JPS61156785A - Semiconductor luminescent device - Google Patents

Semiconductor luminescent device

Info

Publication number
JPS61156785A
JPS61156785A JP59280727A JP28072784A JPS61156785A JP S61156785 A JPS61156785 A JP S61156785A JP 59280727 A JP59280727 A JP 59280727A JP 28072784 A JP28072784 A JP 28072784A JP S61156785 A JPS61156785 A JP S61156785A
Authority
JP
Japan
Prior art keywords
film
layer
electrode
crystal
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59280727A
Other languages
Japanese (ja)
Inventor
Satoshi Furumiya
古宮 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59280727A priority Critical patent/JPS61156785A/en
Publication of JPS61156785A publication Critical patent/JPS61156785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the Au film from penetrating the semiconductor layer and to prevent the bad effect of the Au film by a method wherein a multilayer electrode, which is formed by laminating in order four layers consisting of a Ti film, a Ti-Pt mixed film, a Pt film and the Au film, is provided. CONSTITUTION:A P-type electrode 30 in a four-layer structure, which is constituted by laminating in order four layers consisting of a Ti film 31, a Ti-Pt mixed film 32, a Pt film 33 and an Au film 34, is provided on a P-type InGaAsP contact layer 5. When the electrode structure in such the constitution is performed a thermal treatment and is crystallized, the crystal grains in the crystal becomes smaller and are densely closed as the Ti crystal and the Pt crystal are respectively a hexagonal crystal system and a cubic crystal system and the gaps, through which the Au film pierces, decrease. By this way, the Au film is prevented from penetrating the layer of the film 34 by the film 32 obtainable a dense film quality and the bad effect of the Au film can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体発光装置に係り、特に半導体レーザや発
光ダイオードの電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light emitting device, and particularly to an electrode structure of a semiconductor laser or a light emitting diode.

最近、光伝送が脚光を浴びており、その光源として発光
ダイオードや半導体レーザが利用されているが、これら
の光源はm−v層化合物半導体のへテロ接合構造からな
り、特に、コヒーレントな光をだす半導体レーザは光伝
送用光源の本命とみなされている。例えば、波長0.7
〜0.9μm帯のAIG、aAs/GaAs (活性層
/基板)や波長1〜1.5 pm帯のInGaAs P
 / In Pは良く知られている発光光源である。
Recently, optical transmission has been in the spotlight, and light-emitting diodes and semiconductor lasers are used as light sources.These light sources are made of a heterojunction structure of m-v layer compound semiconductors, and are particularly difficult to transmit coherent light. Semiconductor lasers that emit light are considered to be the ideal light source for optical transmission. For example, wavelength 0.7
AIG in the ~0.9 μm band, aAs/GaAs (active layer/substrate), and InGaAs P in the wavelength band of 1 to 1.5 pm.
/InP is a well-known luminescent light source.

、このような半導体レーザ、あるいは発光ダイオードに
おいて、発光効率を高めて、出来るだけ長寿命化するこ
と、換言すれば、高性能化して信頼性を高めることが要
望されている。
In such semiconductor lasers or light emitting diodes, it is desired to increase the luminous efficiency and extend the life span as much as possible, in other words, to improve the performance and reliability.

[従来の技術] 第2図はこのような発光装置の一例として、埋め込み型
1nGaAs P / In P半導体レーザの一形式
のの概要断面図を示しており、本例は1.3μmの発光
波長をもったVSB形(V−shaped 5ubst
rateBuried Heterostructur
e形)埋め込み型レーザである。図中、1はn−InP
基板、2はn −1nPバフ7ア層、3はn −InG
aAs P活性層、4はp −InPクラッド層、5は
p −1nGaAs Pコンタクト層。
[Prior Art] FIG. 2 shows a schematic cross-sectional view of one type of buried type 1nGaAs P/InP semiconductor laser as an example of such a light emitting device, and this example has an emission wavelength of 1.3 μm. V-shaped 5ubst
rateBuried Heterostructure
e type) is an embedded laser. In the figure, 1 is n-InP
Substrate, 2 is n-1nP buff 7a layer, 3 is n-InG
aAs P active layer, 4 a p-InP cladding layer, and 5 a p-1nGaAs P contact layer.

6はp −InP層(電流阻止層)で、そのコンタクト
層5の上面にp電極(+電極)10が設けられ、それは
チタン(Ti)膜(11A厚1000人程度)11.白
金(P L)膜(膜厚1000人程度定押2.金(Au
)膜13(M’A厚3μm)の三層を積層した構造とな
っている。又、n電極(−電極) 20はInP基板1
の裏面に形成され、それは金−ゲルマニウムーニソケル
からなる電極である。
6 is a p-InP layer (current blocking layer), and a p-electrode (+ electrode) 10 is provided on the upper surface of the contact layer 5, which is a titanium (Ti) film (11A thickness of about 1000 layers) 11.6. Platinum (PL) film (film thickness approximately 1000 people) 2. Gold (Au)
) Film 13 (M'A thickness: 3 μm) has a structure in which three layers are laminated. In addition, the n-electrode (-electrode) 20 is the InP substrate 1
It is an electrode made of gold-germanium nitride.

このような埋め込み型レーザは、レーザ発光が両側の電
流阻止層で閉じ込められて、中央部のn−InGaAs
 P活性層3で行なわれ、特に低しきい値組流が得られ
る特徴がある。
In such a buried laser, the laser emission is confined by the current blocking layers on both sides, and the n-InGaAs in the center
This is carried out in the P active layer 3, and is characterized in that a particularly low threshold flow can be obtained.

[発明が解決しようとする問題点] ところで、上記に例示した半導体レーザ、あるいはその
他の発光装置において、n電極20は膜厚の厚い基板裏
面に形成されるから問題はないが、p電極IOの方は薄
くエピタキシャル成長した層(活性層に近い層)の上に
形成されるから、それは信頼性上に大きな影響を与える
[Problems to be Solved by the Invention] Incidentally, in the semiconductor laser or other light emitting device exemplified above, there is no problem since the n-electrode 20 is formed on the back surface of the thick substrate, but the p-electrode IO is Since it is formed on a thin epitaxially grown layer (a layer close to the active layer), it has a large impact on reliability.

即ち、Ti膜とPt膜とAu膜を被着した後、オーミッ
クコンタクトを良くするための熱処理を行なうと、Ti
膜11とPt膜12とが非常に薄いため、鍍金したAu
膜がこれらの膜を透過拡散して、半導体層と反応し、素
子特性を悪くすることが判ってきた。
That is, if a heat treatment is performed to improve ohmic contact after depositing a Ti film, a Pt film, and an Au film, the Ti
Since the film 11 and the Pt film 12 are very thin, the plated Au
It has been found that the film diffuses through these films, reacts with the semiconductor layer, and deteriorates device characteristics.

更に、動作中にもAuが浸透して発光特性を悪化させる
ことがある。これらの問題はオージェ電子分光法による
分析で検出され、明らかとなってきた。
Furthermore, Au may penetrate during operation and deteriorate the light emitting characteristics. These problems have been detected and clarified by analysis using Auger electron spectroscopy.

その原因は、Ti膜11とPt膜12とを電子ビーム蒸
着法で被着するが、被着膜はアモルファスと多結晶との
混合状態にあり、特にTiの結晶粒は六方晶構造で、C
軸に配向して、その間隙をAuが突き抜けていると推察
される。
The reason for this is that the Ti film 11 and the Pt film 12 are deposited by electron beam evaporation, but the deposited films are in a mixed state of amorphous and polycrystalline.In particular, the Ti crystal grains have a hexagonal structure, and the C
It is presumed that Au is oriented along the axis and penetrates through the gap.

また、これらのTi膜、Pt膜を被着した後のピンホー
ルを観察すると、ピンホールは10+/−以上あり、こ
れもAuが透過する原因と思われる。
Furthermore, when observing the pinholes after these Ti films and Pt films were deposited, there were 10 +/- or more pinholes, which is also considered to be the cause of Au permeation.

一方、このように、p電極10をTi−Pt−へU三層
構造にしている理由は、Ptと肋とが半導体層・と反応
し易いために、半導体層との間にTiを介在させており
、且つ、TiとAUとも反応し易いために、その間にP
tを介在させているものである。
On the other hand, the reason why the p-electrode 10 has a Ti-Pt- U three-layer structure is because Pt and ribs easily react with the semiconductor layer. In addition, since it easily reacts with Ti and AU, P
t is interposed therebetween.

また、Ti膜とPt膜とを膜厚1000’人程度に薄(
形成しているのは、これらを余り厚(被着すると、熱膨
張が半導体層と大きく相異するため、応力が生じて半導
体層に歪を与え、発光特性に影響する問題があるからで
ある。
In addition, the Ti film and Pt film were thinned to a thickness of about 1000 mm (
The reason for this is that if these layers are deposited too thickly, the thermal expansion will be significantly different from that of the semiconductor layer, causing stress and straining the semiconductor layer, which will affect the light-emitting characteristics. .

本発明は、この電極構造に由来する問題点を解消させて
、高性能化・高信頼化できる電極構造をもった発光装置
を提案するものである。
The present invention solves the problems arising from this electrode structure and proposes a light emitting device having an electrode structure that can achieve higher performance and higher reliability.

U問題点を解決するための手段] その問題は、Ti膜+ Tt−P を混合膜(混合比7
:3以上)+ Pt膜、Au膜からなる四層を順次に積
層した多層電極が設けられている半導体発光装置によっ
て解決される。
Means for solving problem U] The problem is that a Ti film + Tt-P is mixed into a film (mixing ratio: 7).
: 3 or more)

例えば、この多層電極をp −1nGaAs Pからな
るコンタクト層に設ける。
For example, this multilayer electrode is provided on a contact layer made of p -1nGaAsP.

[作用] 即ち、本発明では、Au膜が透過しないように、Ti−
Pt混合膜をTiとPtとの間に介在させる。
[Function] That is, in the present invention, Ti-
A Pt mixed film is interposed between Ti and Pt.

そうすると、緻密な膜質が得られるTi −Pt合金膜
によってAu膜の突き抜けが阻止され、その悪影響が防
止できる。
In this case, penetration of the Au film is prevented by the Ti--Pt alloy film, which provides a dense film quality, and its adverse effects can be prevented.

[実施例] 以下1図面を参照して実施例によって詳細に説明する。[Example] An embodiment will be described in detail below with reference to one drawing.

第1図は本発明にかかるVSB形1nGaAs P /
 InP半導体レーザ装置の構造断面図を示しており、
30はp電極、その他の記号は第2図と同一部材に同一
記号が付しである。
FIG. 1 shows a VSB type 1nGaAs P/
A structural cross-sectional view of an InP semiconductor laser device is shown.
30 is a p-electrode, and other symbols are the same members as in FIG. 2 with the same symbols.

p電極30は膜厚500人のTi膜31と、膜厚100
0人のTi−Pt混合膜32と、膜厚500人のPt膜
33と、膜厚3μmのAu膜34を順次に積層した四層
構造となっている。このような電極構造は、熱処理して
結晶化すると、Ti結晶が六方晶形、 Pt結晶が六方
晶形であるから、結晶粒が小さくなって、緻密につまり
、肋が透過する間隙が少なくなる。
The p-electrode 30 has a Ti film 31 with a thickness of 500 mm and a Ti film 31 with a thickness of 100 mm.
It has a four-layer structure in which a Ti-Pt mixed film 32 with a thickness of 500, a Pt film 33 with a thickness of 500, and an Au film 34 with a thickness of 3 μm are sequentially laminated. When such an electrode structure is crystallized by heat treatment, since the Ti crystal is hexagonal and the Pt crystal is hexagonal, the crystal grains become smaller and denser, and the gaps through which the ribs pass through are reduced.

尚、Ti−Pt混合膜32の混合比はl:1が望ましい
が、偏重した混合比でも3ニア、即ち、Ti、あるいは
Ptの含有量は30%以上必要である。更に、上記例は
Ti−Pt混合膜32の膜厚を1000人としているが
、その膜厚は500〜1500人の範囲が適当で、且つ
、Til*31. Ti −Pt混合膜32. Pt膜
33の3つの膜を合計した膜厚は2000人程度定押え
ることが大切である。それは、前記したように厚くする
と、応力が発生して、発光特性に悪影響があるからであ
る。
The mixing ratio of the Ti--Pt mixed film 32 is desirably 1:1, but even with an unbalanced mixing ratio, it is necessary to have a ratio of 3, that is, the content of Ti or Pt must be 30% or more. Further, in the above example, the thickness of the Ti-Pt mixed film 32 is 1,000 layers, but the appropriate thickness is in the range of 500 to 1,500 layers, and Til*31. Ti-Pt mixed film 32. It is important to keep the total thickness of the three Pt films 33 at a constant value of about 2,000. This is because, as described above, if the thickness is increased, stress will occur, which will have an adverse effect on the light emitting characteristics.

次に、その形成方法を説明する。液相エピタキシャル成
長法でコンタクト層5を形成した後、電子ビーム蒸着法
で上記の膜厚をもったTi肋膜1. Ti−Pt混合膜
32. Pt膜33を順次に蒸着する。次いで、通常の
電解鍍金法で膜厚3μmの肋膜を被着した後、水素気流
中で430℃、30分間の熱処理を行なう。
Next, a method for forming the same will be explained. After forming the contact layer 5 by liquid phase epitaxial growth, a Ti film 1 with the above thickness is formed by electron beam evaporation. Ti-Pt mixed film 32. Pt films 33 are sequentially deposited. Next, a membrane with a thickness of 3 .mu.m is applied using a conventional electrolytic plating method, followed by heat treatment at 430.degree. C. for 30 minutes in a hydrogen stream.

次いで、膜厚2000人のn電極20を蒸着し、更に、
380℃、1分間の熱処理を行なう。最後に、襞間して
半導体レーザが仕上がるが、これをオージェ電子分光分
析法で検出したところ、Auの透過は見られずに、また
、ピンホールの量も103/cnl以下になった。従っ
て、本発明にかかる電極構成は有効なものである。
Next, an n-electrode 20 with a thickness of 2000 was deposited, and further,
Heat treatment is performed at 380° C. for 1 minute. Finally, the semiconductor laser is completed by folding, but when this was detected by Auger electron spectroscopy, no transmission of Au was observed, and the number of pinholes was less than 10 3 /cnl. Therefore, the electrode configuration according to the present invention is effective.

上記例は、VSB形埋め込み型半導体レーザで説明した
が、その他のBH形やPBH形のレーザ、あるいは発光
ダイオードにも通用できることば云うまでもない。
Although the above example has been explained using a VSB type buried semiconductor laser, it goes without saying that it can also be applied to other BH type or PBH type lasers or light emitting diodes.

[発明の効果コ 以上の説明から明らかなように、本発明によれば、電極
中の篩の透過がなくなって、半導体レーザの発光特性が
高効率に維持され、その信頼性の向上に大きく寄与する
ものである。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, the transmission of the sieve in the electrode is eliminated, and the emission characteristics of the semiconductor laser are maintained at high efficiency, which greatly contributes to improving its reliability. It is something to do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にがかる一実施例の半導体レーザの概要
断面図、 第2図は従来の一実施例の半導体レーザの概要断面図で
ある。 図において、 1はn −1nP基板、 2はn−InPバッファ層、 3はn −1nGaAs P活↑生層、4はp−1nP
クラソF層、 5はp −1nGaAs Pコンタクト層、6はp −
InP電流阻止層、 20はn電極 10は従来のp電極(そのうち、11はTi膜、 12
はPt膜、13はAu膜)、 30は本発明にがかるp電極(そのうち、31はTi膜
。 32はTi−Pt混合膜、33はPt膜、34はAu膜
)を示している。 第1図 第2図
FIG. 1 is a schematic sectional view of a semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a conventional semiconductor laser according to an embodiment. In the figure, 1 is an n-1nP substrate, 2 is an n-InP buffer layer, 3 is an n-1nGaAsP active layer, and 4 is a p-1nP
Claso F layer, 5 is p-1nGaAs P contact layer, 6 is p-
InP current blocking layer, 20 is an n electrode 10 is a conventional p electrode (of which 11 is a Ti film, 12 is a
is a Pt film, 13 is an Au film), 30 is a p-electrode according to the present invention (31 is a Ti film, 32 is a Ti-Pt mixed film, 33 is a Pt film, and 34 is an Au film). Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)Ti膜、Ti−Pt混合膜、Pt膜、Au膜から
なる四層を順次に積層した多層電極が設けられているこ
とを特徴とする半導体発光装置。
(1) A semiconductor light emitting device characterized by being provided with a multilayer electrode in which four layers consisting of a Ti film, a Ti-Pt mixed film, a Pt film, and an Au film are sequentially laminated.
(2)上記Ti膜、Ti−Pt混合膜、Pt膜、Au膜
からなる四層電極が、p−InGaAsP(0<x<1
、0<y<1)からなるコンタクト層に接続されている
ことを特徴とする特許請求の範囲第1項記載の半導体発
光装置。
(2) The four-layer electrode consisting of the Ti film, Ti-Pt mixed film, Pt film, and Au film has p-InGaAsP (0<x<1
, 0<y<1.
JP59280727A 1984-12-27 1984-12-27 Semiconductor luminescent device Pending JPS61156785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59280727A JPS61156785A (en) 1984-12-27 1984-12-27 Semiconductor luminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59280727A JPS61156785A (en) 1984-12-27 1984-12-27 Semiconductor luminescent device

Publications (1)

Publication Number Publication Date
JPS61156785A true JPS61156785A (en) 1986-07-16

Family

ID=17629098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59280727A Pending JPS61156785A (en) 1984-12-27 1984-12-27 Semiconductor luminescent device

Country Status (1)

Country Link
JP (1) JPS61156785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018736B2 (en) 2013-04-24 2015-04-28 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018736B2 (en) 2013-04-24 2015-04-28 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5247533A (en) Gallium nitride group compound semiconductor laser diode
US6887770B2 (en) Method for fabricating semiconductor device
JP3739951B2 (en) Semiconductor light emitting device and manufacturing method thereof
US5742628A (en) Short wavelength laser emitting diode with an improved GaN system double heterostructure
US6759689B2 (en) Light emitting element and method for manufacturing the same
US7642543B2 (en) Semiconductor light emitting device having metal reflective layer
US7485902B2 (en) Nitride-based semiconductor light-emitting device
JPH10247747A (en) Semiconductor light emitting device and manufacture thereof
JP3299145B2 (en) Gallium nitride based semiconductor p-type electrode and method of forming the same
JP3917223B2 (en) Manufacturing method of semiconductor light emitting device
US20060145177A1 (en) Light emitting device and process for fabricating the same
KR20050064556A (en) Nitride semiconductor light emitting device for flip chip and method of manufacturing the same
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
JP3965610B2 (en) Semiconductor device and manufacturing method thereof
JPS6112070A (en) Platinum electrode to iii-v group compound device with in asbase
JPH10229219A (en) Gallium nitride compound semiconductor element
WO2007007634A1 (en) Electrode structure, semiconductor device and methods for manufacturing those
JPH11274554A (en) P-side electrode of iii-v group compound semiconductor light emitting element and iii-v group compound semiconductor light emitting element
US20040259278A1 (en) Method for producing a light-emitting semiconductor component
JP4062111B2 (en) Method for manufacturing light emitting device
JP3776538B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPS61156785A (en) Semiconductor luminescent device
CN112002790B (en) Light emitting diode chip and manufacturing method thereof
JPH11177184A (en) Semiconductor laser device and its manufacture
JP2001168382A (en) Semiconductor light emitting element