JPS61155759A - Speckle speed measuring apparatus - Google Patents

Speckle speed measuring apparatus

Info

Publication number
JPS61155759A
JPS61155759A JP28136484A JP28136484A JPS61155759A JP S61155759 A JPS61155759 A JP S61155759A JP 28136484 A JP28136484 A JP 28136484A JP 28136484 A JP28136484 A JP 28136484A JP S61155759 A JPS61155759 A JP S61155759A
Authority
JP
Japan
Prior art keywords
light
speckle
light receiving
optical system
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28136484A
Other languages
Japanese (ja)
Other versions
JPH0664076B2 (en
Inventor
Hiroshi Kitajima
博史 北島
Tomiyoshi Yoshida
吉田 富省
Koji Morishita
森下 耕次
Nobuo Nakatsuka
中塚 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP28136484A priority Critical patent/JPH0664076B2/en
Publication of JPS61155759A publication Critical patent/JPS61155759A/en
Publication of JPH0664076B2 publication Critical patent/JPH0664076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the speed of an object at a high accuracy, by arranging two measuring systems each including a light source, an optical system, a light receiving section and a signal processing section to receiving light at a boiling state with a circular beam irradiating a moving object in one measuring system while an oval beam irradiates it in the other measuring system. CONSTITUTION:When a laser light is emitted, it is converted into a light beam having a convergence area, a waste area and a diffusion area by an optical system to irradiate a moving object 14. The moving object 14 is positioned at the waste area boiling on a light receiving surface and the resulting variation signal is converted into an electrical signal with a light receiving element 17 to be inputted into a signal processing section 19. Moreover, from the speckle signal inputted, DC component is cut with a DC component removing circuit 41 to detect the number of zero crossings to create a pulse train adapted to invert from high to low level with a Schmitt triggering circuit 42. The counts of zero crossings per unit time in the pulse train is counted with a counter 44. The counts of the counter 44 is free from effect of the speckle size DELTAx, opening area (a), distance R between the object and a photoelectric conversion element and wave surface curvature rho of beam and this will result in no effect on the measurement of speed, thus meaning no need for correction.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、移動する物体に、し〜ザ光等のコヒーレン
ト光を照射し、得られるランダム干渉パターン(スペッ
クルパターン)を利用して、物体の移動速度及び方向を
測定するスペックル速度計測装置に関する。
[Detailed description of the invention] (a) Industrial application field This invention irradiates a moving object with coherent light such as laser light and utilizes the resulting random interference pattern (speckle pattern). , relates to a speckle speed measuring device that measures the moving speed and direction of an object.

(ロ)従来の技術 一般に、第6図に示すように、レーザ光源1より投光光
学系2を経て、コヒーレント光3を移動物体4に照射す
ると、この移動物体4で透過又は反射された光は、受光
点5で受けると、スペックルパターンの並進(トランス
レーシラン)運動とボイリング(スペックルが移動せず
、その場で光の強弱が生じ振動する)運動の2つの運動
を伴い、スペックルパターンが移動・変位することが知
られている(9i誌「レーザ研究」第8巻第2号、同第
8巻第3号)、同図において、受光点5での光変動の直
流を除去した規格化自己相関関数r(τ。
(b) Prior Art Generally, as shown in FIG. 6, when a moving object 4 is irradiated with coherent light 3 from a laser light source 1 through a projection optical system 2, the light transmitted or reflected by the moving object 4 is When received at the light receiving point 5, the speckle pattern undergoes two movements: translation (translation) movement and boiling (the speckle does not move, the intensity of light changes and oscillates on the spot). It is known that the light pattern moves and displaces (9i magazine "Laser Research" Vol. 8, No. 2, Vol. 8, No. 3). The removed normalized autocorrelation function r(τ.

σ雪1+□ ・・・・・・(2) ρ となる。σ snow 1+□・・・・・・(2) ρ becomes.

上記+1)式は、物体速度Vの増加に伴い、自己相関関
数が減衰してゆくことを示しており、例えば相関が1/
eとなる時間をτC(自己相関長)とたたし、 a:受口開口の半径 となる、このτCにより速度■が測定でき、この出願の
発明者等は、この原理を採用したスペックル速度計をす
でに出願している(特願昭59−54043号)。
Equation +1) above shows that the autocorrelation function attenuates as the object velocity V increases, and for example, the correlation becomes 1/
The time at which e is reached is τC (autocorrelation length), and a: the radius of the socket opening. From this τC, the speed ■ can be measured. We have already applied for a speedometer (Japanese Patent Application No. 59-54043).

また、光変動の単位時間当たりの零交叉数NOとなる。Also, the number of zero crossings per unit time of light fluctuation is NO.

この零交叉数Noを計数することによっても速度■が測
定でき、この出願の発明者等はこの原理を採用したスペ
アクル速度針についても、やはりすでに出願している(
実願昭58−106376号、特願昭和59−5404
1号)。
The speed ■ can also be measured by counting this zero-crossing number No. The inventors of this application have also already applied for a spare wheel speed hand that adopts this principle (
Utility Application No. 1983-106376, Patent Application No. 59-5404
No. 1).

上記した、すでに出願のスペックル速度計は、いずれも
収束ビームや拡大ビームによる照明法を採用していた。
All of the above-mentioned speckle velocimeters that have already been filed employ illumination methods using converging beams or expanding beams.

(ハ)発明が解決しようとする問題点 上記従来のスペックル速度計は、収束ビームや拡大ビー
ムを照明に利用し、上記(3)式あるいは(4)弐に基
づいて速度■を測定するものであるから、照明領域に比
べ、粗物体の粗さ相関長さが比較的長い場合にはスペッ
クルが非ガウス的となり、また紙等は、にじみ現象によ
りスペックルが小さくなり、正常なスペックルサイズを
持たないスペックルが出来、そのため光変動の自己相関
関数が変化し、正しく測定が行われないという欠点があ
った。また、測定物体が例えば銅から紙、さらに布とい
うように変化する場合には、その測定物体によりΔXが
変化し、そのため信号処理部でいちいち物体変更の補正
をなさねばならなかった。さらにまた、照明ビームが完
全な球面波でなく、波面収差を含んでいる場合、スペッ
クルの並進が波面曲率に強く関係しているため、並進が
不安定となり、やはり測定精度が落ちるという欠点があ
った。
(c) Problems to be solved by the invention The conventional speckle velocimeter described above uses a converging beam or an expanded beam for illumination and measures the speed based on equation (3) or (4) 2 above. Therefore, if the roughness correlation length of the rough object is relatively long compared to the illumination area, the speckles will be non-Gaussian, and for paper etc., the speckles will become smaller due to the bleeding phenomenon, and the speckles will be normal. This method has the drawback that speckles with no size are formed, which changes the autocorrelation function of light fluctuations, making it impossible to perform accurate measurements. Further, when the object to be measured changes, for example from copper to paper to cloth, ΔX changes depending on the object to be measured, and therefore the signal processing section has to make corrections for each change in object. Furthermore, if the illumination beam is not a perfect spherical wave but contains wavefront aberration, the translation of speckles is strongly related to the wavefront curvature, making the translation unstable, which also has the disadvantage of reducing measurement accuracy. there were.

そこで、この欠点を解消するために、本願の発明者は収
束領域、ウヱス) fJl域及び拡散領域を持つビーム
のウェスト領域に移動物体を配置し、ボイリング状態に
あるスペックルパターンを拡散領域で受光し、速度測定
を行う方法を創出し、すでに別に出願した。しかし、こ
の方法を適用して単にl光源l受光部のスペックル速度
計を実現しても、物体の移動方向が定かでない場合、そ
の方向を知ることができなかった。
Therefore, in order to eliminate this drawback, the inventor of the present application placed a moving object in the waist region of the beam, which has a convergence region, a fJl region, and a diffused region, and received the speckle pattern in the boiling state in the diffused region. He created a method for measuring speed and has already filed a separate application. However, even if this method is applied to simply realize a speckle velocimeter with one light source and one light receiving part, if the direction of movement of the object is not certain, it is not possible to know the direction.

この発明は、上記に鑑み、スペックルが非ガウス的とな
る場合、測定物体が変更される場合、また照明ビームが
波面収差を含む場合でも、物体の速度を高精度に測定で
き、しかも物体の移動方向をも測定し得るスペックル速
度計測装置を提供することを目的としている。
In view of the above, the present invention makes it possible to measure the velocity of an object with high accuracy even when the speckle becomes non-Gaussian, when the measurement object is changed, or when the illumination beam contains wavefront aberration. It is an object of the present invention to provide a speckle speed measuring device that can also measure the direction of movement.

(ニ)問題点を解決するための手段及び作用この発明は
、上記問題点を解消するために、それぞれに光源、光学
系、受光部及び信号処理部を含む2系統の測定系を備え
、いずれも受光部ではボイリング状態で受光するととも
に、一方の測定系では円形のビームを、他方の測定系で
は楕円形のビームを移動物体に照射するようにしている
(d) Means and operation for solving the problems In order to solve the above problems, the present invention is provided with two measurement systems each including a light source, an optical system, a light receiving section, and a signal processing section. The light receiving section also receives light in a boiling state, and one measurement system irradiates the moving object with a circular beam and the other measurement system irradiates the moving object with an elliptical beam.

すなわち、この発明のスペックル速度計測装置は、コヒ
ーレント光を発する第1の光源、この第1の光源よりの
コヒ一レント光を収束領域、ウエスト領域、拡散領域を
持つ光ビームに変換する第1の光学系、この光ビーム及
び移動物体との位置関係で受光面に生じるスペックルが
ボイリング状態となるように配置される光電変換素子を
含む第1の受光部、光電変換されたスペックル信号を受
け、物体速度に応じた信号を出力する第1の信号処理部
を備える第1の測定系と、コヒーレント光を発する第2
の光源、この第2の光源よりのコヒーレント光を収束領
域、ウェスト領域及び拡散領域をもち、かつ断面が楕円
状の光ビームに変換する第2の光学系と、この第2の光
学系よりの光ビーム及び移動物体との位置関係で受光面
に生じるスペックルがボイリング状態となるように配置
される光電変換素子を含む第2の受光部、光電変換され
たスペックル信号を受け、そのスペックル信号に応じた
信号を出力する第2の信号処理部を備える第2の測定系
と、前記第1及び第2の測定系の出力に基づいて物体の
移動方向を算出する方向算出手段とから構成されている
That is, the speckle velocity measuring device of the present invention includes a first light source that emits coherent light, a first light source that converts the coherent light from the first light source into a light beam having a convergence region, a waist region, and a diffusion region. an optical system, a first light-receiving section including a photoelectric conversion element arranged so that speckles generated on the light-receiving surface are in a boiling state due to the positional relationship between the light beam and the moving object; a first measurement system that includes a first signal processing unit that outputs a signal according to the object velocity; and a second measurement system that emits coherent light.
a light source, a second optical system that converts the coherent light from the second light source into a light beam having a convergence region, a waist region, and a diffusion region and having an elliptical cross section; A second light receiving unit including a photoelectric conversion element arranged so that speckles generated on the light receiving surface due to the positional relationship with the light beam and the moving object are in a boiling state; Consisting of a second measurement system including a second signal processing section that outputs a signal according to the signal, and a direction calculation means that calculates the moving direction of the object based on the outputs of the first and second measurement systems. has been done.

このスペックル速度計測装置では、ボイリング状態で受
光されるため、第(3)式、第(4)式の右項が無視で
きるので、相互相関長re、零交叉数N。
In this speckle velocity measuring device, since light is received in a boiling state, the right terms of equations (3) and (4) can be ignored, so the cross-correlation length re and the zero-crossing number N.

は、 ■        π となり、第1の信号処理部で自己相関長τC1あるいは
零交叉数NOを求めることにより、速度Vが算出される
。また、τc SN oのいずれにもΔX、ρ等が含ま
れなくなり、これらが変動しても測定結果に影響しない
、さらに、第2の信号処理部では、物体の移動方向に応
じて異なる信号が出力されるので、速度方向算出手段で
、第1の信号処理部と第2の信号処理部の出力比を演算
することにより、その比から物体の移動方向が求められ
る。
(1) π, and the velocity V is calculated by determining the autocorrelation length τC1 or the zero crossing number NO in the first signal processing section. In addition, ΔX, ρ, etc. are no longer included in any of τc SN o, and even if these change, the measurement results are not affected.Furthermore, the second signal processing section generates different signals depending on the moving direction of the object. Therefore, by calculating the output ratio of the first signal processing section and the second signal processing section using the velocity direction calculating means, the moving direction of the object can be determined from the ratio.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第1図は、この発明が実施されるスペックル速度計測装
置の概略図である。このスペックル速度計は、第1の測
定系lOと、第2の測定系20と、移動方向算出手段3
0とから構成されている。また、第1の測定系10はレ
ーザ光源12及び光学系13を備える投光部11と、干
渉フィルタ16、受光素子17及び増幅器18を備える
受光部15と、信号処理部19とから構成され、第2の
測定系20はレーザ光源21と、干渉フィルタ26、受
光素子27及び増幅器28を備える受光部25と、信号
処理部29から構成されている。
FIG. 1 is a schematic diagram of a speckle velocity measuring device in which the present invention is implemented. This speckle speedometer includes a first measurement system 1O, a second measurement system 20, and a movement direction calculation means 3.
It is composed of 0. Further, the first measurement system 10 includes a light projecting section 11 including a laser light source 12 and an optical system 13, a light receiving section 15 including an interference filter 16, a light receiving element 17, and an amplifier 18, and a signal processing section 19, The second measurement system 20 includes a laser light source 21 , a light receiving section 25 including an interference filter 26 , a light receiving element 27 and an amplifier 28 , and a signal processing section 29 .

レーザ光源12.22は、それぞれ波長の相違する(λ
1、λt)コヒーレント光を発するものであり、光学系
13.23はいずれもレーザ光源12.22よりのコヒ
ーレント光を収束領域、ウェス) SN域及び拡散領域
を持つ光ビームに変換するために設けられている。もっ
とも光学系12からは断面形状が円形の光ビームが発せ
られるのに対し、光学系23からは断面形状が楕円形の
光ビームが発せられる。
The laser light sources 12 and 22 have different wavelengths (λ
1. The optical system 13.23 is provided to convert the coherent light from the laser light source 12.22 into a light beam having a convergent region, a SN region, and a diffused region. It is being However, the optical system 12 emits a light beam with a circular cross-section, whereas the optical system 23 emits a light beam with an elliptical cross-section.

光学形13とよび23より発せられた光ビームは、速度
Vで移動する被測定物体I4に照射され、その反射光ビ
ームがそれぞれ受光部15.25で受光されるようにな
っている。干渉フィルタ16は光学系13よりの光(波
長λI)のみを透過させるために、また干渉フィルタ2
6は光学系23よりの光(波長λt)のみを透過させる
ために、それぞれ設けられている。
The light beams emitted from the optical shapes 13 and 23 are irradiated onto the object to be measured I4 moving at a speed V, and the reflected light beams are received by the light receiving sections 15 and 25, respectively. The interference filter 16 is used to transmit only the light (wavelength λI) from the optical system 13, and the interference filter 2
6 are provided in order to transmit only the light (wavelength λt) from the optical system 23.

また、光学系13と物体14及び受光素子17の位置関
係、さらに光学系23と物体14及び受光素子27の位
置関係は、いずれも受光素子17.27の受光面にスペ
ックルのボイリング状態が生じるように配置されている
。受光面でボイリング状態とするためには、ビーム光の
ウェスト領域で物体に光を照射し、かつ受光面を物体位
置から2w、2/π以上離して、すなわち拡散領域に設
けるか、あるいは物体を収束領域に位置させ受光面をウ
ェスト8N域に設ければよく、そのいずれを採用しても
よい。
In addition, the positional relationship between the optical system 13, the object 14, and the light receiving element 17, and the positional relationship between the optical system 23, the object 14, and the light receiving element 27 cause speckle boiling on the light receiving surface of the light receiving element 17.27. It is arranged like this. In order to create a boiling state on the light receiving surface, the object should be irradiated with light in the waist region of the beam light, and the light receiving surface should be placed at a distance of 2w, 2/π or more from the object position, that is, in a diffusion region, or the object should be placed in a diffusion region. The light receiving surface may be located in the convergence region and the light receiving surface may be provided in the waist 8N region, and any of these may be adopted.

受光面で生じたボイリング状態のスペックルは、受光素
子17.27で電気信号(スペックル信号)に変換され
、増幅器18.28でそれぞれ増幅されて、信号処理部
19.29に入力されるようになっている。
The boiling speckles generated on the light-receiving surface are converted into electrical signals (speckle signals) by the light-receiving element 17.27, amplified by amplifiers 18.28, and input to the signal processing section 19.29. It has become.

信号処理部19は、受光部15からのスペックル信号を
受けて、零交叉数Noを求める機能回路、あるいは自己
相関長τCを演算する機能回路であり、信号処理部29
も信号処理部19も同種の回路である。
The signal processing section 19 is a functional circuit that receives the speckle signal from the light receiving section 15 and calculates the zero crossing number No. or a functional circuit that calculates the autocorrelation length τC.
The signal processing unit 19 is also the same type of circuit.

信号処理部19が零交叉数Noを求める機能回路である
場合は、第2図に示すように、直流成分除去回路41、
シュミット回路42、単安定マルチバイブレータ43及
びカウンタ44とから構成される。
When the signal processing unit 19 is a functional circuit that calculates the zero crossing number No., as shown in FIG.
It is composed of a Schmitt circuit 42, a monostable multivibrator 43, and a counter 44.

次に物体14を光ビームのウェスト領域に配置し、受光
素子17.27を拡散領域(Rを2w0279以上とす
る)に設け、また信号処理部19.29を零交叉数を検
出する回路とした場合の動作を説明する。
Next, the object 14 is placed in the waist region of the light beam, the light receiving element 17.27 is provided in the diffusion region (R is 2w0279 or more), and the signal processing section 19.29 is made into a circuit for detecting the number of zero crossings. The operation in this case will be explained.

レーザ光源12よりレーザ光が出射されると、光学系1
3により収束領域、ウェスト領域及び拡散領域を持つ光
ビームに変換され、移動物体14に照射される。ウェス
ト領域に移動物体14が位置し、受光面でボイリング状
態となり、光の強さが時間的に変動する。この変動信号
が受光素子17で電気信号に変換され、増幅器18で増
幅されて信号処理部19に入力される。信号処理部19
では入力されたスペックル信号をさらに零交叉数検出の
ために直流分除去回路41で直流分をカントし、さらに
シュミットトリガ回路42で零交叉時にハイとローが反
転するパルス列を作成する。
When a laser beam is emitted from the laser light source 12, the optical system 1
3, the light beam is converted into a light beam having a convergence region, a waist region, and a divergence region, and is irradiated onto the moving object 14. The moving object 14 is located in the waist region, the light receiving surface is in a boiling state, and the intensity of light fluctuates over time. This fluctuation signal is converted into an electrical signal by the light receiving element 17, amplified by the amplifier 18, and input to the signal processing section 19. Signal processing section 19
Then, the DC component of the input speckle signal is further removed by a DC component removal circuit 41 to detect the number of zero crossings, and a pulse train whose high and low levels are inverted at the time of zero crossing is created by a Schmitt trigger circuit 42.

このパルス列がワンショットマルチバイブレーク43で
所定のパルス幅に整形され、カウンタ44で単位時間当
たりの零交叉カウント数N o / 2が計数される。
This pulse train is shaped into a predetermined pulse width by a one-shot multi-by-break 43, and a counter 44 counts the number of zero crossings per unit time N o /2.

この零交叉数Noは、一般的な理論式としては(4)式
の通りであるが、この実施例ではボイリング状態で受光
しているので(4)式の古墳は無視でき、 π W となる。従って、カウンタ44の計数値には、スペック
ルサイズΔX、開口面積a、物体と光電変換素子間の距
離R1ビームの波面曲率ρの影響があられれず、たとえ
物体14の材質が変更され、ΔXが変化しても、また波
面曲率ρに歪みがあっても、その影響が速度測定に影響
せず、何らの補正の必要もない。また、測定系10の光
ビームは断面形状が円形であるから、物体の移動方向が
いずれの方向でも、上記零交叉数NOは同じとなる。
This zero crossing number No is as shown in equation (4) as a general theoretical equation, but in this example, since the light is received in a boiling state, the burial mound in equation (4) can be ignored, and it becomes π W . Therefore, the count value of the counter 44 is not affected by the speckle size ΔX, the aperture area a, the distance between the object and the photoelectric conversion element R1, and the wavefront curvature ρ of the beam. Even if the material of the object 14 is changed, ΔX Even if the wavefront curvature ρ changes or is distorted, it does not affect the velocity measurement and no correction is necessary. Furthermore, since the light beam of the measurement system 10 has a circular cross-sectional shape, the zero crossing number NO is the same no matter which direction the object moves.

このようにして出力端子31から速度に応じた信号を導
出できる。
In this way, a signal corresponding to the speed can be derived from the output terminal 31.

一方、測定系20も測定系10と並設されており、測定
系10と同様に動作する。もっとも測定系20の光ビー
ムは断面形状が楕円形であるために、物体の移動方向に
より、零交叉数Noが異なるものとなる。
On the other hand, the measurement system 20 is also installed in parallel with the measurement system 10 and operates in the same manner as the measurement system 10. However, since the light beam of the measurement system 20 has an elliptical cross-sectional shape, the zero crossing number No. differs depending on the moving direction of the object.

今、照射ビームの形状を第4図に示すものとすると、ス
ペックルが変動する速さは物体の移動方向によって異な
り、A>B>C>の順で速くなる。
Now, assuming that the shape of the irradiation beam is shown in FIG. 4, the speed at which the speckle changes varies depending on the moving direction of the object, and increases in the order of A>B>C>.

またスペックルの変動が速いはと零交叉点が多い。There are also many pigeon-zero crossing points where the speckle changes quickly.

そのため、移動方向がAの時に零交叉数が最も多くなり
、移動方向がCの時に最も少なくなる。
Therefore, when the moving direction is A, the number of zero crossings is the largest, and when the moving direction is C, the number of zero crossings is the smallest.

測定形10では、光ビームの断面形状が円形であるため
、物体移動がいずれの方向であっても零交叉数は代わら
ない、従って信号処理部19よりの零交叉数と信号処理
部29の零交叉数の比を移動方向算出手段30で求める
ことにより、出力端子32にその比′値、つまり方向を
示す信号が導出される。
In the measurement type 10, since the cross-sectional shape of the light beam is circular, the zero crossing number does not change no matter which direction the object moves. Therefore, the zero crossing number from the signal processing section 19 and the zero crossing number from the signal processing section 29 By determining the ratio of the intersection numbers by the moving direction calculating means 30, a signal indicating the ratio' value, that is, the direction, is derived at the output terminal 32.

また、信号処理部19.29が自己相関長τCを検出す
る機能回路の場合は、信号処理部19は第3図に示す直
流成分除去回路51、自己相関関数演算手段52及び自
己相関長演算手段53とから構成される。この種の信号
処理部を使用する場合でも、信号処理部19で算出され
る自己相関長τC1(−w/V)から物体の移動速度■
が求められ、信号処理部29で算出される自己相関長τ
czと前記τC1の比率を移動方向算出手段30で算出
することにより物体の移動方向が求められる。
Further, when the signal processing sections 19 and 29 are functional circuits for detecting the autocorrelation length τC, the signal processing section 19 includes the DC component removal circuit 51, the autocorrelation function calculation means 52, and the autocorrelation length calculation means shown in FIG. It consists of 53. Even when using this type of signal processing unit, the moving speed of the object
is obtained, and the autocorrelation length τ calculated by the signal processing unit 29
The moving direction of the object is determined by calculating the ratio between cz and τC1 by the moving direction calculating means 30.

なお、上記実施例にお、いて、光学系23で楕円ビーム
を作製するには、周知技術を用いればよく、例えば第5
図に示すように、2枚のシリンドリカルレンズ23a、
23bを用い、あるいはプリズムを用いてもよい。
In the above embodiment, in order to create an elliptical beam using the optical system 23, a well-known technique may be used; for example, the fifth
As shown in the figure, two cylindrical lenses 23a,
23b or a prism may be used.

(へ)発明の効果 この発明によれば、スペックルのボイリング状態で受光
される信号を処理して速度測定をなすものであるから、
スペックルサイズや波面曲率が測定結果に影響すること
がないので、精度の高い測定を行うことができる。
(f) Effects of the Invention According to this invention, speed measurement is performed by processing signals received in the boiling state of speckles.
Since speckle size and wavefront curvature do not affect measurement results, highly accurate measurements can be performed.

また、2系列の測定系を用い、一方の測定系においては
断面形状が楕円状の光ビームを照射するものであるから
、物体の移動速度のみならず、その移動方向をも測定す
ることができる。
In addition, since two measurement systems are used, and one measurement system emits a light beam with an elliptical cross-section, it is possible to measure not only the speed of movement of an object but also the direction of movement. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示すスペックル速度計
測装置のブロック図、第2図は、同スペックル速度計測
装置の信号処理部の1例を示すブロック図、第3図は、
同スペックル速度計測装置の信号処理部の他の例を示す
ブロック図、第4図は、同スペックル速度計測装置の光
学系の楕円ビームを説明するための図、第5図は、同楕
円ビームの発生機構の1例を示す図、第6図は、従来の
レーザスペックルによる速度測定を説明するための光学
配置を示す図である。 10:第1の測定系、12・22:レーザ光源、13・
23:光学系、14:移動物体、15・25:受光部、
17・27:受光素子、19・29:信号処理部、 20:第2の測定系、3o:移動方向算出手段。
FIG. 1 is a block diagram of a speckle speed measuring device showing an embodiment of the present invention, FIG. 2 is a block diagram showing an example of a signal processing section of the speckle speed measuring device, and FIG.
A block diagram showing another example of the signal processing section of the speckle speed measuring device, FIG. 4 is a diagram for explaining the elliptical beam of the optical system of the speckle speed measuring device, and FIG. FIG. 6, which is a diagram showing an example of a beam generation mechanism, is a diagram showing an optical arrangement for explaining speed measurement using conventional laser speckles. 10: First measurement system, 12.22: Laser light source, 13.
23: Optical system, 14: Moving object, 15.25: Light receiving section,
17 and 27: light receiving element, 19 and 29: signal processing section, 20: second measurement system, 3o: movement direction calculation means.

Claims (1)

【特許請求の範囲】[Claims] (1)コヒーレント光を発する第1の光源、この第1の
光源よりのコヒーレント光を収束領域、ウェスト領域、
拡散領域を持つ光ビームに変換する第1の光学系、この
光ビーム及び移動物体との位置関係で受光面に生じるス
ペックルがボイリング状態となるように配置される光電
変換素子を含む第1の受光部、光電変換されたスペック
ル信号を受け、物体速度に応じた信号を出力する第1の
信号処理部を備える第1の測定系と、 コヒーレント光を発する第2の光源、この第2の光源よ
りのコヒーレント光を収束領域、ウェスト領域及び拡散
領域を持ち、かつ断面が楕円状の光ビームに変換する第
2の光学系と、この第2の光学系よりの光ビーム及び移
動物体との位置関係で受光面に生じるスペックルがボイ
リング状態となるように配置される光電変換素子を含む
第2の受光部、光電変換されこスペックル信号を受け、
そのスペックル信号に応じた信号を出力する第2の信号
処理部を備える第2の測定系と、 前記第1及び第2の測定系の出力に基づいて物体の移動
方向を算出する方向算出手段とからなるスペックル速度
計測装置。
(1) A first light source that emits coherent light; the coherent light from this first light source is converged into a convergence region, a waist region,
a first optical system that converts the light beam into a light beam having a diffused region; a first optical system that includes a photoelectric conversion element arranged so that speckles generated on the light receiving surface due to the positional relationship between the light beam and the moving object become boiling; a first measurement system comprising a light receiving section, a first signal processing section that receives a photoelectrically converted speckle signal and outputs a signal according to the object speed; a second light source that emits coherent light; a second optical system that converts coherent light from a light source into a light beam having a convergence region, a waist region, and a diffusion region and having an elliptical cross section; and a light beam from the second optical system and a moving object. a second light receiving section including a photoelectric conversion element arranged so that speckles generated on the light receiving surface due to the positional relationship are in a boiling state;
a second measurement system including a second signal processing section that outputs a signal corresponding to the speckle signal; and a direction calculation means that calculates the moving direction of the object based on the outputs of the first and second measurement systems. A speckle velocity measurement device consisting of.
JP28136484A 1984-12-27 1984-12-27 Speckle speed measuring device Expired - Lifetime JPH0664076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28136484A JPH0664076B2 (en) 1984-12-27 1984-12-27 Speckle speed measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28136484A JPH0664076B2 (en) 1984-12-27 1984-12-27 Speckle speed measuring device

Publications (2)

Publication Number Publication Date
JPS61155759A true JPS61155759A (en) 1986-07-15
JPH0664076B2 JPH0664076B2 (en) 1994-08-22

Family

ID=17638084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28136484A Expired - Lifetime JPH0664076B2 (en) 1984-12-27 1984-12-27 Speckle speed measuring device

Country Status (1)

Country Link
JP (1) JPH0664076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257257A (en) * 2012-06-14 2013-12-26 Ricoh Co Ltd Detection device and image forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257257A (en) * 2012-06-14 2013-12-26 Ricoh Co Ltd Detection device and image forming device

Also Published As

Publication number Publication date
JPH0664076B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JPH0559383B2 (en)
JPS61155759A (en) Speckle speed measuring apparatus
JPS57187604A (en) Measurement device of profile
JPH0664075B2 (en) Object moving speed measurement method
JPS5979122A (en) Laser power measuring device
JPH0290037A (en) Simultaneous measuring system for speed, diameter and refractive index of particle by multiple focal point method using laser
JPS61151464A (en) Method for measuring speed of matter
JPS61151465A (en) Method for measuring moving speed of matter
JPS6246802B2 (en)
JP3491975B2 (en) Error signal detecting device and Doppler velocimeter using the same
JPS56138206A (en) Displacement measuring equipment
JP3282370B2 (en) Speedometer, speed detection method and displacement information detection device
EP0189591A1 (en) Method of and system for measuring velocity of moving object
JPH08146020A (en) Apparatus for measuring moving speed/moving amount of moving body
JP3894836B2 (en) Edge detection device
JP3323963B2 (en) Measuring device
JP2735020B2 (en) Focused Beam Spot Diameter
JPS63289413A (en) Shape measuring apparatus
JPS6283604A (en) Displacement transducer
JPS6029087B2 (en) Focus position detection method
JPS6222072A (en) Speckle speed indicator
JPS57211008A (en) Distance measuring device
JPS5826325Y2 (en) position detection device
JP2626077B2 (en) Interval measurement method
JPS6222071A (en) Speckle speed indicator