JPS61153936A - Plasma x-ray generator - Google Patents

Plasma x-ray generator

Info

Publication number
JPS61153936A
JPS61153936A JP59273223A JP27322384A JPS61153936A JP S61153936 A JPS61153936 A JP S61153936A JP 59273223 A JP59273223 A JP 59273223A JP 27322384 A JP27322384 A JP 27322384A JP S61153936 A JPS61153936 A JP S61153936A
Authority
JP
Japan
Prior art keywords
liquid metal
plasma
mercury
laser
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59273223A
Other languages
Japanese (ja)
Inventor
Etsuo Noda
悦夫 野田
Setsuo Suzuki
鈴木 節雄
Osamu Morimiya
森宮 脩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59273223A priority Critical patent/JPS61153936A/en
Priority to EP85309408A priority patent/EP0186491B1/en
Priority to DE3586244T priority patent/DE3586244T2/en
Priority to US06/813,544 priority patent/US4723262A/en
Publication of JPS61153936A publication Critical patent/JPS61153936A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/19Targets for producing thermonuclear fusion reactions, e.g. pellets for irradiation by laser or charged particle beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To enable repeated usage by employing liquid metal as a target then dripping through a tubing from above a vacuum container while providing a liquid metal sump on the bottom of the vacuum container while balancing the pressure and collecting the liquid metal. CONSTITUTION:A tubing 2 is arranged above a vacuum container 1 to feed liquid metal or mercury to be employed as a target from a sump 3. While a Piezo element 10 is arranged near the tip of the tubing 2 then vibrated to drip the mecury droplet 9. Furthermore, a sump 8 is arranged on the bottom of the container 1 such that the height of liquid metal will be balanced through the tubing 71 thus to constitute a plasma X-ray generator. Then plasma production beam or laser pulse 81 is irradiated synchronously with production of the droplet 9 thus to produce X-ray. Consequently, a system enable of repeated usage while feeding/collection of target material is facilitated can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、レーザーや荷電粒子ビームにょシ生成すtL
 * フ’y スマからX線を得るプラズマX線発生装
置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a laser or charged particle beam that generates tL.
*Relating to a plasma X-ray generator that obtains X-rays from a plasma.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ターゲット上にレーザー光や荷電粒子ビームを集光照射
すると、高温高密度のプラズマを一時に生成することが
できる。このプラズマをX線源として利用すると(1)
:高輝度のX線が得られる、(2):線源が点光源Ki
い、(a) :短パルスである、(4) : YAGレ
ーザー等のくシ返しの大きいレーザーを使えば、<ル返
しの大きいX線源となる、などの特徴を持つX線発生装
置が得られ、X線リソグラフィーや徨々の測定に利用で
きる。従来、この種の実験は主として固体平面ターゲッ
トにレーザ−光を照射して行なわれていた(例えば、S
ov。
By irradiating a target with focused laser light or a charged particle beam, high-temperature, high-density plasma can be generated at once. If this plasma is used as an X-ray source (1)
: High brightness X-rays can be obtained. (2): The radiation source is a point light source Ki.
There are It can be used for X-ray lithography and chromatographic measurements. Conventionally, this type of experiment was mainly conducted by irradiating a solid planar target with laser light (for example, S
ov.

Phys、Tech、Phys、 28(7)、P86
3(1983) )。
Phys, Tech, Phys, 28(7), P86
3 (1983)).

しかし、この方法は実用に供するには次の様な欠点があ
る。すなわち、ターゲット物質の補充に手間がかかるこ
と、特に真空容器内にセットされたターゲットをすべて
打ち尽くした後、真空を破る必要があり、かなシの時間
損失がある。また、プラズマ化した物質がレーザー入射
窓やX線取出窓に付着し、レーザー照射パワーの損失や
窓の破壊及びX線の減衰などにつながる。プラズマ物質
の窓への付着を防ぐための一方法として次の様な提案が
なされている(例えば、特公昭58−158842号公
報)。すなわち、プラズマ化後の生成物がガス化する様
な物質(例えば、氷、アンモニアの固体、アルゴン、ク
リプトン、キセノンの固体、炭酸ガスの固体など)をタ
ーゲットとして使用する方法である。しかし、この方法
はターゲットを低温に冷やす必要があり、そのための装
置が複雑になる。更にターゲットの供給のための装置も
複雑なものになる(例えば、日本原子力学会誌。
However, this method has the following drawbacks for practical use. That is, it takes time and effort to replenish the target material, and in particular, it is necessary to break the vacuum after all the targets set in the vacuum container have been exhausted, resulting in a considerable loss of time. In addition, the plasma-converted material adheres to the laser entrance window and the X-ray extraction window, leading to loss of laser irradiation power, destruction of the window, and attenuation of the X-rays. The following proposal has been made as a method for preventing plasma substances from adhering to windows (for example, Japanese Patent Publication No. 158842/1984). That is, this is a method of using as a target a substance whose product is gasified after plasma formation (for example, ice, solid ammonia, solid argon, krypton, xenon, solid carbon dioxide, etc.). However, this method requires that the target be cooled to a low temperature, which requires complicated equipment. Furthermore, the equipment for supplying the target becomes complex (eg, Journal of the Atomic Energy Society of Japan).

26(7)、P594(1984))。26(7), P594 (1984)).

〔発明の目的〕[Purpose of the invention]

この発明は、前述した従来技術の欠点を改良したもので
、レーザーまたは荷電粒子ビームを用いた劣化が少なく
、高くシ返しが可能でターゲット物質の供給及び回収が
容易で構成の簡単な高輝度X線源を提供することを目的
としている。
This invention improves the drawbacks of the prior art described above, and uses a laser or charged particle beam to produce a high-intensity The purpose is to provide a radiation source.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために本発明ではターゲット物質
に液体金属(例えば水銀)を用い、この液体金属を細管
またはオリスイスを通してレーザーパルス(あるいは荷
電粒子ビームパルス)に同期させて真空容器内に供給す
るようにしている。
In order to achieve such an object, the present invention uses a liquid metal (for example, mercury) as a target material, and supplies this liquid metal into a vacuum container through a capillary or an oriswiss in synchronization with a laser pulse (or charged particle beam pulse). I have to.

この供給は具体的には液滴小球の形でなされ、各液滴を
レーザーで照射してプラズマ化してX線を得る。なお、
プラズマ化した物質は飛行中あるいは窓などに衝突し圧
抜、再結合して中性化するが窓や真空容器に液体金属と
反応して合金を作らない物質を用いることによりターゲ
ット物質は窓忙付着することなく下に流れ、窓の劣化を
防止することができる。
This supply is specifically in the form of droplets, each droplet being irradiated with a laser to form a plasma and to obtain X-rays. In addition,
During flight, the plasma material collides with a window, etc., depressurizes it, recombines, and becomes neutral. However, by using a material that does not react with liquid metal to form an alloy in the window or vacuum container, the target material can be absorbed by the window. It flows downward without adhesion, preventing window deterioration.

また、液滴の発生とレーザーパルスを同期させるためK
は、例えば、細管やオリフィスあるいはそこを流れる液
体金属に機械振動を加えた夛、液体金属溜にパルス的に
圧力を加えてもよい。特に、下に流れた液体金属は真空
容器の底に設けられた細管の中に溜シ、液体金属柱の高
さが、外部圧力とクシ合う様に一定に保ちながら液体金
属溜に流れていくため回収が容易にできる。また、細管
内の液体金属によシ真空容器の気密は保たれている。
Additionally, in order to synchronize droplet generation and laser pulse, K
For example, mechanical vibration may be applied to a capillary or orifice or the liquid metal flowing therein, or pressure may be applied in pulses to a liquid metal reservoir. In particular, the liquid metal flowing downward is collected in a thin tube provided at the bottom of the vacuum container, and flows into the liquid metal reservoir while keeping the height of the liquid metal column constant so that it matches the external pressure. Therefore, it can be easily collected. Furthermore, the vacuum container is kept airtight by the liquid metal within the capillary.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、劣化が少なく、くり返し使用可能で、
しかもターゲット物質の供給及び回収が容易で、構成の
簡単な高輝度のX線源を得ることができる。
According to the present invention, there is little deterioration and it can be used repeatedly.
Moreover, the target material can be easily supplied and recovered, and a high-brightness X-ray source with a simple configuration can be obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例について詳細に説明する。第1図は、真
空容器1の上部に細管2を配置し、ターゲット用の水銀
を溜めである供給用水銀溜3から液体金属としての水銀
を供給するようになりている。容器1の側面にはレーザ
ー入射窓4と、ピームダ/パーを構成するレーザー透過
窓5が設けられている。レーザー入射窓4からはグツズ
マ生成用ビームとしてのレーザー81を集光用レンズ6
を介して水銀の小滴9に照射するようになっている。水
銀の小滴9は、表面張力によ)細管2の先端に導ひかれ
、この細管2の先端忙殺けられ九ピエゾ素子10の加振
によって滴下させる。この時の水銀の供給量qは、水銀
溜の水銀表面と細管の先端との高差をhl、細管の内径
をり、長さをlとすると ここでη、ρは水銀の粘性率、質量密度をP、は水銀溜
の圧力(一般には大気圧)を表わしている。
Examples of the present invention will be described in detail. In FIG. 1, a thin tube 2 is arranged at the upper part of a vacuum container 1, and mercury as a liquid metal is supplied from a supply mercury reservoir 3 which is a reservoir for mercury for a target. The side surface of the container 1 is provided with a laser entrance window 4 and a laser transmission window 5 constituting a beam da/par. A laser 81 as a beam for generating Gutsuma is passed through the laser entrance window 4 through a condensing lens 6.
The mercury droplet 9 is irradiated through the mercury droplet 9. The mercury droplet 9 is guided (by surface tension) to the tip of the capillary tube 2, and is caused to drop by the excitation of the piezo element 10, which is concentrated at the tip of the capillary tube 2. The amount of mercury supplied at this time, q, is the height difference between the mercury surface of the mercury reservoir and the tip of the capillary, hl is the inner diameter of the capillary, and the length is l, where η is the viscosity of mercury, and ρ is the mass of the mercury. The density P represents the pressure of the mercury reservoir (generally atmospheric pressure).

ピエゾ振動子lOで細管に機械的振動(振動数f)を与
えると、水銀は細管から飛び出した後周期1/f  の
間隔で、小滴9に分裂する。この間隔をレーザーパルス
に同期する様に設定しておく。また、この時の小滴の大
きさdは次の様になる。
When mechanical vibration (frequency f) is applied to the capillary using a piezoelectric vibrator 1O, the mercury breaks into droplets 9 at intervals of period 1/f after ejecting from the capillary. This interval is set so as to be synchronized with the laser pulse. Further, the size d of the droplet at this time is as follows.

dはレーザー光の集光径程度に選べばよいから、小滴が
安定にできる範囲で、細管サイズやhlを選定すればよ
い。
Since d can be selected to match the condensing diameter of the laser beam, the capillary size and hl can be selected within a range that allows stable droplets.

レーザーの〈シ返しが小さい時(10Hz以下)には上
記の方法は使えない。水銀の表面張力をσとすると 上式を満たす様にl t D t htなどを選定して
、表面張力忙より水銀が細管から飛び出さないようにし
ておき、レーザーパルスに同期させ細管に適度な強度の
1パルスの振動を与えると、細管から小滴が一つ飛び出
す。この径は振動強度によシ異なるが、細管の内径に近
い値になる。以上の様にして真空容器内に、水銀の小滴
をレーザーパルスに同期して供給し、この小滴にレーザ
ー光を集光照射することKより、水銀をプラズマ化し、
X線を発生させる。
The above method cannot be used when the laser's return frequency is small (10Hz or less). If the surface tension of mercury is σ, select l t D t ht etc. so that the above formula is satisfied, and prevent mercury from jumping out of the capillary due to the surface tension. When a single pulse of intense vibration is applied, a droplet is ejected from the tubule. This diameter varies depending on the vibration intensity, but it is close to the inner diameter of the capillary. As described above, mercury droplets are supplied into the vacuum container in synchronization with laser pulses, and the mercury is turned into plasma by irradiating the droplets with focused laser light.
Generates X-rays.

ピエゾ素子10は、第2図に示すようにセラミック部1
6とその厚み方向に振動するように、両面圧設けた電極
17,18で構成されている。電極17には細管2の端
部に設けたつば部191’l:絶縁されて固設されてお
シ、電極181Cは容器側の支持部20に絶縁されて固
設されている。
The piezo element 10 has a ceramic part 1 as shown in FIG.
6 and electrodes 17 and 18 with pressure on both sides so as to vibrate in the thickness direction. The electrode 17 is insulated and fixed to the collar part 191'l provided at the end of the thin tube 2, and the electrode 181C is insulated and fixed to the support part 20 on the container side.

このピエゾ素子lOは、交流電圧を発生する駆動電源2
1の印加で振動する。すなわち、この駆動電源21の印
加する交流電圧で細管2の先端が振動し、細管2内の水
銀は小滴9となって滴下する。
This piezo element IO is connected to a drive power source 2 that generates an alternating current voltage.
It vibrates when 1 is applied. That is, the tip of the capillary tube 2 vibrates due to the AC voltage applied by the drive power source 21, and the mercury in the capillary tube 2 becomes droplets 9 and drips.

この水銀の小滴9にレーザー光を同期して照射するため
に、駆動電源21の交流信号22を波形整形器23で矩
形波信号24とし、この矩形波信号24をモノマルチバ
イブレータ25に入力してパルス信号26にする。この
パルス信号26のパルス発生時間を小滴9の位置とレー
ザー光の発射時間を一致させるために遅延させる遅延回
路27を介して同期パルス信号28を得る。この同期パ
ルス信号28によってレーザー装置29は駆動され)小
満9にレーザー光81を照射してプラズマ化し、X線を
発生させる。発生したX線は、第2図に示すように真空
容器の周囲に数ケ所設けたX線取り出し窓13に取り付
けられたポリエチレンの薄膜等15を通して取シ出され
利用される。例えば、X線取り出し窓13の中にはX線
を照射して半導体装置を製造する、例えば半導体チップ
30か配置されている。このプラズマ化した水銀は再結
合により中性の水銀原子に戻るがガラスやポリエチレン
15の窓等に付着することはなく、真空容器の底7に設
けられた細管71の中に流れていく。この細管忙溜まる
水銀の高さり、はl気圧に対応する高さで、およそ76
cmであるので、細管の長さは76on以上にすればよ
い。
In order to synchronously irradiate the mercury droplets 9 with laser light, the AC signal 22 of the drive power source 21 is converted into a rectangular wave signal 24 by the waveform shaper 23, and this rectangular wave signal 24 is input to the mono-multivibrator 25. pulse signal 26. A synchronized pulse signal 28 is obtained via a delay circuit 27 which delays the pulse generation time of this pulse signal 26 in order to match the position of the droplet 9 with the emission time of the laser beam. The laser device 29 is driven by this synchronized pulse signal 28) and irradiates the laser beam 81 onto the small mantle 9 to turn it into plasma and generate X-rays. The generated X-rays are extracted and utilized through polyethylene thin films 15 attached to X-ray extraction windows 13 provided at several locations around the vacuum container, as shown in FIG. For example, in the X-ray extraction window 13, for example, a semiconductor chip 30, which is used to manufacture a semiconductor device by irradiating X-rays, is arranged. This plasma mercury returns to neutral mercury atoms by recombination, but does not adhere to the glass or the window of the polyethylene 15, and instead flows into the thin tube 71 provided at the bottom 7 of the vacuum container. The height of mercury that accumulates in this thin tube is the height corresponding to 1 atm, approximately 76
cm, the length of the capillary should be 76 on or more.

また、細管内の水銀により容器の気密が保持されている
。そしてり、を一定に保ちながら水銀は回収用水銀溜8
に溜まっていく。
Furthermore, the container is kept airtight by the mercury in the capillary. Then, while keeping the temperature constant, the mercury is collected at the mercury reservoir 8.
It accumulates in

以上の様に、水銀は供給用水銀溜から回収用水銀溜に流
れ、供給1回収が容易に行なえる。
As described above, mercury flows from the supply mercury reservoir to the recovery mercury reservoir, and one supply and one recovery can be easily performed.

〔発明の他の実施例〕[Other embodiments of the invention]

次に本発明の他の実施例について説明する。第4図は、
水銀の小滴9を作るのにピエゾ素子を用いる代シに、水
銀溜に圧力を加える様にした例である。なお、前述の実
施例と同一構成部分については、同一符号を附して説明
する。この実施例では、水銀溜3の上部に内部と連通す
る配管31と、この配管31に流れるガス流を断続する
高速電磁パルプ32と、配管31に流すガスを印加する
ガスボンベ33とで構成されている。
Next, other embodiments of the present invention will be described. Figure 4 shows
This is an example in which instead of using a piezo element to create the mercury droplet 9, pressure is applied to the mercury reservoir. Note that the same components as those in the above-mentioned embodiment will be described with the same reference numerals. In this embodiment, the mercury reservoir 3 is made up of a pipe 31 that communicates with the inside at the top, a high-speed electromagnetic pulp 32 that interrupts the gas flow flowing through the pipe 31, and a gas cylinder 33 that applies gas to flow into the pipe 31. There is.

この高速電磁パルプ32は、所定のタイミングで水銀の
小滴9の滴下位置とレーザー照射時間と一致するように
図示しない駆動制御装置を設けて駆動されるようになっ
ている。水銀溜3に圧力をパルス的に加えるために高速
電磁パルプ32とガスボンベ33を使用している。水銀
溜3に加える圧力の変化の大きさJPが、水銀溜30基
本圧力P0よシ十分小さければ、圧力変動の周波数をf
とすれば、(2)式の関係がそのま!!あてはまる。ま
た、くり返しが小さい時には、(3)式の関係を満たす
様に細管等の条件を選んでおき、レーザーパルスに同期
して水銀溜にパルス圧力ΔPを加え(4)式を満たす様
にΔPを選ぶと、水銀はレーザーパルスに同期して細管
の出口から飛び出す。この時、小滴の径は圧力を加える
時間ΔtやΔPなどでも決まるが、細管の径が最大の要
素となる。水銀の回収等についてI/′i第1図と同じ
である。
This high-speed electromagnetic pulp 32 is driven by a drive control device (not shown) so that the dropping position of the mercury droplet 9 coincides with the laser irradiation time at a predetermined timing. A high-speed electromagnetic pulp 32 and a gas cylinder 33 are used to apply pressure to the mercury reservoir 3 in a pulsed manner. If the magnitude of the change in pressure applied to the mercury reservoir 3, JP, is sufficiently smaller than the basic pressure P0 of the mercury reservoir 30, then the frequency of pressure fluctuation can be reduced to f
Then, the relationship in equation (2) is the same! ! That applies. In addition, when the repetition rate is small, the conditions of the thin tube etc. are selected so as to satisfy the relationship of equation (3), and the pulse pressure ΔP is applied to the mercury reservoir in synchronization with the laser pulse, and ΔP is adjusted so as to satisfy the equation (4). Once selected, the mercury is ejected from the exit of the tubule in synchronization with the laser pulse. At this time, the diameter of the droplet is determined by the pressure application time Δt, ΔP, etc., but the diameter of the thin tube is the largest factor. The recovery of mercury, etc. is the same as in I/'i Figure 1.

また、水銀溜に圧力を加える構成としては、ピエゾ素子
等の音響素子を水銀溜の内壁の一部に配置してもよい。
Further, as a configuration for applying pressure to the mercury reservoir, an acoustic element such as a piezo element may be arranged on a part of the inner wall of the mercury reservoir.

前述した実施例ではプラズマ生成用ビームにレーザーを
使用したが、電子ビーム。
In the above embodiments, a laser was used as the beam for plasma generation, but an electron beam was used instead.

軽イオンビーム、重イオンビーム等の荷電粒子ビームを
使用してもよい。
Charged particle beams such as light ion beams and heavy ion beams may also be used.

以上の様に本発明を用いれば、レーザーまたは荷電粒子
ビームを用いた劣化が少なく、高くシ返し可能で、ター
ゲット物質の供給及び回収が容易で構成の簡単な高輝度
X線源を得ることができる。
As described above, by using the present invention, it is possible to obtain a high-brightness X-ray source with a simple configuration, with little deterioration caused by using a laser or charged particle beam, with high reversibility, with easy supply and recovery of the target material. can.

水銀供給用細管の代わシに、オリフィスを使用してもよ
い。また、水銀の供給は図の様忙上部からでなくても、
横方向から供給する様にしてもよい。液体金属は水銀以
外にもガリウム、セシウム、インジクム、カリウムなど
の金属を用いてもよい。この時、液体金属と容器、窓等
との反応に注意して材質を選ぶ必要がある。液体金属の
供給・回収系は圧力のつり合を取りながら回収する構成
であればどの様な形状であってもよい。
An orifice may be used instead of the mercury supply capillary. Also, the supply of mercury does not have to come from the top as shown in the figure.
It may also be supplied from the side. In addition to mercury, metals such as gallium, cesium, indicum, and potassium may be used as the liquid metal. At this time, it is necessary to select the material paying attention to the reaction between the liquid metal and the container, window, etc. The liquid metal supply/recovery system may have any shape as long as it recovers the liquid metal while maintaining pressure balance.

また、窓からの液体金属の離脱をすみやかに行なわせる
ために、窓等を加熱して液体金属の粘性を下げたシ、蒸
発させたシする手段を用いてもよい。
In addition, in order to quickly remove the liquid metal from the window, a method may be used that heats the window or the like to lower the viscosity of the liquid metal or evaporate it.

X線を発生させる真空容器内は、必ずしも真空である必
要はなく、必要ならばHe等のガスを低圧力で封入して
もよい。また連続的なビーム(レーザー)を使用する場
合には機械振動、圧力パルス等を用いることなく、細管
から飛び出した液体金属が小滴に分裂する前の位置で照
射する様にすればよい。
The inside of the vacuum container in which X-rays are generated does not necessarily have to be vacuum, and if necessary, a gas such as He may be sealed at low pressure. Furthermore, when using a continuous beam (laser), it is sufficient to irradiate the liquid metal at a position before it breaks up into small droplets, without using mechanical vibrations, pressure pulses, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を示す断面図、第2図は
回路図、第3図は部分断面図、第4図は本発明の他の実
施例の構成を示す断面図である。 1・・・プラズマ生成用真空容器、2・・・供給用細管
。 3・・・供給用液体金属溜、4・・・レーザー入射窓、
5・・・レーザー透過窓またはビームダンパー、6・・
・集光用レンズ、8・・・回収用液体金属溜、9・・・
液体金属小滴、10・・・ピエゾ素子、32・・・高速
電磁パルプ、33・・・ガスボンベ、71・・・回収用
i’1.81・・・V −ブー光。
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention, FIG. 2 is a circuit diagram, FIG. 3 is a partial sectional view, and FIG. 4 is a sectional view showing the structure of another embodiment of the invention. . 1... Vacuum vessel for plasma generation, 2... Thin tube for supply. 3... Liquid metal reservoir for supply, 4... Laser entrance window,
5... Laser transmission window or beam damper, 6...
・Lens for condensing light, 8...Liquid metal reservoir for recovery, 9...
Liquid metal droplet, 10... Piezo element, 32... High-speed electromagnetic pulp, 33... Gas cylinder, 71... i'1.81... V-Boo light for recovery.

Claims (3)

【特許請求の範囲】[Claims] (1)ターゲットにプラズマ生成用ビームを照射し、プ
ラズマ化することによりX線を発生させるものにおいて
、前記ターゲットとして液体金属を用い、この液体金属
をプラズマ発生容器中に前記プラズマ生成用ビームに同
期して供給し、かつ前記プラズマ発生容器の底部に細管
を垂下させ、この細管の下端に液体金属溜を設け、前記
細管を通して前記液体金属を前記プラズマ発生容器内の
圧力と前記液体金属溜内の圧力とがつり合うように前記
液体金属溜に移動させて、前記液体金属を回収するよう
構成したことを特徴とするプラズマX線発生装置。
(1) In a device that generates X-rays by irradiating a target with a plasma generation beam and turning it into plasma, a liquid metal is used as the target, and this liquid metal is placed in a plasma generation container in synchronization with the plasma generation beam. A thin tube is suspended from the bottom of the plasma generating container, a liquid metal reservoir is provided at the lower end of the thin tube, and the liquid metal is supplied through the thin tube to reduce the pressure inside the plasma generating container and the liquid metal reservoir. A plasma X-ray generator characterized in that the plasma X-ray generator is configured to move the liquid metal to the liquid metal reservoir and recover the liquid metal so that the pressures are balanced.
(2)液体金属を水銀としたことを特徴とする特許請求
の範囲第1項記載のプラズマX線発生装置。
(2) The plasma X-ray generator according to claim 1, characterized in that the liquid metal is mercury.
(3)プラズマ発生容器を真空容器としたことを特徴と
する特許請求の範囲第1項記載のプラズマX線発生装置
(3) The plasma X-ray generation device according to claim 1, wherein the plasma generation container is a vacuum container.
JP59273223A 1984-12-26 1984-12-26 Plasma x-ray generator Pending JPS61153936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59273223A JPS61153936A (en) 1984-12-26 1984-12-26 Plasma x-ray generator
EP85309408A EP0186491B1 (en) 1984-12-26 1985-12-23 Apparatus for producing soft x-rays using a high energy beam
DE3586244T DE3586244T2 (en) 1984-12-26 1985-12-23 Device for generating soft X-rays by means of a high-energy bundle.
US06/813,544 US4723262A (en) 1984-12-26 1985-12-26 Apparatus for producing soft X-rays using a high energy laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273223A JPS61153936A (en) 1984-12-26 1984-12-26 Plasma x-ray generator

Publications (1)

Publication Number Publication Date
JPS61153936A true JPS61153936A (en) 1986-07-12

Family

ID=17524823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273223A Pending JPS61153936A (en) 1984-12-26 1984-12-26 Plasma x-ray generator

Country Status (1)

Country Link
JP (1) JPS61153936A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253499A (en) * 1994-03-15 1995-10-03 Nikon Corp X-ray generator
JPH11339702A (en) * 1998-05-15 1999-12-10 Koninkl Philips Electronics Nv X-ray source having liquid metal target
WO2013020758A1 (en) * 2011-08-05 2013-02-14 Asml Netherlands B.V. Radiation source and method for lithographic apparatus and device manufacturing method
US11882642B2 (en) 2021-12-29 2024-01-23 Innovicum Technology Ab Particle based X-ray source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253499A (en) * 1994-03-15 1995-10-03 Nikon Corp X-ray generator
JPH11339702A (en) * 1998-05-15 1999-12-10 Koninkl Philips Electronics Nv X-ray source having liquid metal target
WO2013020758A1 (en) * 2011-08-05 2013-02-14 Asml Netherlands B.V. Radiation source and method for lithographic apparatus and device manufacturing method
CN103718654A (en) * 2011-08-05 2014-04-09 Asml荷兰有限公司 Radiation source and method for lithographic apparatus and device manufacturing method
US8866111B2 (en) 2011-08-05 2014-10-21 Asml Netherlands B.V. Radiation source and method for lithographic apparatus and device manufacturing method
US11882642B2 (en) 2021-12-29 2024-01-23 Innovicum Technology Ab Particle based X-ray source

Similar Documents

Publication Publication Date Title
EP0186491B1 (en) Apparatus for producing soft x-rays using a high energy beam
TWI479955B (en) Method and device for producing plasma euv light
US8319201B2 (en) Laser produced plasma EUV light source having a droplet stream produced using a modulated disturbance wave
EP2694218B1 (en) Droplet dispensing device and light source comprising such a droplet dispensing device
CN110232982B (en) Target for extreme ultraviolet light source
JPS61153935A (en) Plasma x-ray generator
EP2951643B1 (en) Euv light source using cryogenic droplet targets in mask inspection
JP3553084B2 (en) Method and apparatus for generating X-ray or extreme ultraviolet radiation
US8530871B2 (en) Laser produced plasma EUV light source
TWI639721B (en) Target material supply apparatus for an extreme ultraviolet light source
US9699877B2 (en) Extreme ultraviolet light generation apparatus including target droplet joining apparatus
JP2004505421A (en) X-ray or EUV radiation generation method and apparatus
JP4512747B2 (en) Method for generating radiation light from laser plasma, and laser plasma radiation light generating apparatus using the method
Fraga et al. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation
JPS61153936A (en) Plasma x-ray generator
US10667376B2 (en) Target supply device, extreme ultraviolet light generation device, and target supply method
CN103281855A (en) Liquid metal target generating device for laser source
Hemberg et al. Stability of droplet-target laser-plasma soft x-ray sources
Bollini et al. Production of monodisperse charged metal particles by harmonic electrical spraying
Schwind et al. A high-repetition rate droplet-source for plasma physics applications
Erin et al. Uniform charged solid particle production
JPH0375318A (en) Apparatus for generating high temperature vapor
JPS59157542A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
Lebo et al. Analysis and 2D numerical modeling of burn through of metallic foil experiments using power KrF and Nd lasers
CN117480868A (en) Target supply device