JPS61154784A - Laser welding device - Google Patents
Laser welding deviceInfo
- Publication number
- JPS61154784A JPS61154784A JP59276852A JP27685284A JPS61154784A JP S61154784 A JPS61154784 A JP S61154784A JP 59276852 A JP59276852 A JP 59276852A JP 27685284 A JP27685284 A JP 27685284A JP S61154784 A JPS61154784 A JP S61154784A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- laser
- laser beam
- light
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はレーザ溶接装置に係り2.特に、被溶接物の溶
接位置へのレーザ光の位置合わせを自動的に行い得るレ
ーザ溶接装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser welding device. In particular, the present invention relates to a laser welding apparatus that can automatically align a laser beam to a welding position of a workpiece.
光通信技術の発展は光ファイバの品質向上もさることな
がら、種々の光学部品の精度向上に負う所が大きい。こ
のような光学部品は、入射光側と出射光側とで精密に光
軸を合わせる必要がある。The development of optical communication technology is not only due to improvements in the quality of optical fibers, but also to a large extent due to improvements in the accuracy of various optical components. In such an optical component, it is necessary to precisely align the optical axis between the incident light side and the output light side.
通常光学部品は複数の光学素子で構成されているため、
複数の光学素子の光軸を一致されるための位置調整を行
ったのち接着剤により固定している。しかしながら、接
着剤による固定では、経年変化及び熱に対する信頼度が
低い。このため、接着剤による固定に代わり、レーザ溶
接により各部品をメタル固定する技術が開発されている
。Optical components usually consist of multiple optical elements, so
After position adjustment is performed to align the optical axes of the plurality of optical elements, they are fixed with adhesive. However, fixing with adhesive has low reliability against aging and heat. For this reason, instead of fixing with adhesives, a technology has been developed in which each part is fixed to metal by laser welding.
レーザ溶接を行うレーザ溶接装置は、実際にレーザ溶接
に用いられるレーザ光を出力するYAGレーザ発振器又
はCot レーザ発振器と、被溶接物の溶接位置を最適
位置(レーザビームの焦点)に調整するためのガイド用
レーザ光を出力するHe−Neレーザ発振器とを備えて
いる。そしてレーザ溶接を行う前に、ガイド用レーザ光
によりレーザ光を導(光学系及び被溶接物設置台の位置
調整を行う。そして光学系及び被溶接物設置台の調整終
了後、溶接用レーザ光(YAGレーザ又はC02レーザ
)に切替え、溶接位置をスポット溶接する。Laser welding equipment that performs laser welding consists of a YAG laser oscillator or Cot laser oscillator that outputs the laser beam actually used for laser welding, and a device that adjusts the welding position of the workpiece to the optimal position (focus of the laser beam). It is equipped with a He-Ne laser oscillator that outputs a guiding laser beam. Before laser welding, the laser beam is guided by a guiding laser beam (the position of the optical system and the workpiece installation table is adjusted). After the adjustment of the optical system and workpiece installation table is completed, the welding laser beam is (YAG laser or C02 laser) and spot weld the welding position.
〔発明が解決しようとする問題点)
前述したような位置調整は、目視により、手動で行って
いるのが実状である。[Problems to be Solved by the Invention] In reality, the above-mentioned position adjustment is performed manually and visually.
しかしながら、レーザ光のビームスポット径は0.3〜
0.8Nφと小さく、目視により正確に位置調整を行う
のは困難である。また、−担、位置調整を行っても被溶
接物の寸法のバラツキにより、溶接位置がずれてしまう
ことがある。However, the beam spot diameter of laser light is 0.3~
It is as small as 0.8 Nφ, and it is difficult to accurately adjust the position by visual inspection. Further, even if the welding position is adjusted, the welding position may shift due to variations in the dimensions of the welded object.
本発明は、上記した問題点を解決し、光学系及び被溶接
物設置台の位置調整を自動的に行うことにより光楕度の
レーザ溶接を可能とすることを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to enable laser welding with optical ellipse by automatically adjusting the positions of an optical system and a workpiece installation table.
上記した問題点は被溶接物設置台と、溶接用レーザ光発
生器と、ガイド用レーザ光発生器と、該溶接用レーザ光
及び該ガイド用レーザ光を溶接位置へ導く出射光学系と
を備え、該ガイド用レーザ光に対して該溶接位置を最適
位置に調整した後、該溶接用レーザ光を該溶接位置に照
射して溶接を行うレーザ溶接装置に、前記溶接位置に周
囲とは光の反射率の異なるマークを施すとともに、前記
被溶接物設置台を移動させる移動機構と、前記出射光学
系を移動させる移動機構と、前記被溶接物に照射された
該ガイド用レーザ光の反射光のパワー密度をヰ★出する
光検知器と、該光検知器の検出結果に基づいて、該移動
機構を制御して該ガイド用レーザ光を該溶接位置に最適
位置で照射する制御手段とを設けることにより解決され
る。The above-mentioned problem is solved by the workpiece installation table, the welding laser beam generator, the guide laser beam generator, and the output optical system that guides the welding laser beam and the guide laser beam to the welding position. After adjusting the welding position to the optimum position with respect to the guide laser beam, a laser welding device that performs welding by irradiating the welding laser beam onto the welding position is placed in a position where the welding position is in the vicinity of the surrounding light. a moving mechanism for moving the workpiece installation table, a moving mechanism for moving the output optical system, and a moving mechanism for moving the welding object installation table, and a moving mechanism for moving the welding object installation table; A photodetector that outputs a power density, and a control means that controls the moving mechanism to irradiate the guide laser beam at the welding position at an optimal position based on the detection result of the photodetector. This is solved by
上記構成により、被溶接物の溶接位置に照射された時ガ
イド用レーザ光のパワー密度が最大又は最小となること
から、順次パワー密度を比較しつつ移動機構を制御する
ことにより、自動的に光学系及び被溶接物設置台の位置
合わせを行うことができる。With the above configuration, the power density of the guiding laser beam becomes maximum or minimum when it is irradiated to the welding position of the workpiece, so by sequentially comparing the power densities and controlling the moving mechanism, the optical It is possible to align the system and the workpiece installation table.
以下、本発明の実施例を図面を参照しつつ詳細に説明す
る。第1は、本発明のレーザ溶接装置の一実施例を示す
斜視図であり、第2図(alは光学系位置合せ機構の正
面図、同図(b)は主視図である。Embodiments of the present invention will be described in detail below with reference to the drawings. The first is a perspective view showing an embodiment of the laser welding apparatus of the present invention, and FIG. 2 (al is a front view of the optical system alignment mechanism, and FIG. 2(b) is a main perspective view.
回転駆動部1により光学系2,3.2’、3’の支持部
1′を0方向に回転駆動される。The rotary drive section 1 rotates the support section 1' of the optical system 2, 3.2', 3' in the 0 direction.
さらに回転駆動部1はレール5および直線駆動部4によ
り駆動される。即ち、支持部1′が図中X方向に駆動さ
れる。また光学系2.3は回転駆動部6により図中4方
向に駆動され、同様に光学系2’、3’は回転駆動部6
6により図中4′方向に駆動される。Further, the rotary drive section 1 is driven by a rail 5 and a linear drive section 4. That is, the support portion 1' is driven in the X direction in the figure. Further, the optical system 2.3 is driven in four directions in the figure by the rotation drive unit 6, and similarly, the optical systems 2' and 3' are driven by the rotation drive unit 6.
6 in the direction 4' in the figure.
さらに、被溶接物設置台7上には、例えば光学部品のよ
うな被溶接物が設置される。この被溶接物固定部7はZ
方向の移動機構8.y方向の移動機構9.X方向の移動
機構10及び0′方向の回転機構11を備えている。Further, on the welding object installation table 7, an object to be welded, such as an optical component, is installed. This workpiece fixing part 7 is Z
Directional movement mechanism 8. Movement mechanism in the y direction9. It includes a moving mechanism 10 in the X direction and a rotating mechanism 11 in the 0' direction.
第3図(alは光学系2.3の詳細図であり、光学系2
’、3’も同一構成を取る。また第3 (blは第3図
(alに示した被溶接物Aの主視図である。Figure 3 (al is a detailed diagram of optical system 2.3,
', 3' also have the same configuration. In addition, the third figure (bl is a main perspective view of the workpiece A shown in FIG. 3 (al).
前述したようにレーザ溶接装置は溶接用レーザ光発振器
12(例えばYAGレーザ)とガイド用レーザ発振器1
3(例えばHe−Neレーザ)とを備えており、これら
から出力されたレーザ光は、光カプラ14により、光フ
ァイバ15に導かれる。As mentioned above, the laser welding device includes a welding laser beam oscillator 12 (for example, a YAG laser) and a guide laser oscillator 1.
3 (for example, a He-Ne laser), and the laser light outputted from these is guided to an optical fiber 15 by an optical coupler 14.
光ファイバ15から出射した溶接用レーザ光又はガイド
用レーザ光はレンズ19により平行光とされ、グイクロ
ックミラー18により全反射されレンズ21へと導かれ
る。The welding laser beam or guide laser beam emitted from the optical fiber 15 is made into parallel light by the lens 19, totally reflected by the quick lock mirror 18, and guided to the lens 21.
レンズ21は平行光とされたレーザ光を集光し、被溶接
物Aへ照射する。被溶接物Aは、例えば第2図(81(
blに示すように、光学部品24が丸棒25゜26を介
して基板上に垂直に固定設置された支持部材22.23
に保持されている。そして、丸棒26.25にレーザ光
を照射することにより、光学部品24を支持部材22.
23にメタル固定する。第3図(b)は、被溶接物Aを
矢印しの方向から見た図である。斜線部は支持部材22
.23の斜視面である。第3図山)に示すように例えば
、丸棒25.26に対して、溶接ポイント27を4ケ所
設けるものとする。この溶接ポイント27にそれぞれマ
ーキングを施す。このマーキングの物質としては、他の
部分より高反射率のものを用いる。The lens 21 collects the collimated laser light and irradiates it onto the object A to be welded. The workpiece A to be welded is, for example, shown in FIG.
As shown in bl, the optical component 24 is fixedly installed vertically on the substrate via a round bar 25.26.
is maintained. Then, by irradiating the round bar 26.25 with a laser beam, the optical component 24 is attached to the support member 22.
Fix the metal to 23. FIG. 3(b) is a diagram of the workpiece A seen from the direction of the arrow. The shaded part is the support member 22
.. This is a perspective view of No. 23. As shown in Fig. 3, for example, four welding points 27 are provided for the round bar 25 and 26. Each of these welding points 27 is marked. A material with higher reflectance than other parts is used for this marking.
次に、ガイド用レーザ光発振器13を用いて、溶接ポイ
ント27を最適位置に制御する方法について説明する。Next, a method of controlling the welding point 27 to the optimum position using the guiding laser beam oscillator 13 will be explained.
ガイド用レーザ光は前述したように光学系に導かれレン
ズ21によって、集光されて被溶接物Aに照射される。As described above, the guide laser beam is guided by the optical system, focused by the lens 21, and irradiated onto the workpiece A.
このレーザ光は、反射され、反射レーザ光は、再びレン
ズ21を通り、グイクロックミラー18を透過し、レン
ズ17により集光される。集光された反射レーザ光は、
ピンホール20を通過して、光受信器16にて受信され
、反射光のパワー密度が検出される。This laser light is reflected, and the reflected laser light passes through the lens 21 again, passes through the quick clock mirror 18, and is focused by the lens 17. The focused reflected laser light is
The reflected light passes through the pinhole 20 and is received by the optical receiver 16, and the power density of the reflected light is detected.
第4図は、光受信器16にて検出し反射光パワー密度情
報の処理部のブロック図である。反射光パワー密度情報
はA/D変換器28によりデジタル信号に変換され、セ
レクタ30を経て、MPU31に入力される。MPU3
1は、前回に入力された反射光パワー密度情報をメモリ
32から読み出し、今回入力された反射光パワー密度情
報と比較する。MPU31は比較結果に基づいて、光学
系2.3の回転駆動部l、直直線駆動部4圓送出する。FIG. 4 is a block diagram of a processing section of reflected light power density information detected by the optical receiver 16. The reflected light power density information is converted into a digital signal by the A/D converter 28, and is input to the MPU 31 via the selector 30. MPU3
1 reads the previously input reflected light power density information from the memory 32 and compares it with the currently input reflected light power density information. Based on the comparison result, the MPU 31 sends out the rotary drive section 1 and the linear drive section 4 of the optical system 2.3.
同時に被溶接物設置台7の移動機構8。At the same time, a moving mechanism 8 for the workpiece installation table 7 is provided.
9、10.11の各制御部8’,11’,9’10′に
制御情報を送出する。MPU31はこの制御情報を次の
ようにして求める。被溶接位置(溶接ポイント)27に
は周囲より高反射率のマーキングが施しであるため、こ
の部分にガイドレーザ光が照射されると反射光パワー密
度は最大になる。Control information is sent to each control unit 8', 11', 9'10' of 9, 10, and 11. The MPU 31 obtains this control information as follows. Since the position to be welded (welding point) 27 is marked with a higher reflectance than the surrounding area, when this part is irradiated with the guide laser beam, the reflected light power density becomes maximum.
そこでまずMPU31はメモリ゛32に反射光パワー密
度とともに光学系2.3の回転駆動部1、直線駆動部4
1回転駆動部6の位置情報,さらに被溶接物設置台の各
移動機構8,9.10.11の位置情報を記憶する。そ
して、各駆動部の制御部4’, 1’, 6’,
66’. 8’, 11’, 9’。First, the MPU 31 stores the reflected light power density in the memory 32 as well as the rotation drive unit 1 and linear drive unit 4 of the optical system 2.3.
The position information of the one-rotation drive unit 6 and the position information of each moving mechanism 8, 9, 10, and 11 of the workpiece installation table are stored. Then, the control units 4', 1', 6',
66'. 8', 11', 9'.
10′を順次微少距離移動させつつ反射光パワー密度の
比較を行い,最大反射光パワー密度となる位置に設定す
る。なお、光学系2.3と光学系2′,3′とで被溶接
物の全範囲に渡すレーザ溶接可能なように、それぞれ移
動範囲が分担されており、この情報はメモリ32に記憶
されていて9MPU3 1はこの情報を元にセレクタ3
0を切換え。10' is sequentially moved by small distances, the reflected light power density is compared, and the position is set at the position where the reflected light power density is maximum. Note that the optical system 2.3 and the optical systems 2' and 3' have different moving ranges so that laser welding can be performed over the entire range of the workpiece, and this information is stored in the memory 32. 9MPU3 1 selector 3 based on this information
Switch 0.
光学系2,3と光学系2’,3’との位置会せ制御を切
換える。位置合わせ完了後、レーザ光を溶接用レーザ光
に切換え、レーザ溶接を行う。The alignment control between the optical systems 2 and 3 and the optical systems 2' and 3' is switched. After the alignment is completed, the laser beam is switched to a welding laser beam and laser welding is performed.
以上の説明では、被溶接位置のマーキングとして、周囲
より高反射率の物質を塗布した場合について述べたが、
逆に低反射率の物質でも同様にして位置合せが実施でき
る。In the above explanation, we have described the case where a material with a higher reflectance than the surrounding area is applied to mark the welding position.
Conversely, alignment can be performed in a similar manner even with materials of low reflectance.
また、レーザ光のビームスポット径は約0.3〜0、8
鶴φと小さいため、これに応じてマーキングを施す必要
がある。In addition, the beam spot diameter of the laser beam is approximately 0.3 to 0.8
Since the crane is as small as φ, it is necessary to mark it accordingly.
以上、詳細に説明したように、本発明によれば、被溶接
物の溶接位置に周囲と反射率の異なるマーキングを施す
ことにより、He−Neレーザ光等の反射光のパワー密
度により、光学系及び被溶接物設置台の位置合わせを自
動的に行うことが可能となり光学部品の固定精度を向上
させることができる。As described above in detail, according to the present invention, by marking the welding position of the workpiece with a different reflectance from the surrounding area, the optical system is It is also possible to automatically align the position of the workpiece installation table, thereby improving the fixing accuracy of optical components.
第1図はレーザ溶接装置の斜視図.第2図は光学系移動
機構の詳細図,第3図は光学系の詳細図。
第4図は制御系のブロック構成図である。
図中、2.3及び2′3′は光学系、16は光受信器、
20はピンホール、12は溶接用レーザ発振器、13は
ガイド用レーザ発振器、27はマーキングを施した溶接
ポイントである。
、、 −7;−x。
代理人 弁理士 検量 宏四部。
′“−1
!,二ブ
第 1 侶Figure 1 is a perspective view of the laser welding equipment. Fig. 2 is a detailed view of the optical system moving mechanism, and Fig. 3 is a detailed view of the optical system. FIG. 4 is a block diagram of the control system. In the figure, 2.3 and 2'3' are optical systems, 16 is an optical receiver,
20 is a pinhole, 12 is a welding laser oscillator, 13 is a guide laser oscillator, and 27 is a marked welding point. ,, -7;-x. Agent: Patent Attorney, Calculator: Hiroshibe. '“-1!, 2nd 1st partner
Claims (1)
レーザ光発生器と、該溶接用レーザ光及び該ガイド用レ
ーザ光を溶接位置へ導く出射光学系とを備え、該ガイド
用レーザ光に対して該溶接位置を最適位置に調整した後
、該溶接用レーザ光を該溶接位置に照射して溶接を行う
レーザ溶接装置であって、前記溶接位置に周囲とは光の
反射率の異なるマークを施すとともに、前記被溶接物設
置台を移動させる移動機構と、前記出射光学系を移動さ
せる移動機構と、前記被溶接物に照射された該ガイド用
レーザ光の反射光のパワー密度を検出する光検知器と、
該光検知器の検出結果に基づいて、該移動機構を制御し
て該ガイド用レーザ光を該溶接位置に最適位置で照射す
る制御手段とを備えたことを特徴とするレーザ溶接装置
。A welding object installation table, a welding laser beam generator, a guide laser beam generator, and an output optical system that guides the welding laser beam and the guide laser beam to a welding position, the guide laser A laser welding device that performs welding by irradiating the welding laser beam to the welding position after adjusting the welding position to an optimal position with respect to light, the welding position being surrounded by a A moving mechanism for moving the workpiece installation table, a movement mechanism for moving the output optical system, and a power density of the reflected light of the guide laser beam irradiated on the workpiece are provided with different marks. a photodetector to detect;
A laser welding apparatus comprising: control means for controlling the moving mechanism to irradiate the guide laser beam to the welding position at an optimal position based on the detection result of the photodetector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59276852A JPS61154784A (en) | 1984-12-27 | 1984-12-27 | Laser welding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59276852A JPS61154784A (en) | 1984-12-27 | 1984-12-27 | Laser welding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61154784A true JPS61154784A (en) | 1986-07-14 |
Family
ID=17575304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59276852A Pending JPS61154784A (en) | 1984-12-27 | 1984-12-27 | Laser welding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61154784A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158748A (en) * | 1987-12-15 | 1989-06-21 | Nikon Corp | Laser processing device |
US7367724B2 (en) | 2003-12-02 | 2008-05-06 | Fujitsu Limited | Imaging device, method of production of same, and holding mechanism of same |
JP2011159498A (en) * | 2010-02-01 | 2011-08-18 | Mitsubishi Heavy Ind Ltd | Battery, and apparatus and method for manufacturing the same |
CN103286457A (en) * | 2013-05-31 | 2013-09-11 | 昆山宝锦激光拼焊有限公司 | Laser welding workbench |
-
1984
- 1984-12-27 JP JP59276852A patent/JPS61154784A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158748A (en) * | 1987-12-15 | 1989-06-21 | Nikon Corp | Laser processing device |
US7367724B2 (en) | 2003-12-02 | 2008-05-06 | Fujitsu Limited | Imaging device, method of production of same, and holding mechanism of same |
JP2011159498A (en) * | 2010-02-01 | 2011-08-18 | Mitsubishi Heavy Ind Ltd | Battery, and apparatus and method for manufacturing the same |
CN103286457A (en) * | 2013-05-31 | 2013-09-11 | 昆山宝锦激光拼焊有限公司 | Laser welding workbench |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02104484A (en) | Method and device for measuring position of junction joint for laser welding | |
US6040903A (en) | Electro-optical measuring device for determining the relative position of two bodies, or of two surface areas of bodies, in relation to each other | |
US5038016A (en) | Laser welding monitoring system and method | |
US20160202045A1 (en) | Method of measuring the depth of penetration of a laser beam into a workpiece | |
US5609780A (en) | Laser system | |
JPH03151180A (en) | Joint chasing type precision laser welding system | |
KR20040012719A (en) | Apparatus and method for focal point control for laser machining | |
US4088408A (en) | Device for measuring the contour of a surface | |
US4502785A (en) | Surface profiling technique | |
WO1996008027A1 (en) | Focused laser beam measurement system and method of beam location | |
US6532681B2 (en) | Position measuring system including partial scale elements | |
JPS61154784A (en) | Laser welding device | |
JP5268749B2 (en) | Substrate condition inspection method, laser processing apparatus, and solar panel manufacturing method | |
JP2001340979A (en) | Laser processing apparatus | |
JPH0381082A (en) | Method and apparatus for controlling diameter of laser beam | |
JP7396851B2 (en) | Control device, control system, and program | |
JPH05253685A (en) | Laser beam machine | |
JPH08323477A (en) | Device for detecting seam center in manufacturing welded tube and manufacture of welded tube | |
JP2000084688A (en) | Laser welding method | |
US5473423A (en) | Method and apparatus for obtaining measurements in a plurality of light waveguides | |
JP2822698B2 (en) | Positioning device and laser processing device | |
JPH01178393A (en) | Laser beam machine | |
JPH07190735A (en) | Optical measuring device and its measuring method | |
JPS5926022A (en) | Infrared spectrometer | |
JP3836408B2 (en) | Position adjustment device |