JPS6115356B2 - - Google Patents

Info

Publication number
JPS6115356B2
JPS6115356B2 JP11583779A JP11583779A JPS6115356B2 JP S6115356 B2 JPS6115356 B2 JP S6115356B2 JP 11583779 A JP11583779 A JP 11583779A JP 11583779 A JP11583779 A JP 11583779A JP S6115356 B2 JPS6115356 B2 JP S6115356B2
Authority
JP
Japan
Prior art keywords
gas
cooler
oxygen
blowing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11583779A
Other languages
Japanese (ja)
Other versions
JPS5640078A (en
Inventor
Shigeru Yamazaki
Fuja Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP11583779A priority Critical patent/JPS5640078A/en
Publication of JPS5640078A publication Critical patent/JPS5640078A/en
Publication of JPS6115356B2 publication Critical patent/JPS6115356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、間歇的に運転される製鋼設備におい
て、冶金炉から発生する排ガスの保有熱を、連続
的に一定した熱エネルギとして取り出すようにし
た冶金炉排ガス処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metallurgical furnace exhaust gas treatment device that continuously extracts heat retained in exhaust gas generated from a metallurgical furnace as constant thermal energy in steelmaking equipment that is operated intermittently. .

冶金炉から発生したガスは、第1図に示すよう
に冷却器2で冷却された後、除塵器18で除塵さ
れ、ガスホルダー14に有価ガスとして貯溜され
る。
The gas generated from the metallurgical furnace is cooled by a cooler 2 as shown in FIG.

又製鋼設備は、酸素吹込ランス7から冶金炉1
内に酸素を吹き込んで精錬し(以下吹錬とい
う)、精錬完了後吹錬を中止し、冶金炉内の溶銑
を取り出す、いわゆる非吹錬時とがある。
In addition, the steelmaking equipment is connected from the oxygen injection lance 7 to the metallurgical furnace 1.
There is a so-called non-blowing time in which oxygen is blown into the metallurgical furnace for refining (hereinafter referred to as blowing), and after the refining is completed, blowing is stopped and the molten pig iron in the metallurgical furnace is taken out.

この製鋼工程において、吹錬中は大量の高温ガ
スが冶金炉内から発生し、非吹錬中はこのガスは
発生しない。従つて、冷却器の水冷壁内を循環し
ている冷却水の温度は、吹錬中と非吹錬中とでは
変化する。
In this steelmaking process, a large amount of high-temperature gas is generated from the metallurgical furnace during blowing, and this gas is not generated during non-blowing. Therefore, the temperature of the cooling water circulating within the water-cooled wall of the cooler changes between during blowing and during non-blowing.

又、冶金炉から発生するガスの保有熱は、冷却
器内を循環している冷却水によつて回収される。
Further, the heat retained in the gas generated from the metallurgical furnace is recovered by cooling water circulating in the cooler.

このように、冷却水を介して冶金炉から発生す
るガスの保有熱を連続的に一定した熱エネルギと
して取り出す従来の技術は、冶金炉の冷却水循環
系に高温水タンクと低温水タンクとを設け、吹錬
中の高温水は高温タンクに、非吹錬中の低温水
は、低温水タンクに貯溜するようにしていた。そ
の結果熱エネルギを利用する側にとつて(以下熱
エネルギ利用設備という)必要な高温水は、吹錬
中に高温水タンクに貯溜した高温水に限られ、冶
金炉冷却水循環系全量の冷却水の保有熱を利用す
ることができなかつた。
In this way, the conventional technology for extracting the retained heat of the gas generated from the metallurgical furnace as constant thermal energy through cooling water is to install a high-temperature water tank and a low-temperature water tank in the cooling water circulation system of the metallurgical furnace. The high-temperature water during blowing was stored in a high-temperature tank, and the low-temperature water during non-blowing was stored in a low-temperature water tank. As a result, the high-temperature water required for the thermal energy user (hereinafter referred to as thermal energy utilization equipment) is limited to the high-temperature water stored in the high-temperature water tank during blowing, and the entire amount of cooling water in the metallurgical reactor cooling water circulation system. It was not possible to utilize the retained heat.

本発明は係る実情に鑑み提案されたものであ
る。即ち本発明は、吹錬中にガスホルダーに貯え
たガスを、非吹錬中酸素吹込ランスを通して、冷
却器内に入れて燃焼させ、この燃焼ガスによつて
冷却器出口冷却水温度を昇温し、熱エネルギ利用
設備が要求する温度の冷却水を、連続的に供給す
るようにしたことを特徴とする。
The present invention has been proposed in view of the actual situation. That is, in the present invention, gas stored in a gas holder during blowing is combusted by passing through an oxygen blowing lance into a cooler during non-blowing, and the temperature of the cooling water at the outlet of the cooler is raised by this combustion gas. The present invention is characterized in that cooling water at a temperature required by thermal energy utilization equipment is continuously supplied.

以下、その詳細を実施例で説明する。すでに第
1図で説明したように、冶金炉1で発生したCO
ガスは、冷却器2で冷却された後、除塵器18で
除塵され有価ガスとしてガスホルダー14に貯え
られる。
The details will be explained below using examples. As already explained in Fig. 1, the CO generated in the metallurgical furnace 1
After the gas is cooled by the cooler 2, dust is removed by the dust remover 18 and stored in the gas holder 14 as a valuable gas.

第2図は、本発明の一実施例で第1図で示した
冶金炉排ガス処理装置を冷却器の所で分割し、本
発明に関係のある部分のみを示したものである。
FIG. 2 is an embodiment of the present invention, in which the metallurgical furnace exhaust gas treatment apparatus shown in FIG. 1 is divided at the cooler, and only the parts related to the present invention are shown.

図において、冶金炉1の上方に設けた冷却器2
は、水冷壁で構成されていて、この水冷壁への冷
却水入口および出口を管路4で接続して、冷却器
2の冷却水循環回路とし、循環ポンプ3によつて
冷却水は、冷却器2の水冷壁内を循環するように
なつている。又、この冷却水循環回路の冷却器2
の出口から分岐した管路20によつて熱エネルギ
利用設備19(例えば蒸気タービン等)が接続さ
れている。図中7は冶金炉1内に酸素を吹込むた
めの酸素吹込ランス(或るいはサブランス)であ
り、この酸素吹込ランス7には、酸素供給管路2
1が接続され、ここから供給された酸素は、酸素
吹込ランス7に設けた酸素供給路を通つてその先
端から噴出する。そしてこの酸素吹込ランス7は
高温にさらされるので、水冷などの耐熱構造にな
つている。
In the figure, a cooler 2 installed above a metallurgical furnace 1
is composed of a water-cooled wall, and the cooling water inlet and outlet to this water-cooled wall are connected with a pipe 4 to form a cooling water circulation circuit for the cooler 2, and the cooling water is supplied to the cooler by a circulation pump 3. The water is circulated within the water-cooled walls of No. 2. Also, the cooler 2 of this cooling water circulation circuit
A thermal energy utilization equipment 19 (for example, a steam turbine, etc.) is connected by a conduit 20 branched from the outlet of the steam turbine. In the figure, 7 is an oxygen injection lance (or sub-lance) for blowing oxygen into the metallurgical furnace 1, and this oxygen injection lance 7 is connected to an oxygen supply pipe 2.
1 is connected, and the oxygen supplied from here passes through an oxygen supply path provided in the oxygen blowing lance 7 and blows out from its tip. Since this oxygen blowing lance 7 is exposed to high temperatures, it has a heat-resistant structure such as water cooling.

次に図中13はガスホルダー14内のガスを前
記酸素吹込ランス7を通して冷却器2内に供給す
るためのガス供給系で、ガスホルダー14(本実
施例ではガスホルダー14の入口)と、前記酸素
供給系21とを接続している。8,9は切換弁
で、吹錬中は切換弁8を開、9を閉にして酸素吹
込ランス7を通して冶金炉1内に酸素を供給する
ようにし、非吹錬中は切換弁8を閉、9を開にし
てガスホルダー14内のガスを酸素吹込ランス7
を通して冷却器2内に供給するようになつてい
る。12はガスホルダー14から冷却器2内に供
給されたガスを燃焼させるために必要な空気を供
給するための空気配管である。この空気配管12
とガス供給系13には、夫々流量調節弁10,1
1が設けられ、この流量調節弁10,11は、冷
却器2の出口冷却水出口温度及びガス温度を検出
する温度検出器5,6からの信号で作動する。
Next, 13 in the figure is a gas supply system for supplying the gas in the gas holder 14 into the cooler 2 through the oxygen blowing lance 7, which connects the gas holder 14 (in this embodiment, the inlet of the gas holder 14) and the It is connected to an oxygen supply system 21. Reference numerals 8 and 9 indicate switching valves. During blowing, switching valve 8 is opened and switching valve 9 is closed to supply oxygen into the metallurgical furnace 1 through the oxygen injection lance 7. During non-blowing, switching valve 8 is closed. , 9 is opened to supply the gas in the gas holder 14 to the oxygen blowing lance 7.
It is designed to be supplied into the cooler 2 through. Reference numeral 12 denotes an air pipe for supplying air necessary for burning the gas supplied into the cooler 2 from the gas holder 14. This air pipe 12
and the gas supply system 13 have flow rate control valves 10 and 1, respectively.
1 is provided, and these flow rate control valves 10 and 11 are operated by signals from temperature detectors 5 and 6 that detect the outlet cooling water outlet temperature and gas temperature of the cooler 2.

尚、図中15は水封弁、17は送風機、16は
煙突であつて、切換弁22を操作して冶金炉1か
ら発生するガスのCO%の低ガス及びガスホルダ
ー14から冷却器2内に供給されたガスを燃焼さ
せた燃焼ガスを放出し、冶金炉1から発生するガ
スのCO%濃度の高いガスは、切換弁22を操作
して有価ガスとしてガスホルダー14に貯えるも
のである。
In the figure, 15 is a water seal valve, 17 is a blower, and 16 is a chimney, and by operating the switching valve 22, the low CO% gas generated from the metallurgical furnace 1 and the gas holder 14 are removed from the cooler 2. The combustion gas produced by burning the gas supplied to the metallurgical furnace 1 is released, and the gas with a high CO concentration generated from the metallurgical furnace 1 is stored in the gas holder 14 as a valuable gas by operating the switching valve 22.

概略上記の如く構成された本発明の実施例にお
いて、吹錬する場合、酸素吹込ランス7を冶金炉
1内まで挿入した後、切換弁8を開、9を閉にし
て酸素供給管路21から酸素を吹き込み乍ら吹錬
する。この吹錬中は、冶金炉1から大量の高温
COガスが発生し、冷却器2の水冷壁内の冷却水
温度は昇温される。又この時のガスは有価ガスと
してガスホルダー14に貯えられる。次に吹錬が
完了した場合、酸素吹込ランス7は上方に引き上
げられて、その先端がガス冷却器2内に位置する
所で止る。この酸素吹込ランス7の引き上げ過程
で、切換弁8,9は切換り、所定の位置に酸素吹
込ランス7が引き上げられた時は、切換弁8は
閉、9は開となつている。この時、冷却器2の出
口冷却水温度が一定になるように、流量調節弁1
0,11によつて流量調節されてガスホルダー1
4のガスは、冷却器2内に供給されて燃焼する。
この燃焼ガスは、切換弁22の操作によつて煙突
16から放散される。
In the embodiment of the present invention configured as described above, when blowing, after inserting the oxygen injection lance 7 into the metallurgical furnace 1, the switching valve 8 is opened and the switching valve 9 is closed, so that the oxygen supply pipe 21 is Blow while blowing oxygen. During this blowing, a large amount of high temperature gas is generated from the metallurgical furnace 1.
CO gas is generated, and the temperature of the cooling water inside the water cooling wall of the cooler 2 is increased. Further, the gas at this time is stored in the gas holder 14 as a valuable gas. Next, when blowing is completed, the oxygen blowing lance 7 is pulled upward and stops when its tip is located inside the gas cooler 2. During the process of lifting the oxygen blowing lance 7, the switching valves 8 and 9 are switched, and when the oxygen blowing lance 7 is pulled up to a predetermined position, the switching valve 8 is closed and the switching valve 9 is opened. At this time, the flow rate control valve 1 is adjusted so that the outlet cooling water temperature of the cooler 2 is constant.
The flow rate is adjusted by 0 and 11 and the gas holder 1
The gas No. 4 is supplied into the cooler 2 and combusted.
This combustion gas is released from the chimney 16 by operating the switching valve 22.

以上詳述した通り本発明によれば、酸素吹込ラ
ンスへの酸素供給管にガスホルダー内の貯溜ガス
を供給するためのガス供給系管路を接続し、切換
弁を介して吹錬中は冶金炉内に酸素を、非吹錬中
は冷却器内にガスを、夫々酸素吹込ランスを通し
て切換供給するようにし、然かもガス供給系に流
量調節弁を設けると共に空気配管にも流量調節弁
を設けて冷却器出口の冷却水温度が一定になるよ
うにガス量を調節するようにしたので、非吹錬中
でも冷却器出口の冷却水温度を一定に調節するこ
とができ、冷却水の全量を熱エネルギ利用設備に
導いて冷却水が保有している熱エネルギの全部を
熱エネルギ利用設備に連続的に供給することがで
き、又酸素吹込ランスを通してガスホルダーのガ
スを冷却器内に供給するようにしたので、このガ
スを供給する特別な装置を必要とせず、既設の製
鋼設備にも容易に実現可能である。
As detailed above, according to the present invention, the gas supply system pipe for supplying the gas stored in the gas holder is connected to the oxygen supply pipe to the oxygen blowing lance, and the metallurgical Oxygen is supplied into the furnace, and gas is supplied into the cooler during non-blowing, respectively, through an oxygen blowing lance, and a flow rate control valve is installed in the gas supply system, as well as a flow rate control valve in the air piping. Since the amount of gas is adjusted so that the temperature of the cooling water at the outlet of the cooler remains constant, the temperature of the cooling water at the outlet of the cooler can be adjusted to a constant level even during non-blowing, and the entire amount of cooling water is heated. It is possible to continuously supply all of the thermal energy held by the cooling water to the energy utilization equipment, and also to supply the gas in the gas holder into the cooler through the oxygen blowing lance. Therefore, there is no need for a special device to supply this gas, and it can be easily implemented in existing steelmaking equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冶金炉排ガス処理装置全体を示した説
明用図、第2図は本発明の実施例で、第1図で示
した冶金炉排ガス処理装置のうち本発明に関係あ
る部分のみを取り出し、解り易く表わした図であ
る。 1……冶金炉、2……冷却器、5,6……温度
検出器、7……酸素吹込ランス、8,9……切換
弁、10,11……流量調節弁、13……ガス供
給系管路、14……ガスホルダー。
Fig. 1 is an explanatory diagram showing the entire metallurgical furnace exhaust gas treatment device, and Fig. 2 is an embodiment of the present invention, in which only the parts related to the present invention are extracted from the metallurgical furnace exhaust gas treatment device shown in Fig. 1. , which is an easy-to-understand diagram. 1...Metallurgical furnace, 2...Cooler, 5, 6...Temperature detector, 7...Oxygen injection lance, 8, 9...Switching valve, 10, 11...Flow rate control valve, 13...Gas supply System pipe, 14...gas holder.

Claims (1)

【特許請求の範囲】[Claims] 1 冶金炉から発生するガスを、冷却除塵し有価
ガスとしてガスホルダーに回収する冶金炉排ガス
処理装置において、酸素吹込ランスの酸素供給管
から分岐し、ガスホルダーに接続せるガス供給系
を設け、前記分岐点に切換弁を設けてランスへの
酸素供給とガス供給の切換えを可能にし、一方冷
却器内に燃焼用空気を供給するため空気供給系を
設け、冷却器出口の冷却水温度とガス温度によつ
て作動する流量調節弁を前記ガス供給系と空気供
給系の途中に設け、非吹錬時に前記切換弁を切換
えて、ガスホルダー内のガスを酸素吹込ランスを
通して冷却器内に供給し、冷却器内で燃焼させ、
冷却器出口冷却水温度をある一定温度に調節する
ようにした冶金炉排ガス処理装置。
1. In a metallurgical furnace exhaust gas treatment device that cools and removes dust from the gas generated from a metallurgical furnace and collects it as a valuable gas in a gas holder, a gas supply system is provided that branches off from the oxygen supply pipe of the oxygen injection lance and connects to the gas holder, and A switching valve is installed at the branch point to enable switching between the oxygen supply and gas supply to the lance, while an air supply system is installed to supply combustion air into the cooler to control the cooling water temperature and gas temperature at the cooler outlet. A flow control valve operated by the gas supply system is provided between the gas supply system and the air supply system, and the switching valve is switched during non-blowing to supply the gas in the gas holder into the cooler through the oxygen blowing lance, Burn it in a cooler,
A metallurgical furnace exhaust gas treatment device that adjusts the temperature of the cooling water at the outlet of the cooler to a certain constant temperature.
JP11583779A 1979-09-10 1979-09-10 Method of and apparatus for recovering given heat energy from exhaust gas treating device of metallurgy furnaces Granted JPS5640078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11583779A JPS5640078A (en) 1979-09-10 1979-09-10 Method of and apparatus for recovering given heat energy from exhaust gas treating device of metallurgy furnaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11583779A JPS5640078A (en) 1979-09-10 1979-09-10 Method of and apparatus for recovering given heat energy from exhaust gas treating device of metallurgy furnaces

Publications (2)

Publication Number Publication Date
JPS5640078A JPS5640078A (en) 1981-04-16
JPS6115356B2 true JPS6115356B2 (en) 1986-04-23

Family

ID=14672337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11583779A Granted JPS5640078A (en) 1979-09-10 1979-09-10 Method of and apparatus for recovering given heat energy from exhaust gas treating device of metallurgy furnaces

Country Status (1)

Country Link
JP (1) JPS5640078A (en)

Also Published As

Publication number Publication date
JPS5640078A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
JPH0547601B2 (en)
JPH06264062A (en) Operation of coke oven dry quencher
CN107366895A (en) A kind of method of quick-replaceable coke dry quenching boiler drum safety valve
JPS6115356B2 (en)
JPH0211715A (en) Method and apparatus for recovering exhaust gas in converter
JPS601362B2 (en) Method for recovering thermal energy from converter exhaust gas
US3372917A (en) Apparatus for recovery of converter off-gases
CN109971916A (en) A kind of device and method using converter waste gas preheating scrap
US3271130A (en) Method and apparatus for treating gases
JPH0559954B2 (en)
JPH10158656A (en) Dry coke quencher
KR102125365B1 (en) Hot blast stove system
US3169160A (en) Means for protecting the nose of rotary furnaces
JPH0386788A (en) Dry quenching of coke
JPS6115357B2 (en)
CN2910948Y (en) Sheath-like, water circulation chimney at converter mouth of evaporated cooling flue of steelmaking converter
JP3063520B2 (en) Coke dry fire extinguishing equipment with heating room
JPS6229824A (en) Exhaust gas processing method
KR20130117461A (en) Apparatus and method for controling negative pressure in cokes dry quenching facilities
SU877220A1 (en) Steam generator conservation method
JPS6142192B2 (en)
JPH04332302A (en) Control method for heat collecting device
JPS60251313A (en) Pulverized coal burner
JPH02151687A (en) Method and device for raising temperature of lining refractory at start-up of coke dry quenching equipment
RU2006133907A (en) METHOD FOR DIRECT Smelting and Workshop