JPS61156631A - Microwave discharge power supply apparatus - Google Patents

Microwave discharge power supply apparatus

Info

Publication number
JPS61156631A
JPS61156631A JP27462684A JP27462684A JPS61156631A JP S61156631 A JPS61156631 A JP S61156631A JP 27462684 A JP27462684 A JP 27462684A JP 27462684 A JP27462684 A JP 27462684A JP S61156631 A JPS61156631 A JP S61156631A
Authority
JP
Japan
Prior art keywords
microwave
propagation chamber
light
antenna
arc tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27462684A
Other languages
Japanese (ja)
Inventor
Masaaki Yada
矢田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27462684A priority Critical patent/JPS61156631A/en
Publication of JPS61156631A publication Critical patent/JPS61156631A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To equalize the discharge within every corner of the tube and suppress uneven emission of light by arranging the radiating direction of microwave to the same direction within the microwave propagation chamber and causing the light to be incident on the electrodeless luminous tube under the condition that distribution of light intensity is equalized. CONSTITUTION:The microwave from a microwave output part 13 of a magne tron 12 is sent to an antenna 18 and this microwave is radially emitted to a microwave propagation chamber 22 of a quartz glass bulb 20 from the antenna 18. The external circumference of a bulb 20 including this propagation chamber 22 is covered with a cylinder 25 made of stainless and the microwave is supplied to an electrodeless luminous tube 23 along the vertical direction of antenna 18. This propagation chamber 22 is kept under the vacuum condition and a dielectric loss of propagation chamber 22 is set smaller than that in the luminous tube 23. direction of microwave is arranged uniformly within the propagation chamber 22, distribution of intensity is equalized, the light is made incident on the luminous tube 23 passing through a flat separation plate 21 and thereby uneven emission of light within the luminous tube 23 is suppressed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はマイクロ波放電を利用した光源装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a light source device using microwave discharge.

〔発明の技術的背景〕[Technical background of the invention]

マイクロ波のエネルギーを励起源とした無電極ランプは
、長寿命であるばかりでなく、紫外線光源として従来の
有極ランプと比較した場合、紫外線の出力効率が良好で
あることから、最近、例えばU■硬化形インクの乾燥用
光源として用いる。鼠みがなされている。
Electrodeless lamps using microwave energy as an excitation source not only have a long lifespan, but also have a good output efficiency of ultraviolet light when compared to conventional polarized lamps as ultraviolet light sources. ■Used as a light source for drying curable ink. A rat is being played.

ところで、この種の無電極光源装置としては、従来例え
ば第3図に示した如き構成のものが知られている。
Incidentally, as this type of electrodeless light source device, one having a configuration as shown in FIG. 3, for example, is conventionally known.

すなわち、箱状の装置本体1内には、一端に光取り出し
用の開口部2を有した中空状のマイクロ波空洞共振器3
とマグネトロン4とが配置されており、この空洞共振器
3内には、マグネトロン4のマイクロ波出力部5から放
射されたマイクロ波が、導波管6および空洞共振器3の
周面に開設した給電ロアを通じて導かれるようになって
いる。
That is, inside the box-shaped device main body 1, there is a hollow microwave cavity resonator 3 having an opening 2 at one end for extracting light.
and a magnetron 4 are arranged, and in this cavity resonator 3, the microwave radiated from the microwave output section 5 of the magnetron 4 is transmitted to the waveguide 6 and the circumferential surface of the cavity resonator 3. It is designed to be guided through the power supply lower.

そして、このマイクロ波空洞共振器3内のマイクロ波の
強度の最も大きい部分に、例えば石英バルブ内に放電媒
体を封入してなる無電極ランプ8が設置され、この無電
極ランプ8にマイクロ波を印加すると、内部の放電媒体
に放電が生じて、所定の波長領域の紫外線が発生され、
この紫外線は開口部2を通じて外方に放射される。
An electrodeless lamp 8 made of, for example, a quartz bulb sealed with a discharge medium is installed in the part of the microwave cavity resonator 3 where the microwave intensity is highest, and the microwave is applied to the electrodeless lamp 8. When applied, a discharge occurs in the internal discharge medium and ultraviolet rays in a predetermined wavelength range are generated.
This ultraviolet light is radiated outward through the opening 2.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記従来例にあっては、マイクロ波を外
側から無電極ランプ8に照射しているので、マイクロ波
が充分に無電極ランプ8の中に入らず、結果として光変
換効率が悪いという欠点があった。
However, in the above-mentioned conventional example, since the microwave is irradiated to the electrodeless lamp 8 from the outside, the microwave does not enter the electrodeless lamp 8 sufficiently, resulting in poor light conversion efficiency. was there.

そこで、本発明者は放電媒体を封入した発光管の内側に
、マイクロ波を発射するアンテナを挿入することを考え
た。このようにすれば、マイクロ波は全て発光管に照射
されるので、光変換効率を大幅に改善することができた
Therefore, the present inventor considered inserting an antenna that emits microwaves inside an arc tube in which a discharge medium is sealed. In this way, all of the microwaves were irradiated onto the arc tube, making it possible to significantly improve the light conversion efficiency.

ところで、このような装置を用いての光処理にあっては
、均一な照度分布は勿論のこと、例えば光処理の種類に
応じて局部的に照度を高くしたり、逆に弱くする等の要
求が出されることがある。このような場合、発光管の形
状を変えることで対応することが好ましいが、上記アン
テナ方式では、マイクロ波強度がアンテナから遠ざかる
にしたがって小さくなるので、放射照度を均一にするこ
とは勿論のこと、要求通りの照度分布を得ることが難し
いという問題があった。このような要求を満たすために
は、少なくとも発光管に照射するマイクロ波の強度分布
を均一にする必要がある。
By the way, in light processing using such a device, not only a uniform illuminance distribution is required, but also demands such as locally increasing or decreasing the illuminance depending on the type of light processing. may be issued. In such a case, it is preferable to deal with this by changing the shape of the arc tube, but in the above antenna method, the microwave intensity decreases as it moves away from the antenna, so it is of course necessary to make the irradiance uniform. There was a problem in that it was difficult to obtain a desired illuminance distribution. In order to meet such requirements, it is necessary to make at least the intensity distribution of the microwaves irradiated onto the arc tube uniform.

(発明の目的) 本発明はこのような事情にもとづいてなされたもので、
少なくとも無電極発光管に照射されるマイクロ波の強度
分布を均一化したマイクロ波放電光源装置の提供を目的
とする。
(Object of the invention) The present invention was made based on the above circumstances, and
It is an object of the present invention to provide a microwave discharge light source device in which the intensity distribution of microwaves irradiated to at least an electrodeless arc tube is made uniform.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は上記目的を達成するため、アンテナ
および無電極発光管を、一端に光取り出し用の開口を有
した導電性の筒体で覆うとともに、この筒体の内部であ
って上記アンテナと無電極発光管との間にマイクロ波伝
播室を設け、このマイクロ波伝播室内の誘電損失を、上
記無電極発光管の誘電損失よりも小さく設定することに
より、無電極発光管に照射されるマイクロ波の強度分布
を、上記マイクロ波伝播室内で均一化するようしたこと
を特゛徴とする。
That is, in order to achieve the above-mentioned object, the present invention covers an antenna and an electrodeless arc tube with a conductive cylinder having an opening for light extraction at one end, and also covers the antenna and the electrodeless arc tube with a conductive cylinder having an opening for extracting light at one end. By providing a microwave propagation chamber between the electrodeless arc tube and setting the dielectric loss in this microwave propagation chamber smaller than the dielectric loss of the electrodeless arc tube, the micro wave irradiated onto the electrodeless arc tube is It is characterized in that the wave intensity distribution is made uniform within the microwave propagation chamber.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を、第1図および第2図にもとづ
いて説明する。
An embodiment of the present invention will be described below based on FIGS. 1 and 2.

図中11はマイクロ波を伝送する導波管であり、本実施
例の場合は両端が閉塞された断面長方形状の角形管を使
用している。導波管11の一端には、マイクロ波を発生
させるマグネトロン12が設置されており、このマグネ
トロン12のマイクロ波出力部13は、ガスケット14
を介して導波管11内に導入されている。なお、図中符
号15はマグネトロン12の電源を示す。
In the figure, reference numeral 11 denotes a waveguide for transmitting microwaves, and in this embodiment, a square tube with a rectangular cross section with both ends closed is used. A magnetron 12 that generates microwaves is installed at one end of the waveguide 11, and a microwave output section 13 of this magnetron 12 is connected to a gasket 14.
It is introduced into the waveguide 11 via. Note that reference numeral 15 in the figure indicates a power source for the magnetron 12.

導波管11の他端−側面には、マイクロ波を通過させる
に充分な径の通孔16が開設され、この通孔16の中心
部にはテフロン等の電気絶縁性材料からなる支持具1γ
を介してアンテナ18が挿通配置されている。本実施例
のアンテナ18は中空円筒状をなし、その一端部が導波
管11内に導入されているとともに、他端部は導波管1
1の外方へ所定長さ導出されている。そして、このアン
テナ18が導出された導波管11の外側面には、ブラケ
ット19を介して石英ガラスバルブ20が取り付けられ
ている。石英ガラスバルブ20内は透磁性および透光性
を有する石英ガラス製の仕切り壁21によって管軸方向
に沿。
A through hole 16 having a diameter sufficient to allow microwaves to pass through is provided at the other end of the waveguide 11, and a support 1γ made of an electrically insulating material such as Teflon is provided at the center of the through hole 16.
An antenna 18 is inserted through the antenna 18 . The antenna 18 of this embodiment has a hollow cylindrical shape, and one end thereof is introduced into the waveguide 11, and the other end is inserted into the waveguide 11.
1 for a predetermined length. A quartz glass bulb 20 is attached via a bracket 19 to the outer surface of the waveguide 11 from which the antenna 18 is led out. The interior of the quartz glass bulb 20 is partitioned along the tube axis by a partition wall 21 made of quartz glass that has magnetic and translucent properties.

う二室に気密に区画されており、その一方の空は上記ア
ンテナ18が同軸的に挿入されるマイクロ波伝播室22
をなすとともに、他方の至はアンテナ18の先端側に位
置する無電極発光管23をなしている。
The microwave propagation chamber 22 is airtightly divided into two chambers, one of which is a microwave propagation chamber 22 into which the antenna 18 is coaxially inserted.
, and the other end forms an electrodeless arc tube 23 located on the tip side of the antenna 18 .

この場合、上記マイクロ波伝播室22と無電極発光管2
3とを区画する仕切り壁21は、石英ガラスバルブ20
の管軸と直交する方向に沿う平坦な板状をなすとともに
、無電極発光管23は円柱状に形成され、この無電極発
光管23の仕切り壁21と対面する先端面24も平坦に
仕上げられている。したがって、無電極発光管23の管
軸方向に沿う長さ、つまり仕切り壁21から先端面24
までの長さしは、無電極発光管23のいずれの場所でも
均等となっている。そして、本実施例の場合、マイクロ
波伝播室22内は例えば104〜10  Torrの真
空度に保たれているとともに、無電極発光管23内には
放電媒体としてアルゴン(Ar)等の希ガスが104〜
数Torrと、水銀(HQ)等の発光金属物質が所定量
封入されている。したがって、これら雨空の圧力差およ
び封入物質の違いにより、マイクロ波伝播室22の誘電
損失の方が小さく設定されている。
In this case, the microwave propagation chamber 22 and the electrodeless arc tube 2
The partition wall 21 that partitions the quartz glass bulb 20
The electrodeless arc tube 23 is formed into a cylindrical shape, and the distal end surface 24 of the electrodeless arc tube 23 facing the partition wall 21 is also finished flat. ing. Therefore, the length of the electrodeless arc tube 23 along the tube axis direction, that is, from the partition wall 21 to the tip surface 24
The length up to this point is the same everywhere on the electrodeless arc tube 23. In the case of this embodiment, the inside of the microwave propagation chamber 22 is maintained at a vacuum level of, for example, 104 to 10 Torr, and a rare gas such as argon (Ar) is used as a discharge medium in the electrodeless arc tube 23. 104~
Several Torr and a predetermined amount of luminescent metal material such as mercury (HQ) are sealed. Therefore, the dielectric loss of the microwave propagation chamber 22 is set to be smaller due to the pressure difference in the rain air and the difference in the sealed substances.

このような石英ガラスバルブ20の外周囲は、例えばス
テンレス等の導電性材料からなる筒体25で覆われてお
り、この筒体25の無電極発光管23側に位置する一端
には、被照射面26と対向して光取り出し用の開口27
が開設されている。なお、この間口27には光の通過は
許容するが、マイクロ波の漏洩を防止するための金網2
8が張られている。
The outer periphery of such a quartz glass bulb 20 is covered with a cylinder 25 made of a conductive material such as stainless steel, and one end of this cylinder 25 located on the electrodeless arc tube 23 side is provided with a An opening 27 for light extraction facing the surface 26
has been established. Note that this opening 27 allows light to pass through, but there is a wire mesh 2 to prevent microwave leakage.
8 is posted.

また、本実施例の場合、上記アンテナ18を支持する支
持具17には、このアンテナ18の周囲を気密に覆う石
英ガラス製の隔壁チューブ29が取り付けられていると
ともに、アンテナ18の一端には石英ガラス製の冷却管
31が接続され、この冷却管31を通じて送風される外
気によってアンテナ18の冷却がなされる。そして、ア
ンテナ18を冷却した外気は、隔壁チューブ30内およ
び支持具17に開設した連通孔32を介して導波管11
内に逃がされるようになっている。
Further, in the case of this embodiment, a partition wall tube 29 made of quartz glass is attached to the support 17 that supports the antenna 18 to airtightly cover the periphery of the antenna 18. A cooling pipe 31 made of glass is connected, and the antenna 18 is cooled by outside air blown through the cooling pipe 31. The outside air that has cooled the antenna 18 is then passed through the waveguide 11 through the communication hole 32 provided in the bulkhead tube 30 and the support 17.
It is designed to escape inside.

なお、第1図中符号33はマイクロ波の反射波を最少に
抑えて、マイクロ波を効率良くアンテナ1.8に伝える
ためのプランジャである。
In addition, the reference numeral 33 in FIG. 1 is a plunger for minimizing the reflected waves of the microwave and efficiently transmitting the microwave to the antenna 1.8.

次に、上記構成の作用について説明する。Next, the operation of the above configuration will be explained.

マグネトロン12のマイクロ波出力部13から放射され
たマイクロ波は、導波管11を通じてアンテナ18に伝
送され、このアンテナ18を介して石英ガラスバルブ2
0のマイクロ波伝播室22内に放射状に発射される。な
お、この発射されたマイクロ波は、マイクロ波伝播室2
2内を径方向に通過するが、このマイクロ波伝播室22
内は真空雰囲気に保たれて誘電損失が小さくなっている
ので、放電は生じない。そして、このマイクロ波伝播室
22を含む石英ガラスバルブ20の外周囲は、ステンレ
ス製の筒体25で覆われているので、上記放射状に発射
されたマイクロ波は、第1図中矢印で示したように筒体
25を透過することなく、その向きがアンテナ18の軸
方向に沿って強制的に変更される。したがって、マイク
ロ波伝播室22内ではマイクロ波の向きが無電極発光管
23側に向って揃う状態となるから、マイクロ波の強度
分布が均等化され、この均等分布となったマイクロ波が
平坦な仕切り壁21を透過して、その全面から無電極発
光管23内に入射される。
Microwaves radiated from the microwave output section 13 of the magnetron 12 are transmitted to the antenna 18 through the waveguide 11, and are transmitted to the quartz glass bulb 2 via the antenna 18.
0 radially into the microwave propagation chamber 22. Note that this emitted microwave is transmitted to the microwave propagation chamber 2.
This microwave propagation chamber 22
Since the inside is kept in a vacuum atmosphere and dielectric loss is small, no discharge occurs. Since the outer periphery of the quartz glass bulb 20 including the microwave propagation chamber 22 is covered with a stainless steel cylindrical body 25, the microwaves emitted in the radial direction are In this way, the direction is forcibly changed along the axial direction of the antenna 18 without transmitting through the cylinder 25. Therefore, in the microwave propagation chamber 22, the direction of the microwaves is aligned toward the electrodeless arc tube 23, so the intensity distribution of the microwaves is equalized, and the evenly distributed microwaves become flat. The light passes through the partition wall 21 and enters the electrodeless arc tube 23 from its entire surface.

この結果、無電極発光管23内には均等な放電(プラズ
マ)が励起され、しかもこの場合、無電極発光管23の
管軸方向に沿う長さしは、無電極発光管23内の各所で
均等となっているから、無電極発光管23内においては
全体に亙って均等な放電が開始た され、この放電により生じ紫外線が金網28を透過して
被照射面26上に照射される。
As a result, uniform discharge (plasma) is excited within the electrodeless arc tube 23, and in this case, the length of the electrodeless arc tube 23 along the tube axis direction is Since the discharge is uniform, uniform discharge is started throughout the electrodeless arc tube 23, and the ultraviolet rays generated by this discharge are transmitted through the wire mesh 28 and irradiated onto the irradiated surface 26.

このような本発明の一実施例によれば、マイクロ波の向
きを予めマイクロ波伝播至22内で同一方向に揃え、そ
の強度分布を均等化した状態で、放電媒体が封入された
無電極発光管23内に入射させるようにしたので、無電
極発光管23内での放電が隅々にまで均等化され、発光
むらを小さく抑えることができる。したがって、第2図
に示したように、筒体25の開口27から一定長さ離れ
た被照射面26上の放射照度(μw / ci )を均
等化することができ、しかもこの放射照度は、マグネト
ロン12の入出力を変化させた場合でも何等変わりがな
く、紫外線照射量の異なった処理も連続して行なえる。
According to such an embodiment of the present invention, the direction of the microwave is aligned in advance in the same direction within the microwave propagation tube 22, and the electrodeless light emission in which the discharge medium is enclosed is made with the intensity distribution equalized. Since the light is made to enter the tube 23, the discharge inside the electrodeless arc tube 23 is equalized throughout the corner, and uneven light emission can be suppressed to a small level. Therefore, as shown in FIG. 2, it is possible to equalize the irradiance (μw/ci) on the irradiated surface 26 that is a certain length away from the opening 27 of the cylinder 25, and this irradiance is Even if the input/output of the magnetron 12 is changed, there is no difference, and treatments with different amounts of ultraviolet irradiation can be performed continuously.

そして、特に本実施例の場合、マイクロ波伝播至22内
では放電が開始されないので、無電極発光管23内で発
生された光に他の光が混じり合うこともなく、発光むら
をより一層抑えることができる。
Particularly in the case of this embodiment, since no discharge is started within the microwave propagation tube 22, other light does not mix with the light generated within the electrodeless arc tube 23, further suppressing uneven light emission. be able to.

それとともに、無電極発光管23を円柱状として上記長
さLを確保しておけば、無電極発光管23に入射される
マイクロ波に少しのばらつきがあったとしても、このば
らつき分を吸収することができ、発光むらを抑える上で
有効に寄与する。
At the same time, if the electrodeless arc tube 23 is made cylindrical and the above length L is secured, even if there is a slight variation in the microwaves incident on the electrodeless arc tube 23, this variation can be absorbed. This effectively contributes to suppressing uneven light emission.

加えて、上記のように無電極発光管23内での放電が均
等化されるので、被照射面26上の放射照度の分布を局
部的に高くしたりあるいは低くする場合には、例えば無
電極発光管23の仕切り壁21あるいは先端面24に凹
凸を付けて上記長さLを部分的に変えるだけで対処する
ことができる。このため、放射照度の分布を単に石英ガ
ラスバルブ20の形状変更のみで変化させることができ
、放射照度を部分的に変化させる作業を、従来に比べて
簡単に行なえるとともに、放射照度の設定の自由度が増
す利点がある。
In addition, since the discharge within the electrodeless arc tube 23 is equalized as described above, when the distribution of irradiance on the irradiated surface 26 is locally increased or decreased, for example, the electrodeless This problem can be solved by simply changing the above-mentioned length L partially by adding irregularities to the partition wall 21 or the tip end surface 24 of the arc tube 23. Therefore, the distribution of irradiance can be changed simply by changing the shape of the quartz glass bulb 20, making it easier to partially change the irradiance than in the past, and making it easier to set the irradiance. This has the advantage of increasing the degree of freedom.

なお、上記実施例では、無電極発光管を円柱形状とした
が、例えば偏平な円板状としても良く、さらに無電極発
光管内に封入する放電媒体も水銀に限らず、得ようとす
る光に応じて例えば水素、クリプトンあるいはキセノン
ガス又はこれらの混合ガスに変えても良い。
In the above embodiments, the electrodeless arc tube has a cylindrical shape, but it may also have a flat disk shape, for example. Furthermore, the discharge medium sealed in the electrodeless arc tube is not limited to mercury, but may be any material suitable for the light to be obtained. For example, hydrogen, krypton or xenon gas or a mixture thereof may be used as required.

また、無電極発光管とマイクロ波伝播交とを、別体の石
英ガラスバルブで構成しても良いし、ざらにマイクロ波
伝播室内も真空とすることに限らず、例えば無電極発光
管内に封入するガスと同種のガスを、無電極発光管内よ
りも稀薄の状態で封入しても良い。
Further, the electrodeless arc tube and the microwave propagation chamber may be configured with separate quartz glass bulbs, and the microwave propagation chamber is not limited to a vacuum. The same kind of gas as the one used may be sealed in a more dilute state than in the electrodeless arc tube.

また、導波管を省略し、マグネトロンのマイクロ波出力
部(アンテナ)を直接無電極発光管のマイクロ波伝播室
内に挿入しても良い。
Alternatively, the waveguide may be omitted and the microwave output section (antenna) of the magnetron may be directly inserted into the microwave propagation chamber of the electrodeless arc tube.

さらに、照度分布を変えるには、発光管形状を変えるだ
けでなく、例えばフィルタを設ける客種々の方法が考え
られる。
Furthermore, in order to change the illuminance distribution, in addition to changing the shape of the arc tube, various methods can be considered, such as installing a filter.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明によれば、マイクロ波−の放。 According to the present invention described in detail above, microwave radiation is possible.

対方向をマイクロ波伝播室内で同一方向に揃え、その強
度分布を均等化した状態で無電極発光管内に入射させた
ので、無電極発光管内での放電が隅々にまで均等化され
、発光むらを小さく抑えることができる利点がある。
The opposite directions are aligned in the same direction in the microwave propagation chamber, and the intensity distribution is made equal before entering the electrodeless arc tube. Therefore, the discharge inside the electrodeless arc tube is equalized to every corner, resulting in uneven light emission. It has the advantage of being able to keep it small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示し、第1図
は断面図、第2図は放射照度の分布を示す特性図、第3
図は従来のマイクロ波放電光源装置の概略構成図である
。 12・・・マグネトロン、18・・・アンテナ、20・
・・石英ガラスバルブ、22・・・マイクa波伝播空、
23・・・無電極発光管、25・・・筒体、21・・・
開口。
Figures 1 and 2 show an embodiment of the present invention, with Figure 1 being a sectional view, Figure 2 being a characteristic diagram showing the distribution of irradiance, and Figure 3 being a characteristic diagram showing the distribution of irradiance.
The figure is a schematic configuration diagram of a conventional microwave discharge light source device. 12... Magnetron, 18... Antenna, 20.
...quartz glass bulb, 22...microphone A-wave propagation sky,
23... Electrodeless arc tube, 25... Cylindrical body, 21...
Opening.

Claims (2)

【特許請求の範囲】[Claims] (1)マグネトロンで発生されたマイクロ波を発射する
アンテナと、このマイクロ波によって放電される放電媒
体を封入した無電極発光管と、上記アンテナおよび無電
極発光管を囲繞するとともに、一端に光取り出し用の開
口を有した導電性の筒体と、この筒体の内部であって上
記アンテナと無電極発光管との間に上記アンテナを包囲
するとともに、上記無電極発光管のアンテナ側にのみ面
するマイクロ波伝播室とを備え、 上記マイクロ波伝播室内の誘電損失を、上記無電極発光
管内の誘電損失よりも小さく設定してなることを特徴と
するマイクロ波放電光源装置。
(1) An antenna that emits microwaves generated by a magnetron, an electrodeless arc tube that encapsulates a discharge medium that is discharged by the microwaves, and an electrodeless arc tube that surrounds the antenna and electrodeless arc tube, and has a light extraction tube at one end. a conductive cylindrical body having an opening for the purpose of the present invention; a microwave propagation chamber, wherein dielectric loss in the microwave propagation chamber is set smaller than dielectric loss in the electrodeless arc tube.
(2)上記マイクロ波伝播室内を真空としたことを特徴
とする特許請求の範囲第(1)項記載のマイクロ波放電
光源装置。
(2) The microwave discharge light source device according to claim (1), wherein the microwave propagation chamber is vacuumed.
JP27462684A 1984-12-28 1984-12-28 Microwave discharge power supply apparatus Pending JPS61156631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27462684A JPS61156631A (en) 1984-12-28 1984-12-28 Microwave discharge power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27462684A JPS61156631A (en) 1984-12-28 1984-12-28 Microwave discharge power supply apparatus

Publications (1)

Publication Number Publication Date
JPS61156631A true JPS61156631A (en) 1986-07-16

Family

ID=17544333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27462684A Pending JPS61156631A (en) 1984-12-28 1984-12-28 Microwave discharge power supply apparatus

Country Status (1)

Country Link
JP (1) JPS61156631A (en)

Similar Documents

Publication Publication Date Title
US4507587A (en) Microwave generated electrodeless lamp for producing bright output
US3872349A (en) Apparatus and method for generating radiation
US20080203922A1 (en) High intensity plasma lamp
EP0819317A4 (en) Apparatus for exciting an electrodeless lamp with microwave radiation
JPH0414480B2 (en)
CN100349252C (en) Electrodeless lighting system
JPH11345598A (en) Electrodeless lamp
JP3385170B2 (en) Electrodeless discharge lamp
JPH0423378B2 (en)
EP0754400A1 (en) Rf driven sulfur lamp
JPH09190803A (en) Electrodeless discharge lamp
US4745335A (en) Magnesium vapor discharge lamp
US6351070B1 (en) Lamp with self-constricting plasma light source
JPS61156631A (en) Microwave discharge power supply apparatus
JPS61104559A (en) Microwave electric-discharge light source
JPS60117539A (en) Electrode-less discharge lamp
JP3981240B2 (en) Apparatus and method for generating microwave plasma
JPH06181050A (en) Rare gas discharge lamp apparatus
JPS61104560A (en) Microwave electric-discharge light source
JPH1050269A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device, and fluid treating device
JP2006059819A (en) Phosphor coating structure for electrode discharge lamp
SU756521A1 (en) Spectral gas-discharge tube
Shido et al. High-pressure microwave discharges in a compact quartz tube for an electrodeless high intensity discharge lamp
JPS61224258A (en) Microwave discharging light source device
JPS6139449A (en) Microwave discharge light source device