JPS61155829A - Pressure gauge - Google Patents

Pressure gauge

Info

Publication number
JPS61155829A
JPS61155829A JP27558084A JP27558084A JPS61155829A JP S61155829 A JPS61155829 A JP S61155829A JP 27558084 A JP27558084 A JP 27558084A JP 27558084 A JP27558084 A JP 27558084A JP S61155829 A JPS61155829 A JP S61155829A
Authority
JP
Japan
Prior art keywords
strain
substrate
region
gauge
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27558084A
Other languages
Japanese (ja)
Other versions
JPH0445058B2 (en
Inventor
Nobuo Miyaji
宣夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP27558084A priority Critical patent/JPS61155829A/en
Publication of JPS61155829A publication Critical patent/JPS61155829A/en
Publication of JPH0445058B2 publication Critical patent/JPH0445058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • G01L9/045Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges with electric temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To eliminate a span shift by fuse-welding different kinds of materials at necessary temperatures, measuring a generated difference in strain and generating reference strain for the span of strain of necessary strain, and dividing resistance variation of a strain gauge due to measurement pressure by utilizing the reference strain. CONSTITUTION:A span reference strain mechanism 2 consists of the 1st, the 2nd, and the 3rd substrates 21, 22, and 23 and the 1st and the 2nd strain gauges 24 and 25, and the substrate 21 is divided into the 1st and the 2nd areas 212 and 213 by an insulating groove 211. The substrates 22 and 23 are fuse-welded to the areas 212 and 212 at necessary temperatures t1 and t2, and gauges 24 and 25 are arranged in the areas 212 and 213 respectively. Further, a pressure receiving mechanism 3 is applied with measurement pressure PS and the 3rd strain gauge 32 fitted to a diaphragm part 31 is fitted to a base 1 through the 4th substrate 33. Then, a subtracting circuit operates the difference between outputs of the gauges 24 and 25 and a dividing circuit divides the output of the gauge 32 by the output of the subtracting circuit, thus obtaining a pressure gauge which is not affected by temperature variation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は温度変化によるスパンシフトのない歪ゲージを
用い九圧力計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure gauge using a strain gauge that does not undergo span shift due to temperature changes.

〔従来技術〕[Prior art]

一般に、温度の依存性のない歪のスパンの基準を作るこ
とは難かしい。たとえば、第1図に示す如く、異程の素
材1m、 2aを融着した物体の、温度を変えると、歪
を発生する。この場合、第2図に示す如く、@度と歪の
関係はlj =アに変化する。歪の式は下記の如くなる
。但し、t=1(1では歪は発生しない。
Generally, it is difficult to create a standard for strain span that is independent of temperature. For example, as shown in FIG. 1, when an object made of 1m and 2a of different materials fused together is heated, distortion occurs. In this case, as shown in FIG. 2, the relationship between degree and strain changes to lj =a. The distortion formula is as follows. However, when t=1 (1, no distortion occurs).

一2=(αl−(fz) (t −to)g、:温度t
Kおける歪 α1:素材1mの膨張率 α2:素材2mの膨張率 to:素材1a、2mの融着温度 以上のような歪は、歪のスパンの基準として利用するK
は、温度tでの測定値がわかっていなければならない。
-2=(αl-(fz) (t-to)g, : temperature t
Strain at K α1: Coefficient of expansion of 1 m of material α2: Coefficient of expansion of 2 m of material to: Strain greater than the fusion temperature of materials 1a and 2 m is used as a standard for the span of strain K.
must know the measured value at temperature t.

したがって、温度依存性のある歪は、歪のスパンの基準
としては不適当である。
Therefore, temperature-dependent strain is inappropriate as a criterion for strain span.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、温度の外乱を受けない歪のスパンの基
準歪を作り、この歪を利用して、スパンシフトのない歪
ゲージを用いた圧力計を提供するKある。
An object of the present invention is to create a reference strain of a strain span that is not subject to temperature disturbance, and to utilize this strain to provide a pressure gauge using a strain gauge without span shift.

〔発明の構成〕[Structure of the invention]

この目的を達成するために、力の絶縁溝によシ第一領域
と第二領域とに分けられ九第−基板と前記第一領域に所
要温度で面接合された第二基板と前記第二領域に所要温
度で面接合され前記第二基板と同材料よシなる第三基板
と前記第一領域に配置された第一歪ゲージと前記第二領
域に配置された第二歪ゲージとを備えるスパン基準歪機
構と。
To achieve this purpose, the ninth substrate is divided into a first region and a second region by a force insulating groove, and the second substrate and the second substrate are surface-bonded to the first region at a required temperature. a third substrate made of the same material as the second substrate and surface-bonded to the region at a required temperature; a first strain gauge disposed in the first region; and a second strain gauge disposed in the second region. With span reference strain mechanism.

測定圧が加えられるダイアプラム部と咳ダイアフ2ム部
KIIIL付けられた第三歪ゲージとを備える受圧機構
と、前記第一歪ゲージと前記第二歪ゲージとの出力の差
を演算する引き算回路と、前記第三歪ゲージの出力を該
引き算回路の出力で割算する割算回路とを兵備してなる
圧力計を構成したものである。
a pressure receiving mechanism comprising a diaphragm section to which measurement pressure is applied and a third strain gauge attached to a cough diaphragm section KIII; a subtraction circuit for calculating a difference in output between the first strain gauge and the second strain gauge; , and a division circuit that divides the output of the third strain gauge by the output of the subtraction circuit.

以下、実施例について説明する。Examples will be described below.

〔実施例〕〔Example〕

第3図、第4図、第5図は本発明の一実施例の要部構成
説明図で、第3図は正面図、第4図、第5図は第3図の
要部詳細図である。
Figures 3, 4, and 5 are explanatory diagrams of the main part configuration of an embodiment of the present invention. Figure 3 is a front view, and Figures 4 and 5 are detailed views of the main parts of Figure 3. be.

図において、1はベース、2はべ−xIK取付けられた
、スパン基準歪機構である。スパン基準歪機構2は第一
基板21.第二基板22.第三基板23゜第一歪ゲージ
24と第二歪ゲージ25とからなる。第一基板21は、
この場合は、ガラスよプなシカの絶縁溝211 Kより
第一領域212と第二領域213とに分けられている。
In the figure, 1 is a base, and 2 is a span reference strain mechanism mounted on the base. The span reference strain mechanism 2 includes a first substrate 21. Second substrate 22. The third substrate 23° consists of a first strain gauge 24 and a second strain gauge 25. The first substrate 21 is
In this case, it is divided into a first region 212 and a second region 213 by a glass-like insulation groove 211K.

第二基板22は第一領域212に、所要の温度t0て面
接合されている。第三基板23は第二基板22と同材料
よりな9第二領域213に、所要の温度t2で面接合さ
れている。第一歪ゲージ24は第一領域212 K配置
されている。第二歪ゲージ25は第二領域213に配置
されている。3はペースIK取付けられた受圧機構であ
る。受圧機構3は測定圧りが加えられこの場合は、シリ
コンよシなるダイア7.7ム部31とダイアフラム部3
1に取付けられた第三歪ゲージ32.とダイアフラム部
31をペースIK取付ける、この場合はシリコンよシな
る一歪ゲージ24と第二歪ゲージ25との出力の差を演
算する引き算回路である。5は第三歪ゲージ32の出力
を引き算回路の出力で割算する割算回路である。
The second substrate 22 is surface-bonded to the first region 212 at a required temperature t0. The third substrate 23 is surface-bonded to a second region 213 made of the same material as the second substrate 22 at a required temperature t2. The first strain gauge 24 is arranged in the first region 212K. The second strain gauge 25 is arranged in the second region 213. 3 is a pressure receiving mechanism attached to the pace IK. The pressure receiving mechanism 3 is used to apply measuring pressure, and in this case, a diaphragm portion 31 made of silicon and a diaphragm portion 3 are connected to each other.
1 attached to the third strain gauge 32. The diaphragm portion 31 is attached to the PACE IK, which is a subtraction circuit that calculates the difference in output between the first strain gauge 24 and the second strain gauge 25, which are made of silicon in this case. 5 is a division circuit that divides the output of the third strain gauge 32 by the output of the subtraction circuit.

以上の構成において、スパン基準歪機構2を製作するに
は、たとえば、あらかじめ、第二基板22に第一歪ゲー
ジ24を、第三基板23tC″第二歪ゲージ25を拡散
によって形成する。第二基板22を第一基板21の第一
領域212 K陽極接合等によシ融着する。
In the above configuration, in order to manufacture the span reference strain mechanism 2, for example, the first strain gauge 24 and the third substrate 23tC'' second strain gauge 25 are formed in advance on the second substrate 22 by diffusion. The substrate 22 is fused to the first region 212 of the first substrate 21 by anodic bonding or the like.

この場合の温度を重いとする。次に、温度を変化させて
、第一基板21の第二領域213に、第三基板23を融
着させる。この場合の温度を1□とする。
Let us assume that the temperature in this case is heavy. Next, the third substrate 23 is fused to the second region 213 of the first substrate 21 by changing the temperature. The temperature in this case is assumed to be 1□.

第二基板22の歪”tlは 虐 =(α1−α、)(1−11) 第三基板23の歪碓t2は 一=(αl−α2)(t −11’) α1;第一基板21の熱膨張率 α2;第二基板22.第三基板23の熱膨張率第一、第
二歪ゲージ24.25のゲージ率・をGとすると、上記
歪による抵抗変化は、各々1次式となる。
The strain "tl" of the second substrate 22 is 1 = (α1-α,) (1-11) The distortion t2 of the third substrate 23 is 1 = (αl-α2) (t -11') α1; First substrate 21 Thermal expansion coefficient α2 of the second substrate 22, the thermal expansion coefficient of the third substrate 23, the first and second strain gauges 24. If the gauge factor of 25 is G, then the resistance change due to the strain described above is expressed by the following linear equations: Become.

上記出力を引き算回路4で引き算すると、ΔRspan
 =ΔRtl−ΔR12=GR(αl−α2)(tl−
1l)=GR&、、工 ここで ’8p51゜=(α1−α2)(12−11)である。
When the above output is subtracted by the subtraction circuit 4, ΔRspan
=ΔRtl−ΔR12=GR(αl−α2)(tl−
1l)=GR&,, where '8p51°=(α1-α2)(12-11).

一方、測定圧力Pmによる第三歪ゲージ32に生ずる歪
をamとすれば、測定圧カーによる第三歪ゲージ32の
抵抗変化ΔRmは 21m = GRも ゲージ率01111度係数を有するので、温度によシ感
度が変化してしまう。
On the other hand, if the strain generated in the third strain gauge 32 due to the measurement pressure Pm is am, then the resistance change ΔRm of the third strain gauge 32 due to the measurement pressure car is 21m = GR also has a gauge factor of 01111 degrees, so it depends on the temperature. The sensitivity changes.

圧力信号としてΔRm/ΔRspanを考えると、ΔR
m/ΔR@pa n =aJ @ spa nとなる。
Considering ΔRm/ΔRspan as a pressure signal, ΔR
m/ΔR@span=aJ@span.

’ 5panには温度係数を有しない。し九がって、Δ
Rm/ΔRspan の割算出力はスパンシフトのない
圧力信号となる。
'5pan has no temperature coefficient. Then, Δ
The divided output of Rm/ΔRspan becomes a pressure signal without span shift.

この結果、スパンシフトのない圧力計が得られる。As a result, a pressure gauge without span shift is obtained.

なお前述の実施においては、第一基板21に第二基板2
2と第三基板23とを陽極接合等により融着すると説明
したが、これKll!!ることはなく、たとえば、蒸着
膜あるいはスパッタの膜成長を利用して製作してもよい
Note that in the above implementation, the second substrate 2 is attached to the first substrate 21.
2 and the third substrate 23 are fused together by anodic bonding or the like, but this is Kll! ! For example, it may be manufactured using vapor deposition or sputtering film growth.

第7図(4)(B) 鋤K 、この方法による製作例を
示す。
Figure 7 (4) (B) shows an example of a plow K made by this method.

先ず、第7図(4)に示す如く、第一基板21のそれぞ
れ所要の位置に第一歪ゲージ24、第二歪ゲージ25を
拡散によって形成する。第7図φ)K示す如く、第一基
板21の第二領域213をマスキング2131 して。
First, as shown in FIG. 7(4), the first strain gauge 24 and the second strain gauge 25 are formed at respective required positions on the first substrate 21 by diffusion. As shown in FIG. 7 φ), the second region 213 of the first substrate 21 is masked 2131.

第一領域212に、温度t1で、第二基板22を膜成長
させる。
A film is grown on the second substrate 22 in the first region 212 at a temperature t1.

次K、第7図C)に示す如く、第一基板21の第一領域
212をマスキング2121して、第二領域213に、
温度t2で、第三基板23を膜成長させる。
Next, as shown in FIG. 7C, the first region 212 of the first substrate 21 is masked 2121, and the second region 213 is
A film is grown on the third substrate 23 at the temperature t2.

以上の如くして、スパン基準帯機構2を製作する。As described above, the span reference band mechanism 2 is manufactured.

〔発明の作用効果〕[Function and effect of the invention]

以上説明したようK、本発明は、異種の素材を。 As explained above, the present invention uses different materials.

所要の温度tl+ t2でそれぞれ熱融着し、それぞれ
に生じた歪の差を取ることにより所要の大きさの歪のス
パンの基準歪を作る。この基準歪を利用して、測定圧に
よる歪ゲージの抵抗変化を割算することにより、温度変
化に影響されることのない、即ち、スパンシフトのない
圧力針を得るようにした。
They are heat-sealed at a required temperature tl+t2, and the difference in strain produced between them is taken to create a reference strain for a span of strain of a required magnitude. By using this reference strain and dividing the change in resistance of the strain gauge due to the measured pressure, a pressure needle that is not affected by temperature changes, that is, without span shift, is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来よシ一般に使用されている従来例の構成説
明図、第2図は第1図の説明図、第3図第4図、第5図
、第6図は本発明の一実施例の構成説明図で、第3図は
正面図、第4図、第5図は83図の要部詳細図、第6図
は電気回路プロクク図、第7図(転)01) C)は本
発明の他の実施例の製作説明図である。 l・・・ペース、2・・・スパン基準帯機構、 21・
・・第一基板、211・・・力の絶縁溝、212・・・
第一領域、213・・・第二領域、22・・・第二基板
、23・・・第三基板、24・・・第一歪ゲージ、25
・・・第二歪ゲージ、3・・・受圧機構。 31・・・ダイアフラム部、32・・・第三歪ゲージ、
33・・・第四基板、4・・・引き算回路、5・・・割
算回路。 篇4図    尾5図 篇6図 り 第7図 (A) (B) (C)
Fig. 1 is an explanatory diagram of the configuration of a conventional example commonly used, Fig. 2 is an explanatory diagram of Fig. 1, Fig. 3, Fig. 4, Fig. 5, and Fig. 6 are one embodiment of the present invention. This is an explanatory diagram of the configuration of the example. Figure 3 is a front view, Figures 4 and 5 are detailed views of the main parts of Figure 83, Figure 6 is an electrical circuit diagram, and Figure 7 (translation) 01) C) is It is a manufacturing explanatory drawing of another Example of this invention. l...Pace, 2...Span reference band mechanism, 21.
...First substrate, 211... Force insulation groove, 212...
First region, 213... Second region, 22... Second substrate, 23... Third substrate, 24... First strain gauge, 25
...Second strain gauge, 3...Pressure receiving mechanism. 31...Diaphragm part, 32...Third strain gauge,
33... Fourth board, 4... Subtraction circuit, 5... Division circuit. Figure 4, Figure 5, Figure 6, Figure 7 (A) (B) (C)

Claims (1)

【特許請求の範囲】[Claims] 力の絶縁溝により第一領域と第二領域とに分けられた第
一基板と前記第一領域に所要温度で面接合された第二基
板と前記第二領域に所要温度で面接合され前記第二基板
と同材料よりなる第三基板と前記第一領域に配置された
第一歪ゲージと前記第二領域に配置された第二歪ゲージ
とを備えるスパン基準歪機構と、測定圧が加えられるダ
イアフラム部と該ダイアフラム部に取付けられた第三歪
ゲージとを備える受圧機構と、前記第一歪ゲージと前記
第二歪ゲージとの出力の差を演算する引き算回路と、前
記第三歪ゲージの出力を該引き算回路の出力で割算する
割算回路とを具備してなる圧力計。
a first substrate divided into a first region and a second region by a force insulating groove; a second substrate surface-bonded to the first region at a predetermined temperature; and a second substrate surface-bonded to the second region at a predetermined temperature. A span reference strain mechanism includes a third substrate made of the same material as the second substrate, a first strain gauge disposed in the first region, and a second strain gauge disposed in the second region, and a measurement pressure is applied. a pressure receiving mechanism comprising a diaphragm portion and a third strain gauge attached to the diaphragm portion; a subtraction circuit for calculating a difference in output between the first strain gauge and the second strain gauge; A pressure gauge comprising a division circuit that divides the output by the output of the subtraction circuit.
JP27558084A 1984-12-28 1984-12-28 Pressure gauge Granted JPS61155829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27558084A JPS61155829A (en) 1984-12-28 1984-12-28 Pressure gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27558084A JPS61155829A (en) 1984-12-28 1984-12-28 Pressure gauge

Publications (2)

Publication Number Publication Date
JPS61155829A true JPS61155829A (en) 1986-07-15
JPH0445058B2 JPH0445058B2 (en) 1992-07-23

Family

ID=17557434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27558084A Granted JPS61155829A (en) 1984-12-28 1984-12-28 Pressure gauge

Country Status (1)

Country Link
JP (1) JPS61155829A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460609B2 (en) 2018-04-02 2022-10-04 Magic Leap, Inc. Hybrid polymer waveguide and methods for making the same

Also Published As

Publication number Publication date
JPH0445058B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US5477738A (en) Multi-function differential pressure sensor with thin stationary base
US3697917A (en) Semiconductor strain gage pressure transducer
US4173900A (en) Semiconductor pressure transducer
US5587601A (en) Support structure for a semiconductor pressure transducer
JPH0264430A (en) Semiconductor pressure converter
CA1186163A (en) Semiconductor pressure transducer
Gieles et al. Miniature pressure transducers with a silicon diaphragm
JPS61155829A (en) Pressure gauge
US3680374A (en) Heat flow meter
JPH0447244A (en) Semiconductor pressure sensor
JPS5451489A (en) Semiconductor pressure converter
US3693447A (en) Radiant heat flow meter
US5591917A (en) Semiconductor pressure sensor with rated pressure specified for desired error of linearity
JPH064301Y2 (en) Semiconductor pressure sensor
JPS57196124A (en) Load cell
US3460378A (en) Strain gauge measuring techniques
JPS5845533A (en) Pressure detector
JPH02168133A (en) Stress sensor for manufacture thereof
JP2512220B2 (en) Multi-function sensor
JPH0344079A (en) Composite sensor
JPS63298128A (en) Pressure sensor
RU2028586C1 (en) Method of manufacture of pressure transducer
JPS5926608Y2 (en) semiconductor displacement transducer
JPS5828754B2 (en) Pressure-electric conversion device
SU1527525A1 (en) Diaphragm assembly of pressure transducer