JPS61153839A - Optical memory medium - Google Patents

Optical memory medium

Info

Publication number
JPS61153839A
JPS61153839A JP59274024A JP27402484A JPS61153839A JP S61153839 A JPS61153839 A JP S61153839A JP 59274024 A JP59274024 A JP 59274024A JP 27402484 A JP27402484 A JP 27402484A JP S61153839 A JPS61153839 A JP S61153839A
Authority
JP
Japan
Prior art keywords
memory medium
irradiated
recording
light
absorption maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274024A
Other languages
Japanese (ja)
Inventor
Masayuki Suzuki
雅行 鈴木
Masashi Sahashi
政司 佐橋
Katsutaro Ichihara
勝太郎 市原
Haruhiko Ito
春彦 伊藤
Nobuyuki Takagi
信之 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59274024A priority Critical patent/JPS61153839A/en
Priority to DE8585309448T priority patent/DE3585514D1/en
Priority to EP19850309448 priority patent/EP0186506B1/en
Publication of JPS61153839A publication Critical patent/JPS61153839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain the titled optical memory medium capable of performing multiple recording and reproduction with high sensitivity and high density by dispersing >=2 kinds of fine metallic blocks having different wavelength showing a light absorption maximum into a hold-back body (a binder) reacting with the metallic block by the irradiation of the light having specified wavelength. CONSTITUTION:A block of a single fine particle or aggregated fine particles of Ag having the high absorption maximum at 430nm and Au having the maximum at 560nm and having respectively 10-1,000Angstrom diameter, for example, is dispersed in a reactive binder such as an ethylene-acrylic acid copolymer and an epoxy resin wherein the light absorption maximum is vanished by the reaction of the metallic fine particle with the binder under the irradiation of an excimer laser beam 1 of 350nm wavelength to obtain a recording layer 8 which is formed on a substrate 7. When the excimer laser beam 8 is irradiated on the memory medium thus obtained, the respective absorption maxima of the respective metals are vanished at the irradiated part 91, whereas the absorption maximum at the unirradiated part 92 is not vanished. When an XeF laser is irradiated, only the absorption maximum of Au remains at the irradiated part, and only the absorption maximum of Ag remains, when a KrF laser is irradiated. By utilizing the phenomenon and selecting the wavelength of the recording and reproducing light, a memory medium 6 capable of recording and reproducing in three ways is obtained.

Description

【発明の詳細な説明】 〔発明の技(イ1分野〕 本発明は光学式メモリ媒体に関する。[Detailed description of the invention] [Techniques of invention (A1 field)] The present invention relates to optical memory media.

〔′発明の技術的背曙とその問題点〕['Technical history of the invention and its problems]

情報信号を高密度に記録できるメモリ媒体には、情報信
号を構造的変化として記録し、光学式に再生する光ディ
スクが知られている。この種の光学式メモリ媒体として
は、従来よりガラス又はプラスチックの基体上に記録層
であるビスマスやテルル等からなる金属薄膜を形成し、
集光レーザ光による溶融蒸発を利用してビットを形成し
て情報を記録する方式が採用されている。しかしながら
、かかる金B薄膜の記録層は一般に融点が高いために記
録感度が低く、更に前記金属薄膜記録層への記録密度は
集光レーザ光の周側面積で規あ11されるため、記録密
度の向上も困難であるという問題があった。
2. Description of the Related Art As a memory medium capable of recording information signals with high density, there is known an optical disk in which information signals are recorded as structural changes and reproduced optically. This type of optical memory medium has conventionally formed a recording layer of a metal thin film made of bismuth, tellurium, etc. on a glass or plastic substrate.
A method has been adopted in which information is recorded by forming bits using melting and evaporation caused by focused laser light. However, since the recording layer of such a gold B thin film generally has a high melting point, the recording sensitivity is low, and furthermore, the recording density on the metal thin film recording layer is regulated by the circumferential area of the condensed laser beam. There was a problem in that it was also difficult to improve.

〔発明の目的〕[Purpose of the invention]

本発明は、高感度で高密度記録が可能な光学式メモリ媒
体を提供しようとするものである。
The present invention aims to provide an optical memory medium that is highly sensitive and capable of high-density recording.

(発明の概要〕 本発明は、特定波長の光照射によって光吸収極大が変化
し、かつ光吸収汐大を示す波長の異なる2種類以上の微
禰な金属塊状体と、これら金属塊状体が分散され、特定
波長の光照射によって該金属塊状体と反応を生じる反応
性保持体とを具扁したことを特徴とするとするものであ
る。
(Summary of the Invention) The present invention provides two or more types of minute metal lumps whose light absorption maximum changes when irradiated with light of a specific wavelength and whose wavelengths exhibit different light absorption waves, and a metal lump in which these metal lumps are dispersed. The present invention is characterized in that it includes a reactive support that reacts with the metal mass when irradiated with light of a specific wavelength.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

一般に、金属が超微粒子化すると可視域を中心とした特
定波長において顕著な光吸収特性を示すことが知られて
いる。例えば、金コロイドは桃色に着色し、銀のmW模
の縁の部分は薄赤く着色すること等が知られている。こ
のような微細な金属塊状体の可視域での光吸収特性は、
金属微粒子の表面プラズマ共鳴吸収によるものと考えら
れている。その吸収波長及び吸収の程度は、フェルミ速
度(vf)、有効自由電子数(neff)、有効質@(
meff)等の自由電子プラズマ状態と深い関係にある
It is generally known that when metals are made into ultrafine particles, they exhibit remarkable light absorption characteristics at specific wavelengths centered around the visible range. For example, it is known that gold colloid is colored pink, and the edge of a silver mW pattern is colored pale red. The light absorption characteristics of such fine metal lumps in the visible range are
This is thought to be due to surface plasma resonance absorption of fine metal particles. The absorption wavelength and degree of absorption are determined by the Fermi velocity (vf), the effective number of free electrons (neff), and the effective quality @(
It is closely related to the free electron plasma state such as (meff).

本発明者らは、上記金属塊状体の光吸収特性と自由電子
プラズマ状態との関係を着目し、該自由電子状態を光ビ
ーム照射により変化させることが可能であれば、光照射
により記録を行なうことが可能となり、かつ光照射前後
の金属塊状体の光吸収スペクトルの差により&!録状態
の再生が可能となり、新規な光学式メモリ媒体を実現で
きること、記録・再生をフォトンモードによる高感度、
高密度で、かつ耐久性の浸れた光学式メモリ媒体を実現
可能であることの発想に基づき、鋭意研究を重ねた結果
、微t8な金属塊状体を熱可塑性樹脂、熱硬化性樹脂或
いは適当な官能基を有するプラズマ重合膜等の反応性保
持体中に分散させた記録用にアルゴンレーザ等の光を照
射すると、光吸収特性の顕著な変化が現われ、上記原理
により記録・再生が可能であり、更に異なるV!類の金
属塊状体を共存させた時にも各々の種類の金MIII状
体に対応して独立に光吸収特性が変化し、マルチ記録・
マルチ再生が可能であるという知見を轡、本発明を完成
するに至った。このような微細な金属塊状体の光吸収特
性の変化が生じた原因としては、光照射によって特定の
金属塊状体と反応性保持体とが反応する他、特定の金属
塊状体の分散状態が変化することや、特定の金属塊状体
の周囲の保持体の状態が変化する等が考えられる。この
ような変化は主として光エネルギーに基づいて生じる、
いわゆるフォトンモードの変化であるため、光吸収特性
の異なる金属塊状体を共存させた時には夫々の光吸収特
性の金R塊状体に特有の波長の光に対して独立して感応
するものと考えられる。
The present inventors focused on the relationship between the light absorption characteristics of the metal lump and the free electron plasma state, and if it is possible to change the free electron state by light beam irradiation, recording will be performed by light irradiation. This is possible due to the difference in the light absorption spectrum of the metal block before and after light irradiation. It is now possible to play back the recorded state, creating a new optical memory medium, and recording and playback can be done with high sensitivity using photon mode.
Based on the idea that it is possible to realize a high-density and highly durable optical memory medium, as a result of extensive research, we have found that a fine T8 metal block can be made of thermoplastic resin, thermosetting resin, or other suitable material. When a reactive carrier such as a plasma polymerized film containing a functional group is dispersed and irradiated with light such as an argon laser for recording purposes, a remarkable change in light absorption characteristics appears, and recording and reproduction are possible based on the above principle. , even different V! Even when different kinds of metal lumps coexist, the light absorption characteristics change independently depending on each type of gold MIII-like material, making multi-recording possible.
Based on the knowledge that multiple playback is possible, the present invention was completed. The causes of such changes in the light absorption properties of fine metal lumps include reactions between specific metal lumps and reactive carriers due to light irradiation, as well as changes in the dispersion state of specific metal lumps. It is conceivable that the state of the holder around the specific metal block may change. Such changes occur mainly based on light energy,
Since this is a change in the so-called photon mode, when metal lumps with different light absorption characteristics coexist, it is thought that each gold R lump with light absorption characteristics will respond independently to light at a specific wavelength. .

上記@柵な金属塊状体とは、金属超微粒子の中休と、金
属超微粒子の集合体とがある。この金属塊状体の材料は
、特に限定されるものではないが、上記記録・再生原理
より金属の光学物性を左右している電子状態が自由電子
的(又はS電子的)である方が好ましい。具体的には、
Ag、AU%Pt等の貴金属、Be、Mq等のアルカリ
、アルカリ土類金属、d電子的(局在的)撮舞の比較的
弱いCu等を挙げることができる。かかる金属塊状体は
、単独でも、混合物で使用してもよい。こうした金属塊
状体の各々の直径は、10〜1000人の範囲にするこ
とが望ましい。この理由は、そ、の直径を10人未満に
すると、可?R域での光吸収極大が生じず、かといって
金属超微粒子の直径が1000人を越えると、光吸収極
大が微弱となり、S /’ N比が低下して再生が困難
となる他に、記録・再生の光ビーム径に近ずくため記録
密度の低下を1r!<。また、金属塊状体の反応性保持
体中に占める体積含有率は0.01〜50%の範囲する
ことが望ましい。この理由は、その含有率をo、01%
未満にすると、光吸収極大が微弱となり、かといってそ
の含有率が50%を越えると、光吸収極大が現われなく
なる。
The above-mentioned metal lumps include intermediate particles of ultrafine metal particles and aggregates of ultrafine metal particles. The material of this metal block is not particularly limited, but it is preferable that the electronic state that influences the optical properties of the metal is free electron (or S-electron) based on the above-mentioned recording/reproduction principle. in particular,
Examples include noble metals such as Ag and AU%Pt, alkali and alkaline earth metals such as Be and Mq, and Cu, which has relatively weak d-electronic (local) imaging. Such metal lumps may be used alone or in mixtures. The diameter of each such metal mass is preferably in the range of 10 to 1000. The reason for this is, is it possible to make the diameter less than 10 people? However, if the optical absorption maximum in the R region does not occur and the diameter of the ultrafine metal particles exceeds 1000, the optical absorption maximum becomes weak, the S/'N ratio decreases, and reproduction becomes difficult. The recording density decreases by 1r to get closer to the optical beam diameter for recording and reproduction! <. Further, it is desirable that the volume content of the metal block in the reactive support is in the range of 0.01 to 50%. The reason for this is that its content is o, 01%
When the content is less than 50%, the light absorption maximum becomes weak, and on the other hand, when the content exceeds 50%, the light absorption maximum does not appear.

上記金属塊状体を分散、保持する反応性保持体としては
、分散した金属塊状体を光照射により化学的又は物理的
に変化させるものであればよい。
The reactive support for dispersing and holding the metal lumps may be any material that can chemically or physically change the dispersed metal lumps by irradiation with light.

持に、再生感度を左右する金属塊状体の光吸収特性をよ
り顕著にするためには、その屈折率が1゜3以上のもの
が好ましい、具体的には、ポリメチルメタクリレート、
ABS樹脂、A S 病Un、セルロース系樹脂、ポリ
アミド、ポリカーボネート、ポリアセタール、ボリスヂ
レン、PVC,/FFMどニルー塩化ビニル共重合体、
ポリビニルブチラール、P P 081脂、ボリサルフ
1ン等の熱可塑性(ミ1指、不飽和ポリエステル、エポ
キシtf16旨、ポリブタジェン、ポリイミド等の熱硬
化性樹脂、又はアクリル酸、メタン、アセトアルデヒド
、メタノール、アセトン、アクリロニトリル等神々の官
能基を有する原料ガスを適宜配合して得たプラズマ重合
摸等を挙げることができる。
In particular, in order to make the light absorption characteristics of the metal block that influences reproduction sensitivity more remarkable, it is preferable that the metal block has a refractive index of 1°3 or more. Specifically, polymethyl methacrylate, polymethyl methacrylate,
ABS resin, ABS resin, cellulose resin, polyamide, polycarbonate, polyacetal, borisdylene, PVC, /FFM polyvinyl chloride copolymer,
Thermoplastic resins such as polyvinyl butyral, P P 081 resin, borisulfone, etc., thermosetting resins such as unsaturated polyester, epoxy TF16, polybutadiene, polyimide, or acrylic acid, methane, acetaldehyde, methanol, acetone, Examples include plasma polymerization samples obtained by appropriately blending raw material gases having divine functional groups such as acrylonitrile.

(発明の実施例〕 以下、本発明の実施例を詳細に説明する。(Example of the invention) Examples of the present invention will be described in detail below.

実施例1〜3 まず、石英バット中に芳香族グリシジルアミン(日本化
薬al商品名:GAN)を満たし、液面上にACIとA
uを交互に蒸着した後、エポキシ樹脂(シェル′珠製商
品名:エビコート1001)とポリアミド(三洋化成(
(3)製部品名:ボリマイドし−25)及び希釈剤とし
てのメチルエチルケトンとキシレンを混合して溶液を調
製した。つづいて、該溶液をガラス基板上にスピンコー
ドして硬化させ、樹脂中にAgとAuの塊状体く超微粒
子)を分散してなる記録層を有する光学式メモリ媒体を
f¥F!シた。この時、Ag及びAuの蒸着源温度、不
活性ガス圧、蒸着時間の条件を欅々変化させ、更に樹脂
組成を変化させることにより、下記表に示す超微粒子の
粒径、AgとAuの混合比、樹脂中の体積含有率及び膜
厚の異なる3flの記録層(実施例1〜3)を形成した
。なお、体積含有率は化学分析により、粒径については
蒸発粒子(クラスタ)をイオン化させ、そのマススペク
トルにより質層分析することにより夫々求めた。
Examples 1 to 3 First, a quartz vat is filled with aromatic glycidylamine (Nippon Kayaku al trade name: GAN), and ACI and A are placed on the liquid surface.
After alternately vapor-depositing epoxy resin (Shell'Tama product name: Ebicoat 1001) and polyamide (Sanyo Chemical Co., Ltd.
(3) Product name: Bolimide-25) and methyl ethyl ketone as a diluent and xylene were mixed to prepare a solution. Subsequently, the solution was spin-coated onto a glass substrate and cured, thereby producing an optical memory medium having a recording layer made of a resin containing aggregates of Ag and Au (ultrafine particles) dispersed in the resin. Shita. At this time, by carefully changing the conditions of Ag and Au vapor deposition source temperature, inert gas pressure, and vapor deposition time, and further changing the resin composition, the particle size of the ultrafine particles shown in the table below, and the mixing of Ag and Au. 3 fl recording layers (Examples 1 to 3) having different ratios, volume contents in resin, and film thicknesses were formed. The volume content was determined by chemical analysis, and the particle size was determined by ionizing evaporated particles (clusters) and performing stratigraphic analysis using their mass spectra.

次に、本実施例2の光学式メモリ媒体の特性評価につい
て第1図に示す装置を使用して詳細に説明する。
Next, characteristic evaluation of the optical memory medium of Example 2 will be described in detail using the apparatus shown in FIG.

第1図は、光学式メモリ媒体の特性を測定する(平均比
カニ1.5W、100 pulse / sec 、ビ
ーム径:3μm)、2は>(eランプ、3は分光器、4
は集束レンズ、5は光検出器を夫々示す。エキシマレー
ザとしては、波長350nmのXeFレーザと、波長3
50nmのKrFレーザを用いた。
Figure 1 measures the characteristics of an optical memory medium (average ratio 1.5 W, 100 pulses/sec, beam diameter: 3 μm), 2 > (e lamp, 3 spectrometer, 4
5 indicates a focusing lens, and 5 indicates a photodetector. Excimer lasers include XeF lasers with a wavelength of 350 nm and wavelength 3
A 50 nm KrF laser was used.

約述したXeランプ2、分光器3、集束レンズ4及び光
検出器5により検出系を構成している。なお、図中の6
はガラス基板7と、この上に形成された記録W48とか
らなる光学式メモリ媒体である。
The aforementioned Xe lamp 2, spectrometer 3, focusing lens 4, and photodetector 5 constitute a detection system. In addition, 6 in the figure
is an optical memory medium consisting of a glass substrate 7 and a recording W 48 formed thereon.

上述した構成の装置において、まず、実施例2と同様な
3個のメモリ媒体サンプル(A〜C)を用意した。つづ
いて、エキシマレーザ1にパワーを入力し、1 sec
間、サンプルAの記録層8の91に示す部分にXeFレ
ーザのみのショア1へ照射を繰返したつひきつづき、X
eランプ2、分光器3、レンズ4及び光検出器5により
構成される検出系を同第1図のPlの位置に設定し、記
Ij層8の91で示す部分に半値幅2Qnmで波長40
0〜800nmの中色光を走査して照射し、検出器5で
透過光のスペクトル強度分布を測定した。
In the apparatus configured as described above, first, three memory medium samples (A to C) similar to those in Example 2 were prepared. Next, input power to excimer laser 1 and perform 1 sec
During this period, the portion indicated by 91 of the recording layer 8 of sample A was repeatedly irradiated with the XeF laser at shore 1.
A detection system consisting of an e-lamp 2, a spectrometer 3, a lens 4, and a photodetector 5 is set at the position Pl in FIG.
It was irradiated with scanning medium color light of 0 to 800 nm, and the spectral intensity distribution of the transmitted light was measured by the detector 5.

次いで、検出系を同第1図のP2の位置に移動して記録
@8の92の部分(レーザ非照射部)に前記11色光を
走査して照射し、該部分92の透過光のスペクトル強度
分布を測定した。同様な操作をサンプルB(但し、記録
はKrFレーザのみにより行なった)、サンプルC(但
し、記録はXeFレーザとKrFレーザの両者を使用し
て行なったについて実施し、レーザ照射部の透過光のス
ペクトル強度分布を測定した。こうした測定結果によっ
て、第2図に示す実施例2の光学式メモリ媒体の透過光
スペクトル分布のプロファイルをけだ。
Next, the detection system is moved to position P2 in FIG. 1, and the 11-color light is scanned and irradiated to the 92 part (laser non-irradiated part) of Record @ 8, and the spectral intensity of the transmitted light of the part 92 is measured. The distribution was measured. Similar operations were performed on sample B (recording was performed only with a KrF laser) and sample C (recording was performed using both a XeF laser and a KrF laser), and the The spectral intensity distribution was measured. Based on these measurement results, the profile of the transmitted light spectral distribution of the optical memory medium of Example 2 shown in FIG. 2 was determined.

なお、第2図中のNはメモリ媒体の記録層にあけるレー
ザ未照罰部の透過光スペクトル分布特性線を、へはXe
Fレーザのみを照射した記録層部分の同分布特性線を、
B 1.t K r Fレーザのみを照射した記録層部
分の同分布特性線を、CはXeFレーザとKrFレーザ
の両者を照mした記録一部分の同分布特性線を夫々示す
Note that N in Figure 2 is the transmitted light spectrum distribution characteristic line of the laser-unexposed area drilled in the recording layer of the memory medium, and Xe is
The same distribution characteristic line of the recording layer portion irradiated with only the F laser is
B1. C shows the same distribution characteristic line of the recording layer portion irradiated with only the t K r F laser, and C shows the same distribution characteristic line of the recording layer portion irradiated with both the XeF laser and the KrF laser.

第2図より明らかなように、エキシマレーザの未照射部
分では、AQ塊状体のプラズマ共鳴吸収(中心波f%4
30nm)とA u IA状体のプラズマ共鳴吸収(中
心波長560nm)との吸収ピークが分担した形で検出
される。一方、XeFレーザのみを照射した部分からは
A u 159状体のプラズマ共鳴吸収のみが、KrF
レーザを照射した部分からはへq塊状体によるプラズマ
共鳴吸収のみが、更にXeFレーザとKl−Fレーザを
同時に照射した部分からはフラットな透過光スペクトル
分布が得れる。こうしたことから、AQ塊状体とALI
塊状体がレーザ照射部に混合して存仔していても、記録
用レーザを選定するとによって、AQ塊状体のみ、△U
塊状体のみ、又はAQ、Au両両法状体3通りの記録(
金攬塊状体の有効プラズマ共鳴吸収の消滅)が可能であ
り、かつ再生用光ビームの波長を選定(例えば八〇に対
応して43Q’nm、Auに対応して560nm>すれ
ば、前記3通りの記録に対応した再生が可能であること
を確認した。
As is clear from Fig. 2, in the unirradiated part of the excimer laser, plasma resonance absorption (center wave f%4
30 nm) and plasma resonance absorption of the A u IA-like body (center wavelength 560 nm) are detected in a shared manner. On the other hand, from the part irradiated only with the XeF laser, only the plasma resonance absorption of the Au 159-like body was observed, and the KrF
From the laser irradiated area, only plasma resonance absorption by the q lumps is obtained, and furthermore, from the simultaneously irradiated area with the XeF laser and the Kl-F laser, a flat transmitted light spectrum distribution is obtained. For these reasons, AQ masses and ALI
Even if agglomerates exist mixed in the laser irradiation area, depending on the recording laser selection, only AQ agglomerates or △U
Recording of 3 types of lumps only or both AQ and Au lumps (
If the wavelength of the reproducing light beam is selected (for example, 43Q'nm corresponding to 80, 560nm corresponding to Au), the above 3. We confirmed that playback compatible with street recordings is possible.

なお、実施例1.3の光学式メモリ媒体についで、第1
図図示の装置を用いて実施例2と同様な特性評価を11
なったところ、同実施例2と同様、3通りの記録・再生
を行なうことが可能であった。
Note that, following the optical memory medium of Example 1.3, the first
Characteristic evaluation similar to Example 2 was carried out using the apparatus shown in the figure.
As in the second embodiment, it was possible to perform recording and reproduction in three ways.

実施例4 本実施例4は、第3図に示す製造装置によりドライプロ
セスによって製造された光学式メモリ媒体の例である。
Example 4 Example 4 is an example of an optical memory medium manufactured by a dry process using the manufacturing apparatus shown in FIG.

第3図は、光学式メモリ媒体の製造装置を示す概略図で
ある。図中の11は放電至、121は第1のガス供給系
、122.122−は第2のガス供給系、13は排気系
、14は高周波コイル、15は高周波電源、16はAq
塊状物、16′はAU塊状物、17.17−はホロカソ
ードガン、78.18−は多孔オリフィス、1つ、1つ
−はシャッタ、20は被処理物(ガラス林板)の深持板
を夫々示す。
FIG. 3 is a schematic diagram showing an optical memory medium manufacturing apparatus. In the figure, 11 is the discharge point, 121 is the first gas supply system, 122, 122- is the second gas supply system, 13 is the exhaust system, 14 is the high frequency coil, 15 is the high frequency power supply, 16 is Aq
A lump, 16' is an AU lump, 17.17- is a hollow cathode gun, 78.18- is a porous orifice, 1, 1- is a shutter, 20 is a deep support plate for the object to be processed (glass board) are shown respectively.

次に、上述した第3図の装置を用いて光学式メモリ媒体
を製造する方法を説明する。
Next, a method for manufacturing an optical memory medium using the above-described apparatus shown in FIG. 3 will be described.

まず、保持板20にガラス基板7を固定した後、シー、
ヤッタ19.19′を閉じ、ホロカソードガン17に電
力を投入し、電子ビームをAQ塊状物16にfli射し
、第2のガス供給系122よりH2ガスを供給してAg
塊状物16表面より微細な、へり塊状体をスパッタリン
グした。つづいて、放電工11に第1のガス供給系12
1からエチレン−アクリル酸混合ガスを導入し、高周波
電源15を投入して高周波コイル14の周囲にエチレン
−アクリル酸及び既に導入したH2との混合ガスのfi
l’1を行ない、同時にへg15tl状物16例のシャ
ッタ19を開き、AQI鬼秋物16表面から発生する微
細なAQ塊状体を第2の供給系122からのH2気流と
共に基板7表面へ導き、基板7上にAQ関状休体分散し
たC、H,0を含有するプラズマ重合膜を形成した。次
いで、シャッタ19を閉じ、AQの場合と同様な操作で
Auu状物16′表面からALJ塊状体を発生させ、シ
ャッタ19′を開いてALJ111状体をガス供給系1
22−より導入されたH2ガス気流と共に基板7表面に
導入して基板7上にALJ塊状体を分散したC、H,O
を含有するプラズマ重合膜を形成した。こうしたAQ、
AUの含有プラズマ重合膜を形成操作を2回操返して八
〇及びAUの塊状体を夫々0,2VO1%、2゜3v0
1%含むプラズマ重合膜を記録層とする光学式メモリ媒
体を作製した。なお、竹記混合ガスの混合比及び敢電室
11内のガス圧力は、基板7上にプラズマ重合膜の形成
が進(テする条件に設定した。
First, after fixing the glass substrate 7 to the holding plate 20,
Close the Yatta 19 and 19', apply power to the hollow cathode gun 17, emit an electron beam to the AQ lump 16, and supply H2 gas from the second gas supply system 122 to
A fringe lump that was finer than the surface of the lump 16 was sputtered. Next, the first gas supply system 12 is connected to the discharge machine 11.
Ethylene-acrylic acid mixed gas is introduced from 1, and the high-frequency power supply 15 is turned on to generate a fi of the mixed gas of ethylene-acrylic acid and H2 that has already been introduced around the high-frequency coil 14.
l'1 is carried out, and at the same time the shutter 19 of the 16 cases of g15tl-like objects is opened, and the fine AQ lumps generated from the surface of the AQI onishi object 16 are guided to the surface of the substrate 7 along with the H2 airflow from the second supply system 122. A plasma polymerized film containing C, H, and 0 dispersed in an AQ-related suspension was formed on the substrate 7. Next, the shutter 19 is closed, ALJ lumps are generated from the surface of the Auu-like object 16' by the same operation as in the case of AQ, and the shutter 19' is opened to transfer the ALJ 111-like object to the gas supply system 1.
22- C, H, and O were introduced onto the surface of the substrate 7 together with the H2 gas flow introduced from 22- to disperse ALJ aggregates on the substrate 7.
A plasma polymerized film containing the following was formed. These AQs,
The process of forming a plasma polymerized film containing AU was repeated twice to form agglomerates of 80 and AU at 0.2VO1% and 2.3V0, respectively.
An optical memory medium was prepared in which the recording layer was a plasma polymerized film containing 1%. The mixing ratio of the mixed gas and the gas pressure in the electrolyte chamber 11 were set to such conditions that the formation of the plasma polymerized film on the substrate 7 would proceed.

しかして、本実施例4の光学式メモリ媒体について、前
述した第1図図示の測定装置を用いて実施VA2と同様
な特性評価を行なったところ、Ag及びAUに基づく3
通りの記録・再生を行なえることを確認した。
When the optical memory medium of Example 4 was evaluated in the same manner as in Example VA2 using the measuring device shown in FIG.
It was confirmed that recording and playback could be performed as required.

(発明の効果) 以上詳述した如く、本発明によればフォトンモードを利
用した記録・再生を行なうため、光ビーム照射有効体積
内(1記録ビット当りの現用有効面!A1μml)に複
数種の各Q冑なった光吸収特性を有する金属塊状体を分
散することが可能となり、ひいては高感度化と共に、記
録密度の飛躍的な向上(マルチ記録・再生)を達成しく
する光学式メモリ媒体を提供できる。
(Effects of the Invention) As detailed above, according to the present invention, in order to perform recording and reproduction using photon mode, multiple types of Provides an optical memory medium that makes it possible to disperse metal lumps with unique light absorption characteristics, thereby achieving high sensitivity and a dramatic improvement in recording density (multi-recording/playback). can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光学式メモリ媒体の特性評価に用
いた測定装置の概略図、第2図は本発明の実@例2にお
ける記録層の3通りのエキシマレ−ず照射部漫び未照射
部の透過光スベクI・ル分市を示す特性図、第3図は本
実施例4で用いた光学式メモリ媒体の製造装置を示す概
略図である。 1・・・エキシ7レーザ、2・・・Xeランプ、3・・
・分光器、5・・・光検出器、6・・・光学式メモリ媒
体、7・・・ガラス基板、8・・・記録層、11・・・
放1L12+ 、122.122−・・−ガス供給系、
15・・・高周波電源、16・・・Ag塊状物、16′
・・・Au l鬼状物、17.17′・・・ホロカソー
ドがン、19.19′・・・シャッタ。 出願人代理人 弁理士  鈴江武彦 第2図 深長(nm)
Fig. 1 is a schematic diagram of a measuring device used to evaluate the characteristics of an optical memory medium according to the present invention, and Fig. 2 shows three types of excimer irradiated and unirradiated areas of the recording layer in Example 2 of the present invention. FIG. 3 is a schematic diagram showing the optical memory medium manufacturing apparatus used in Example 4. 1... Ex7 laser, 2... Xe lamp, 3...
- Spectrometer, 5... Photodetector, 6... Optical memory medium, 7... Glass substrate, 8... Recording layer, 11...
1L12+, 122.122-...-Gas supply system,
15...High frequency power supply, 16...Ag lump, 16'
...Au l demon, 17.17'... Holo cathode gun, 19.19'... Shutter. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Depth length (nm)

Claims (3)

【特許請求の範囲】[Claims] (1)特定波長の光照射によって光吸収極大が変化し、
かつ光吸収極大を示す波長の異なる2種類以上の微細な
金属塊状体と、これら金属塊状体が分散され、特定波長
の光照射によつて該金属塊状体と反応を生じる反応性保
持体とを具備したことを特徴とする光学式メモリ媒体。
(1) The light absorption maximum changes due to light irradiation with a specific wavelength,
and two or more types of fine metal lumps having different wavelengths exhibiting maximum light absorption, and a reactive support in which these metal lumps are dispersed and which reacts with the metal lumps when irradiated with light of a specific wavelength. An optical memory medium comprising:
(2)微細な金属塊状体の反応性保持体中に占める体積
含有率が0.01〜50%の範囲であることを特徴とす
る特許請求の範囲第1項記載の光学式メモリ媒体。
(2) The optical memory medium according to claim 1, wherein the volume content of the fine metal lumps in the reactive support is in the range of 0.01 to 50%.
(3)各微細な金属塊状体の直径が10〜1000Åの
範囲であることを特徴とする特許請求の範囲第1項記載
の光学式メモリ媒体。
(3) The optical memory medium according to claim 1, wherein each fine metal lump has a diameter in the range of 10 to 1000 Å.
JP59274024A 1984-12-27 1984-12-27 Optical memory medium Pending JPS61153839A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59274024A JPS61153839A (en) 1984-12-27 1984-12-27 Optical memory medium
DE8585309448T DE3585514D1 (en) 1984-12-27 1985-12-23 OPTICAL STORAGE MEDIUM.
EP19850309448 EP0186506B1 (en) 1984-12-27 1985-12-23 Optical memory medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274024A JPS61153839A (en) 1984-12-27 1984-12-27 Optical memory medium

Publications (1)

Publication Number Publication Date
JPS61153839A true JPS61153839A (en) 1986-07-12

Family

ID=17535893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274024A Pending JPS61153839A (en) 1984-12-27 1984-12-27 Optical memory medium

Country Status (1)

Country Link
JP (1) JPS61153839A (en)

Similar Documents

Publication Publication Date Title
US4269917A (en) Data storage medium having reflective particulate silver layer
US4278756A (en) Reflective data storage medium made by silver diffusion transfer
US4278758A (en) Process for making a reflective data storage medium
US4312938A (en) Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4298684A (en) Reflective data storage medium made by silver diffusion transfer in silver-halide emulsion incorporating nuclei
US4284716A (en) Broadband reflective laser recording and data storage medium with absorptive underlayer
US4622284A (en) Process of using metal azide recording media with laser
JPS61153839A (en) Optical memory medium
US4756811A (en) Method for manufacturing bubble-mode optical recording media
US7573803B2 (en) Optical recording disc
US5424171A (en) Optical recording medium
JPS61153840A (en) Optical memory medium
EP0186506B1 (en) Optical memory medium
US20070122583A1 (en) Optical recording disc and method for manufacturing optical recording disc
US5478623A (en) Optical recording medium and method of manufacturing the same
GB2058380A (en) Process for making a reflective data storage medium
JP3280044B2 (en) Optical recording medium
JPH01271934A (en) Optical information recording medium and its production
US5439778A (en) Reflectance control method and optical recording medium having controlled reflectance
JP2003001096A (en) Method of synthesizing metal chalcogenide colloidal particles using ultrasonic wave and optical recording medium containing the particles
JPS61153843A (en) Optical information recording and reproducing device
JPS60263355A (en) Production of optical recording medium
JP2508054B2 (en) Optical recording medium manufacturing method
US20090073862A1 (en) Optical recording disc
JPS61177286A (en) Information-recording medium and production thereof