反射光に対し大きな雑音を生
ずることなしに使用することができる。逆に光出射端面
6の反射率を大きくしすぎると光出力が十分取り出せず
、さらにファプリ・ベローモードが発振しやすくなる。
(Object of the Invention) From the above-mentioned viewpoint, the object of the present invention is to provide a DF that has high resistance to reflection noise and high reliability especially under high temperature and high output operating conditions.
O (Structure of the Invention) The structure of the present invention consists of an active layer, a light guide layer whose energy gap is larger than that of the active layer, and a diffraction grating formed on one surface. In a distributed feedback semiconductor laser having a laminated structure between two cladding layers having at least (Function/principle of the invention) High reflectance on the back surface is required to achieve high temperature and high output operation. A coating is effective in which the threshold current is also reduced by more than 50% compared to, for example, a double-sided cleavage type. Therefore, since the operating current is also small, there is a greater degree of operational freedom in reliability tests, and reliability is improved. However, the second
If the reflectance of the light emitting end face 6 is 6-1 smaller as shown in Figure (a) (C1), it will become weak against reflection noise as described above. Therefore, if the reflectance of the light emitting end face 6 is increased, However, if the reflectance is 10% or more, for example, a normal isolator with an isolation rating of 20 to 3 QdB can be used without causing large noise to the reflected light. If the reflectance of the light emitting end face 6 is made too large, sufficient optical output cannot be obtained, and furthermore, the Fabry-Bello mode is likely to oscillate.

本願の発明者が実験を行なったところ、結合係数が50
cPn  以上あり、また利得ピーク波長とDFB発振
波長との関係が適当な範囲内にあれば、へきかい面程度
の反射率でも十分に高出力動作が可能でアシ、ファプリ
・ペローモードも抑えられることがわかりたOまたAR
ココ−ィングした場合と比べてしきい値電流が約40%
低減し、それにともなって温度特性も改善されるために
1例えば80℃以上の温度における5mWあるいは10
mWレベルの動作電流も小さくな91%に高温領域にお
ける信頼性が大幅に向上した。
The inventor of this application conducted an experiment and found that the coupling coefficient was 50.
cPn or more, and if the relationship between the gain peak wavelength and the DFB oscillation wavelength is within an appropriate range, it is possible to operate at a sufficiently high output even with a reflectance as small as a cleavage surface, and the reed and Fabry-Perot modes can be suppressed. Understood O again AR
Threshold current is approximately 40% compared to cocoing.
For example, 5 mW or 10 mW at a temperature of 80°C or higher.
Reliability in the high temperature range has been significantly improved to 91%, which means that the operating current at the mW level is small.

(実施例) 本発明の一実施例であるDFB−LDの構造模式図を第
1図に示す口このような素子を得るにはまずn −In
P基板l上に回折格子2を形成し、そのうえに1.3μ
m組成のfl −InGaAsPガイド層3,1.55
μm組成のノンドープInGaAsP活性層4、p −
InPクラッド層5を順次積層する。回折格子2は周期
2400X、深さ100OX程度とし、ガイド層3゜活
性層4はいずれも厚さ0.1μmとした0この場合ガイ
ド層3は回折格子2の山の部分から測った厚さである0
また結晶成長の際は回折格子2は主に熱の影響でその高
さが減少するが、成長温度を下げることによシ約500
X程度の深さのものが再現性よく得られた口このように
して作製した二重へテロ構造のDFBウェファを通常の
メサエッチング、埋め込み成長工程で埋め込みへテロ構
造の半導体レーザとし、数個のレーザペレットを含むバ
ーに切シ出した後、一方の端面にSiN膜7およびAu
高反射コーテイング膜8を形成した。このときの反射率
は97%である。光出射端面6はへきかい面をそのまま
用いた0この出射端面6における反射率は31%である
。このようにじて得たDFB−LDの特性を測定したと
ころ、室温(Wにおける発振しきい値電流10mA、微
分量子効率40%、最大出力40 mW、最高C’W動
作温3130℃と、きわめてすぐれた特性が得られたo
 500X程度の深さの回折格子2でも結合係数は50
cl11 以上とることができ、この場合、室温におい
てゲインピーク波長がDFB発振波長よりも100〜2
50X程度短かい領域にあると室温付近から発振可能な
温度まで。
(Example) A schematic structural diagram of a DFB-LD, which is an example of the present invention, is shown in FIG.
A diffraction grating 2 is formed on a P substrate l, and a 1.3μ
m composition fl-InGaAsP guide layer 3, 1.55
Non-doped InGaAsP active layer 4 with μm composition, p −
InP cladding layers 5 are sequentially laminated. The diffraction grating 2 has a period of 2400X and a depth of about 100OX, the guide layer 3 and the active layer 4 each have a thickness of 0.1 μm. In this case, the guide layer 3 has a thickness measured from the peaks of the diffraction grating 2. Some 0
Also, during crystal growth, the height of the diffraction grating 2 decreases mainly due to the influence of heat, but by lowering the growth temperature, the height of the diffraction grating 2 decreases by approximately 500
A double heterostructure DFB wafer with a depth of about After cutting into bars containing laser pellets, SiN film 7 and Au
A highly reflective coating film 8 was formed. The reflectance at this time is 97%. The light emitting end face 6 uses a cleavage surface as it is, and the reflectance at this emitting end face 6 is 31%. When we measured the characteristics of the DFB-LD obtained in this way, we found that it had an oscillation threshold current of 10 mA at room temperature (W), a differential quantum efficiency of 40%, a maximum output of 40 mW, and a maximum C'W operating temperature of 3130°C. Excellent characteristics were obtained o
Even if the diffraction grating 2 has a depth of about 500X, the coupling coefficient is 50
cl11 or more, and in this case, the gain peak wavelength is 100 to 2
In a region as short as 50X, the temperature ranges from around room temperature to the temperature at which oscillation is possible.

7アプリヘロ一モード発振は全く観測されなかった0た
だし、実験の結果回折格子が300X以下。
7 No appli-hero one mode oscillation was observed 0 However, as a result of the experiment, the diffraction grating was below 300X.

あるいはゲインピーク波長とDFB発振波長とが上記以
外の領域にある場合、ファプリ・ペローモードが観測さ
れることがあった口もちろん回折格子゛をよシ深く保存
できれば、この波長範囲よりも広い範囲で7アプリ・ペ
ローモードを抑制できる。
Alternatively, if the gain peak wavelength and the DFB oscillation wavelength are in a region other than the above, the Fabry-Perot mode may be observed. 7 apps/Perot mode can be suppressed.

このようにして作製した素子においては従来例と比べて
特に高温動作が可能とな)、80010 mWという厳
しい信頼性試験において従来例の最良結果と比べて5倍
程度の改善が得られた。もちろん反射雑音に対する耐性
も十分良好であった。
The device manufactured in this way is capable of operating at a particularly high temperature compared to the conventional example), and in a severe reliability test of 80010 mW, an improvement of about five times was obtained compared to the best result of the conventional example. Of course, the resistance to reflection noise was also sufficiently good.

なお実施例においては光出射端面6をへきかいによりて
形成したが、もちろんこれに限るものではなく1反射雑
音の点で必要な10’1以上の反射率であればよい0用
いる半導体材料もInGaムsr/InP系に限るもの
ではなく、GaAjAs/Ga人s系等他の半導体材料
を用いて何らさしつかえない。
In the embodiment, the light emitting end face 6 is formed by cutting, but the invention is not limited to this, and the semiconductor material used may also be InGa. The semiconductor material is not limited to Sr/InP type, and other semiconductor materials such as GaAjAs/GaAs type may be used.

(発明の効果) 本発明の特徴はDFB−LDにおいて一方の端面反射率
を大きくするとともに光出射端面の反射率を10%以上
としたことである。これによって反射雑音の影響を受け
にくく、特に高温動作特性が大幅に向上したDFB−L
Dt得た0 結合係数や、ゲインピークとDFB波長と
の差も通常の方法で十分制御可能な適当な範囲内にあれ
ば、ファプリ・ペローモードも全く発振しなかつた0高
温度領域における動作電流が大幅に低減し、従来の方法
では不可能であった高温度における信頼性試験が可能と
なシ、50℃程度までの通常の温度範囲内でも動作の余
欲度が大きく、従来と比べて数倍高い信頼性が得られる
ようになった〇 (C)は従来例のDFB−LDの構造模式図を示す。図
中l it: InP基板、2は回折格子、3はガイド
層、4は活性層、5はInPクラッド層、6は光出射端
面、7はSiN膜、8はAuコート膜、9はムRコート
膜、10はへきかい面をそれぞれめられす。
(Effects of the Invention) A feature of the present invention is that in the DFB-LD, the reflectance of one end face is increased and the reflectance of the light emitting end face is set to 10% or more. As a result, the DFB-L is less susceptible to reflection noise and has significantly improved high-temperature operating characteristics.
If the Dt obtained coupling coefficient and the difference between the gain peak and the DFB wavelength are within an appropriate range that can be sufficiently controlled by normal methods, the operating current in the high temperature region where the Fabry-Perot mode will not oscillate at all. It is possible to perform reliability tests at high temperatures, which was impossible with conventional methods, and it has a large degree of operational leeway even within the normal temperature range of about 50°C, compared to conventional methods. 〇 (C) shows a structural schematic diagram of a conventional DFB-LD, which has achieved reliability several times higher. In the figure: InP substrate, 2 is a diffraction grating, 3 is a guide layer, 4 is an active layer, 5 is an InP cladding layer, 6 is a light emitting end face, 7 is a SiN film, 8 is an Au coat film, 9 is a rubber layer The coating film, 10, has a cleavage surface, respectively.

i′ 閃瀧人弁理士内原  晋( 第1図i′ Sentaki Patent Attorney Susumu Uchihara ( Figure 1

Claims (1)

【特許請求の範囲】[Claims] 活性層と、活性層よりもエネルギーギャップが大きく、
かつ一方の面に回折格子が形成された光ガイド層とを少
なくとも有する積層構造を2つのクラッド層の間に備え
ている分布帰還型半導体レーザにおいて対向する一対の
レーザ端面の反射率を互いに異ならしめ、反射率の高い
方の端面の反射率がへきかい面の反射率よりも大きく、
反射率が低い方の端面の反射率が10%以上としたこと
を特徴とする分布帰還型半導体レーザ。
The energy gap between the active layer and the active layer is larger than that of the active layer.
In a distributed feedback semiconductor laser having a laminated structure between two cladding layers, which has at least a light guide layer having a diffraction grating formed on one surface, the reflectances of a pair of opposing laser end faces are made to be different from each other. , the reflectance of the end face with higher reflectance is greater than the reflectance of the narrower face,
A distributed feedback semiconductor laser characterized in that the reflectance of the lower end facet is 10% or more.
JP59277485A 1984-12-28 1984-12-28 Distributed feedback type semiconductor laser Pending JPS61156894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277485A JPS61156894A (en) 1984-12-28 1984-12-28 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277485A JPS61156894A (en) 1984-12-28 1984-12-28 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61156894A true JPS61156894A (en) 1986-07-16

Family

ID=17584250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277485A Pending JPS61156894A (en) 1984-12-28 1984-12-28 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61156894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829277B2 (en) 2001-08-14 2004-12-07 The Furukawa Electric Co., Ltd. Distributed feedback semiconductor laser device and laser module
WO2006008269A1 (en) * 2004-07-23 2006-01-26 Eblana Photonics Ltd. Single mode laser
US7672348B2 (en) 2003-07-11 2010-03-02 Eblana Photonics Limited Semiconductor laser and method of manufacture
CN108321675A (en) * 2018-04-10 2018-07-24 青岛海信宽带多媒体技术有限公司 Laser and optical module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829277B2 (en) 2001-08-14 2004-12-07 The Furukawa Electric Co., Ltd. Distributed feedback semiconductor laser device and laser module
US7672348B2 (en) 2003-07-11 2010-03-02 Eblana Photonics Limited Semiconductor laser and method of manufacture
WO2006008269A1 (en) * 2004-07-23 2006-01-26 Eblana Photonics Ltd. Single mode laser
CN108321675A (en) * 2018-04-10 2018-07-24 青岛海信宽带多媒体技术有限公司 Laser and optical module
CN108321675B (en) * 2018-04-10 2019-12-17 青岛海信宽带多媒体技术有限公司 laser and optical module

Similar Documents

Publication Publication Date Title
US4280107A (en) Apertured and unapertured reflector structures for electroluminescent devices
Li et al. Partly gain-coupled 1.55 mu m strained-layer multiquantum-well DFB lasers
US4063189A (en) Leaky wave diode laser
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
Hayamizu et al. Lasing from a single-quantum wire
Zory et al. Grating-coupled double-heterostructure AlGaAs diode lasers
JPS59205787A (en) Single axial mode semiconductor laser
Adachi et al. 100° C, 25 Gbit/s direct modulation of 1.3 µm surface emitting laser
US20200036162A1 (en) Laser
JPH10163579A (en) Super light-emitting diode of embedded heterostructure and method for controlling power
US4528670A (en) Short coupled cavity laser
JPH0468798B2 (en)
US4633474A (en) Distributed feedback semiconductor laser
US20020064203A1 (en) Strip-loaded tunable distributed feedback laser
JPS61156894A (en) Distributed feedback type semiconductor laser
JPH0118591B2 (en)
JP2003515938A (en) Mode-selective facet layers for pump lasers
JPS6114787A (en) Distributed feedback type semiconductor laser
JPS6232680A (en) Integrated type semiconductor laser
JP2000244059A (en) Semiconductor laser device
Hohimer et al. Interferometric ring diode lasers
WO2021148120A1 (en) Single-mode dfb laser
JPH10303495A (en) Semiconductor laser
Wang et al. High power long life superluminescent diode
JP3154244B2 (en) Semiconductor laser device and method of manufacturing the same