JPS6115507Y2 - - Google Patents

Info

Publication number
JPS6115507Y2
JPS6115507Y2 JP15332181U JP15332181U JPS6115507Y2 JP S6115507 Y2 JPS6115507 Y2 JP S6115507Y2 JP 15332181 U JP15332181 U JP 15332181U JP 15332181 U JP15332181 U JP 15332181U JP S6115507 Y2 JPS6115507 Y2 JP S6115507Y2
Authority
JP
Japan
Prior art keywords
condenser
liquefied
pipe
oxygen
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15332181U
Other languages
Japanese (ja)
Other versions
JPS5857693U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15332181U priority Critical patent/JPS5857693U/en
Publication of JPS5857693U publication Critical patent/JPS5857693U/en
Application granted granted Critical
Publication of JPS6115507Y2 publication Critical patent/JPS6115507Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【考案の詳細な説明】 この考案は、空気分離装置用凝縮器に関するも
ので、特に空気中に含まれる微量のクリプトン、
ゼノンを収率よく回収することを目的としたもの
である。
[Detailed description of the invention] This invention relates to a condenser for air separation equipment.
The purpose is to recover Zenone in good yield.

一般に、クリプトン、ノンは空気分離装置の主
凝縮器に溜出する極微量のクリプトン、ゼノンを
含んだ液化酸素を抜き出し、これを精溜により濃
縮して製造される。第1図に示したものは、この
クリプトン、ゼノンの製造に用いられる空気分離
装置の一例を示すもので、予備処理されかつ冷却
された圧縮原料空気が管1より複式精留塔の下部
塔2に導入され、精留される。下部塔2の底部に
は酸素リツチの液化空気が、また上部には液化窒
素が溜出し、液化空気は管5、弁6を経て、また
液化窒素は管7、弁8を経て、それぞれ上部塔3
に供給される。上部塔3では更に精留され、上部
塔3下部に酸素が、また上部に窒素が分離され、
それぞれ管9,10を介して抜き出されるととも
に主凝縮器4に液化酸素が溜出する。この液化酸
素中には、空気中に極微量存在するクリプトン、
ゼノンが含まれており、これを管11より抜き出
した後、精留により濃縮してクリプトン、ゼノン
混合液としたうえ、更に精留してクリプトンとゼ
ノンに分離する。
Generally, krypton and non-oxygen are produced by extracting liquefied oxygen containing extremely small amounts of krypton and xenone from the main condenser of an air separation device and concentrating it by rectification. The one shown in Fig. 1 is an example of an air separation device used in the production of krypton and xenone. Pretreated and cooled compressed feed air is passed from pipe 1 to lower column 2 of a double rectification column. is introduced and rectified. Oxygen-rich liquefied air is distilled at the bottom of the lower column 2, and liquefied nitrogen is distilled from the upper part.The liquefied air passes through a pipe 5 and a valve 6, and the liquefied nitrogen passes through a pipe 7 and a valve 8, respectively, to the upper column. 3
is supplied to It is further rectified in the upper column 3, and oxygen is separated in the lower part of the upper column 3 and nitrogen is separated in the upper part.
Liquefied oxygen is extracted through pipes 9 and 10, respectively, and distilled into the main condenser 4. This liquefied oxygen contains krypton, which exists in extremely small amounts in the air.
It contains xenone, which is extracted from the tube 11, concentrated by rectification to form a krypton and xenone mixture, and further rectified to separate krypton and xenone.

このように、クリプトン、ゼノンは空気分離装
置の主凝縮器4に溜出する液化酸素を濃縮するこ
とよつて得られるが、抜き出す液化酸素量が少な
いと、液化酸素中のクリプトン、ゼノンの濃度が
高くなり、管9より導出する製品酸素ガス中のク
リプトン、ゼノン濃度が高くなるため、クリプト
ン、ゼノンの回収率が低くなる。したがつて、液
化酸素の抜き出し量を多くすれば、クリプトン、
ゼノンの回収率が高くなるが、クリプトン、ゼノ
ンの濃縮、精製工程の規模が大きくなり、経済的
でない不都合がある。
In this way, krypton and xenone can be obtained by concentrating the liquefied oxygen distilled into the main condenser 4 of the air separation device, but if the amount of liquefied oxygen extracted is small, the concentration of krypton and xenone in the liquefied oxygen will increase. As a result, the concentration of krypton and xenone in the product oxygen gas discharged from the pipe 9 becomes high, resulting in a low recovery rate of krypton and xenone. Therefore, if the amount of liquefied oxygen extracted is increased, krypton,
Although the recovery rate of Zenon is increased, the scale of the concentration and purification process for krypton and Zenon becomes large, which is disadvantageous and uneconomical.

この考案は上記事情に鑑みてなされたもので、
液化酸素抜き出し量を少量にして濃縮、精製工程
を小規模なもので済むにもかかわらずクリプト
ン、ゼノンの回収率を上げることができる空気分
離装置用凝縮器を提供することを目的とし、上記
主凝縮器を2基に分割し、上部塔を流下した液化
酸素を第1の凝縮器を経て、第2の凝縮器に流入
させ、製品酸素ガスは第1の凝縮器より抜き出す
とともに、クリプトン、ゼノン採取用液化酸素を
第2の凝縮器より抜き出すように構成したことを
特徴とするものである。
This idea was made in view of the above circumstances,
The purpose of the present invention is to provide a condenser for air separation equipment that can increase the recovery rate of krypton and xenone even though the amount of liquefied oxygen extracted is small and the concentration and purification steps are small-scale. The condenser is divided into two units, and the liquefied oxygen that has flowed down from the upper column passes through the first condenser and flows into the second condenser, and the product oxygen gas is extracted from the first condenser, and krypton, xenon, etc. This device is characterized in that the liquefied oxygen for collection is extracted from the second condenser.

以下、図面を参照してこの考案を詳しく説明す
る。
This invention will be explained in detail below with reference to the drawings.

第2図はこの考案の一例を示すもので、第1図
に示したものと同一構成部分には同一符号を付
し、その説明を省略する。
FIG. 2 shows an example of this invention, and the same components as those shown in FIG. 1 are denoted by the same reference numerals, and their explanation will be omitted.

第2図の空気分離装置では、精留塔内のほぼ中
央部にプレートフイン型熱交換器よりなる第1の
凝縮器12と同じくプレートフイン型熱交換器よ
りなる第2の凝縮器13とが、2基内蔵されてい
る。そして、第1の凝縮器12は上部塔3直下に
設けられ、第2の凝縮器13は第1の凝縮器12
の下方に設けられている。さらに、第1の凝縮器
12および第2の凝縮器13それぞれに下部塔2
から窒素ガスを送る管14、第1の凝縮器12お
よび第2の凝縮器13で液化した液化窒素を下部
塔2の上方に設けられた液化窒素だまり15に送
る管16、上部塔3で溜出した液化酸素を第1の
凝縮器12内に流下させる管17、第1の凝縮器
12から第2の凝縮器13へ液化酸素を流下させ
る管18および第2の凝縮器13で気化した酸素
ガスを上部塔3の上昇ガスとして上部塔3の下方
に導く管19が設けられている。さらに、第1の
凝縮器12の上方には、第1の凝縮器12で発生
した酸素ガスのうち、製品酸素ガスを管9より抜
き出し、残部を上部塔3の上昇ガスとすると共に
該ガスに第2の凝縮器から上昇する酸素ガスが混
入しないようにするための仕切板20が設けられ
ている。この仕切板20は、小径の開口部が形成
された板状体、あるいは凝縮器12の上方に開口
部を形成せしめるように配置した板状体であつ
て、精留塔内に上部塔3と第1の凝縮器12とを
仕切るように取り付けられている。
In the air separation apparatus shown in FIG. 2, a first condenser 12 made of a plate-fin type heat exchanger and a second condenser 13 made of a plate-fin type heat exchanger are installed approximately in the center of the rectification column. , two units are built-in. The first condenser 12 is provided directly below the upper column 3, and the second condenser 13 is provided directly below the first condenser 12.
It is located below. Further, a lower column 2 is provided in each of the first condenser 12 and the second condenser 13.
A pipe 14 that sends nitrogen gas from the first condenser 12 and the second condenser 13, a pipe 16 that sends the liquefied nitrogen liquefied in the first condenser 12 and the second condenser 13 to the liquefied nitrogen reservoir 15 provided above the lower column 2, and A pipe 17 that allows the discharged liquefied oxygen to flow down into the first condenser 12, a pipe 18 that allows the liquefied oxygen to flow down from the first condenser 12 to the second condenser 13, and oxygen vaporized in the second condenser 13. A pipe 19 is provided to guide the gas to the lower part of the upper column 3 as rising gas of the upper column 3. Further, above the first condenser 12, product oxygen gas is extracted from the oxygen gas generated in the first condenser 12 through a pipe 9, and the remainder is used as rising gas in the upper column 3. A partition plate 20 is provided to prevent oxygen gas rising from the second condenser from being mixed in. This partition plate 20 is a plate-shaped body with a small-diameter opening formed therein, or a plate-shaped body arranged so as to form an opening above the condenser 12, and is a plate-shaped body arranged so as to form an opening above the condenser 12. It is attached so as to be partitioned from the first condenser 12.

以上のような構造の凝縮器では、上部塔3の下
方に溜出した液化酸素は、管17を自然流下し、
第1の凝縮器12に入り、下部塔2から管14を
介して第1の凝縮器12の窒素通路に導入される
窒素ガスによつて加熱され、気化する。この酸素
ガスの一部は、仕切板20の下部にある管9より
抜き出され、製品酸素ガスとなり、残部は仕切板
20開口部より上部塔3内を上昇する。第1の凝
縮器12の液化酸素は、ついで管18を自然流下
して第2の凝縮器13に入り、下部塔2から管1
4を通つて第2の凝縮器13に導入される窒素ガ
スによつて加熱され、気化する。この酸素ガス
は、管19を通つて上部塔3下方に導びかれ、前
記第1の凝縮器12で気化し、仕切板20を通り
抜けた酸素ガスと合流し、上部塔3の上昇ガスと
なる。また、第1および第2の凝縮器12,13
に供給されて液化した液化窒素は管16を流れ、
下部塔2上方に設けられた液化窒素だまり15に
溜る。この液化窒素は、その一部が管7を経て弁
8で膨張したのち、上部塔3に導かれ、上部塔還
流液となり、残部は下部塔2の還流液となる。さ
らに、第2の凝縮器13の液化酸素は管11によ
り抜き出され、クリプトン、ゼノン原料液とし
て、図示しない濃縮精製工程に供給される。
In the condenser with the above structure, the liquefied oxygen distilled below the upper column 3 naturally flows down the pipe 17,
It enters the first condenser 12 and is heated and vaporized by the nitrogen gas introduced from the lower column 2 via the pipe 14 into the nitrogen passage of the first condenser 12 . A part of this oxygen gas is extracted from the pipe 9 at the bottom of the partition plate 20 and becomes a product oxygen gas, and the remainder rises in the upper column 3 through the opening of the partition plate 20. The liquefied oxygen in the first condenser 12 then flows down the tube 18 into the second condenser 13 and from the lower column 2 into the tube 1
4 into the second condenser 13, the nitrogen gas is heated and vaporized. This oxygen gas is guided below the upper column 3 through a pipe 19, vaporized in the first condenser 12, merges with the oxygen gas that has passed through the partition plate 20, and becomes the rising gas in the upper column 3. . In addition, the first and second condensers 12, 13
The liquefied nitrogen supplied to and liquefied flows through the pipe 16,
The liquefied nitrogen accumulates in a liquefied nitrogen reservoir 15 provided above the lower column 2. A part of this liquefied nitrogen passes through the pipe 7 and expands at the valve 8, and then is led to the upper column 3 and becomes the reflux liquid in the upper column, and the remainder becomes the reflux liquid in the lower column 2. Furthermore, the liquefied oxygen in the second condenser 13 is extracted through the pipe 11 and is supplied as krypton and xenone raw material liquid to a concentration and purification process (not shown).

以上説明したように、この考案の空気分離装置
用凝縮器は、精溜塔内に第1の凝縮器と第2の凝
縮器との2基の凝縮器を内蔵し、上部塔の溜出液
化酸素を順次第1および第2の凝縮器にシリーズ
で流れるように管を配設すると共に第2の凝縮器
からクリプトン、ゼノン製造用液化酸素を抜き出
し、第1の凝縮器の気化酸素ガスを製品酸素ガス
として抜き出すように構成したものである。した
がつて、この構造の凝縮器を備えた空気分離装置
によれば、クリプトン、ゼノンの製造用液化酸素
の抜き出し量を少なくしても、製品酸素ガス中に
逃げるクリプトン、ゼノンが少なくなり、この結
果、クリプトン、ゼノンの回収率が極めて高くな
る。
As explained above, the condenser for air separation equipment of this invention has two condensers, the first condenser and the second condenser, built into the rectifying column, and the distillate in the upper column is liquefied. Pipes are arranged so that oxygen flows sequentially into the first and second condensers in series, and liquefied oxygen for producing krypton and xenone is extracted from the second condenser, and the vaporized oxygen gas in the first condenser is used as a product. It is constructed so that it can be extracted as oxygen gas. Therefore, with an air separation device equipped with a condenser with this structure, even if the amount of liquefied oxygen extracted for producing krypton and xenone is reduced, less krypton and xenon will escape into the product oxygen gas, and this As a result, the recovery rate of krypton and xenon becomes extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気分離装置の構造を示す概略
構成図、第2図はこの考案の空気分離装置用凝縮
器の構造を示す概略構成図である。 2……下部塔、3……上部塔、9,11……
管、12……第1の凝縮器、13……第2の凝縮
器14……管、15……液化窒素だまり、16,
17,18,19……管、20……仕切板。
FIG. 1 is a schematic diagram showing the structure of a conventional air separation device, and FIG. 2 is a schematic diagram showing the structure of the condenser for the air separation device of this invention. 2... lower tower, 3... upper tower, 9, 11...
Pipe, 12...First condenser, 13...Second condenser 14...Pipe, 15...Liquid nitrogen reservoir, 16,
17, 18, 19...pipe, 20...partition plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 上部塔と下部塔よりなる複式精留塔の上部塔と
下部塔との間に、第1の凝縮器と第2の凝縮器と
を直列に設けるとともに上部塔を流下する液化酸
素を第1の凝縮器に流す管と、第1の凝縮器から
第2の凝縮器に液化酸素を流す管と、第1および
第2の凝縮器に下部塔からの窒素ガスを送る管
と、第1および第2の凝縮器で液化した液化窒素
を下部塔上部の液化窒素だまりに流す管と、第2
の凝縮器で気化した酸素ガスを上部塔下部に導く
管と、第1の凝縮器の上方に配置され、第1の凝
縮器で気化した酸素ガスの一部を製品酸素ガスと
して抜き出すため開口部をもつ仕切板と、第2の
凝縮器の液化酸素を抜き出し、クリプトン、ゼノ
ン精製工程へ送る管とを設けたことを特徴とする
空気分離装置用凝縮器。
A first condenser and a second condenser are installed in series between the upper column and the lower column of a double rectification column consisting of an upper column and a lower column, and the liquefied oxygen flowing down the upper column is A pipe for flowing liquefied oxygen from the first condenser to the second condenser, a pipe for sending nitrogen gas from the lower column to the first and second condensers, and a pipe for sending nitrogen gas from the lower column to the first and second condensers. A pipe that flows the liquefied nitrogen liquefied in the second condenser to the liquefied nitrogen pool in the upper part of the lower column, and
A pipe that guides the oxygen gas vaporized in the condenser to the lower part of the upper column, and an opening placed above the first condenser to extract a part of the oxygen gas vaporized in the first condenser as product oxygen gas. 1. A condenser for an air separation device, comprising: a partition plate having a partition plate; and a pipe for extracting liquefied oxygen from the second condenser and sending it to a krypton and xenone purification process.
JP15332181U 1981-10-15 1981-10-15 Condenser for air separation equipment Granted JPS5857693U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15332181U JPS5857693U (en) 1981-10-15 1981-10-15 Condenser for air separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15332181U JPS5857693U (en) 1981-10-15 1981-10-15 Condenser for air separation equipment

Publications (2)

Publication Number Publication Date
JPS5857693U JPS5857693U (en) 1983-04-19
JPS6115507Y2 true JPS6115507Y2 (en) 1986-05-14

Family

ID=29945940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15332181U Granted JPS5857693U (en) 1981-10-15 1981-10-15 Condenser for air separation equipment

Country Status (1)

Country Link
JP (1) JPS5857693U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102075A (en) * 1984-08-16 1987-05-12 ユニオン・カ−バイド・コ−ポレ−シヨン Manufacture of krypton-xenon concentrate and gassy oxygen product

Also Published As

Publication number Publication date
JPS5857693U (en) 1983-04-19

Similar Documents

Publication Publication Date Title
JP2001224901A (en) Method and distillation column apparatus for distilling multi-component fluid
CN1097247A (en) Air separation
US1963809A (en) Process of obtaining constituents of air having a higher boiling point than oxygen
JPS6251958B2 (en)
US4805412A (en) Krypton separation
JPS6333633B2 (en)
JPS6115507Y2 (en)
US2934908A (en) High argon recovery using proper shelf-top pinch principle
US2934907A (en) High argon recovery using kettle top feed-top pinch principle
CN1107572A (en) Air separation
US2793511A (en) Method for obtaining krypton and xenon
CN113606865A (en) Device and method for preparing liquid nitrogen through air separation
CN207729907U (en) The equipment for producing High Purity Nitrogen, oxygen and liquid oxygen from air by cryogenic rectification
US2380417A (en) Process and apparatus for producing industrial oxygen
US2578338A (en) Paraformaldehyde production with countercurrent concentration
JPS6146383Y2 (en)
JPS6092280A (en) Ethylene oxide concentration and device
CN106403500B (en) Method and device for the method based on swell refrigeration purifying carbon oxide
JPS60142183A (en) Method of liquefying and separating air
CN216409510U (en) Improve air separation rectifying column of nitrogen gas output
JP3957842B2 (en) Nitrogen production method and apparatus
JP2001165564A (en) Low-temperature air separation method and device
JPH09217982A (en) Method for liquefying and separating air and apparatus therefor
CN219209455U (en) Impurity gas separation and purification device
US1894180A (en) Separation of gaseous mixtures by liquefaction