JPS6115355B2 - - Google Patents

Info

Publication number
JPS6115355B2
JPS6115355B2 JP2794778A JP2794778A JPS6115355B2 JP S6115355 B2 JPS6115355 B2 JP S6115355B2 JP 2794778 A JP2794778 A JP 2794778A JP 2794778 A JP2794778 A JP 2794778A JP S6115355 B2 JPS6115355 B2 JP S6115355B2
Authority
JP
Japan
Prior art keywords
signal
furnace
concentration
control
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2794778A
Other languages
Japanese (ja)
Other versions
JPS54120210A (en
Inventor
Takehiro Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2794778A priority Critical patent/JPS54120210A/en
Publication of JPS54120210A publication Critical patent/JPS54120210A/en
Publication of JPS6115355B2 publication Critical patent/JPS6115355B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は陶磁器などを焼く窯業用単独炉の焼
成工程における炉内温度およびふんい気を自動的
に制御し、焼成の歩留りを向上させ、燃料消費率
を低減することを目的とした自動制御装置の改良
に関するものである。
[Detailed Description of the Invention] This invention automatically controls the temperature and air inside the furnace during the firing process of a single furnace for the ceramic industry, which is used to bake ceramics, etc., thereby improving the firing yield and reducing the fuel consumption rate. This invention relates to the improvement of automatic control equipment for the purpose of.

一般に陶磁器焼成に用いられる窯業用単独炉を
運転するには重油またはLPG(液化石油ガス)な
どを燃料とし、バーナに点火後たとえば900℃付
近まで酸化ふんい気の状態で昇温(焙り工程)
し、被温物がすす切れの状態になつたとき燃料を
過剰に送るか、または燃焼用空気を少くして還元
ふんい気にし、1200℃付近まで昇温(攻めの工
程)し、被温物の熟成を行い、つぎに中性(弱酸
化または弱還元)のふんい気で1300℃まで昇温
(ねらし工程)し、1時間ほど持続したのち消火
する焼成法がとられている。これらの工程中でも
つとも重要で、かつむづかしいのが上記還元ふん
い気の攻めの工程であり、これは陶磁器の釉薬が
溶けはじめる温度すなわち上記900℃付近(焼成
品種でそれぞれ異なる)で、炉内ガスのふんい気
を還元ふんい気たとえばCO(一酸化炭素)濃度
VOL.3.5%、H2(水素)濃度VOL.2%とかの特定
の状態に切換えるタイミングと、この還元濃度を
一定に保ちながら不完全燃焼の状態で上記のよう
に約300℃昇温する約4〜5時間(これも焼成品
により異なる)の炉内温度とふんい気制御であ
る。しかしながら従来行なわれているプログラム
方式の自動制御装置における上記還元焼成切換の
タイミングは、温度については種々工夫され適切
な制御が行なわれるようになつたが、炉内ふんい
気の自動制御すなわち上記炉内ガスをサンプリン
グし、そのCO濃度またはH2濃度を分析検出し、
希望濃度との差異によつて煙道ダンパを開閉(た
とえば濃度が低いときは煙道ダンパを開き、炉内
ドラフトを弱め、炉内に流入する燃焼用空気量を
減ずることによつて濃度を高める)する制御方法
である。これはいいかえると燃料が燃焼によつて
発生するガス成分(COまたはH2)と空気との単
なる混合比制御であり、燃料供給量が窯内温度に
よつてのみ制御される結果、上記ガス成分の絶対
量の不足を生じ、空気の供給量だけでは希望の濃
度が得られないことや、温度制御と濃度制御のタ
イミングのずれなどから上記と逆の現象すなわち
必要以上の燃料を消費することも生じる。このた
め還元焼成工程中はプログラム方式の温度と濃度
の併行自動制御装置の温度制御側を手動に切換
え、還元濃度を一定に保つための運転を行なう結
果、必要以上の燃料を消費したり、炉内温度の急
変やふんい気のバラツキなどによつて製品の歩留
りが落ちるだけでなく、燃料のムダ使いによる熱
効率の低下は製品コスト高に大きく影響し、これ
の改善が窯業界で強く要望されている現況であ
る。
To operate a single furnace for ceramics, which is generally used for firing ceramics, heavy oil or LPG (liquefied petroleum gas) is used as fuel, and after igniting the burner, the temperature is raised to around 900℃ in an oxidizing atmosphere (roasting process).
However, when the object to be heated becomes dry of soot, either send excessive fuel or reduce the amount of combustion air to create a reduction atmosphere, and raise the temperature to around 1200℃ (aggressive process). A firing method is used in which the product is aged, then heated to 1300°C in neutral (weakly oxidizing or slightly reducing) air (the simmering process), maintained for about an hour, and then extinguished. The most important and difficult of these processes is the aggressive reduction process mentioned above, which is carried out in the furnace at the temperature at which the ceramic glaze begins to melt, which is around 900℃ (varies depending on the type of firing). Reducing gaseous air such as CO (carbon monoxide) concentration
The timing of switching to a specific state such as VOL. 3.5% and H 2 (hydrogen) concentration VOL. 2%, and the timing of increasing the temperature by approximately 300°C as described above in a state of incomplete combustion while keeping this reduction concentration constant. The furnace temperature and atmosphere are controlled for 4 to 5 hours (this also varies depending on the fired product). However, in the conventional program-based automatic control device, various measures have been taken to control the timing of reduction and firing switching, and although various measures have been taken to control the temperature, automatic control of the air inside the furnace Sample the internal gas and analyze and detect its CO concentration or H2 concentration,
Opening and closing the flue damper depending on the difference from the desired concentration (for example, when the concentration is low, open the flue damper, weaken the draft in the furnace, and increase the concentration by reducing the amount of combustion air flowing into the furnace) ). In other words, this is simply a mixture ratio control of the gas component (CO or H 2 ) generated by fuel combustion and air, and as a result of the fuel supply amount being controlled only by the temperature inside the kiln, the above gas component The absolute amount of air may be insufficient, and the desired concentration may not be obtained with just the amount of air supplied, and the opposite phenomenon to the above may occur, i.e., more fuel is consumed than necessary due to a timing difference between temperature control and concentration control. arise. For this reason, during the reduction firing process, the temperature control side of the program-based temperature and concentration automatic control device is switched to manual mode to maintain the reduction concentration constant, resulting in the consumption of more fuel than necessary and Not only does the yield of products drop due to sudden changes in internal temperature or variations in air quality, but also a drop in thermal efficiency due to wasteful use of fuel has a significant impact on high product costs, and improvements to this are strongly desired in the kiln industry. This is the current situation.

この発明は以上の現況に鑑み従来のプログラム
式自動制御装置の還元焼成工程を改良し、焼成製
品の品質を左右する還元焼成工程に入つた直後か
らこの工程を通じ炉内温度と炉内ふんい気との両
方の制御偏差(目標に対する制御器出力の差)を
常に比較し、この制御偏差の大きい方の制御系
(たとえばふんい気制御系)によつて焼成燃料量
を制御するという、いわゆるオーバライド制御を
行うことによつて必要最小限の焼成燃料消費量で
還元濃度を安定化し、品質ならびに熱効率の向上
を図ろうとするものである。すなわち重油などの
燃料を燃焼せしめ陶磁器を酸化・還元および中性
を1サイクルとするプログラムで焼成する窯炉に
おいて、炉内温度を制御する燃料弁開度信号と炉
内ふんい気を制御する煙道ダンパ開度信号とを必
要燃焼用燃料供給量に変換比較し、この供給量の
多い方の信号を選択し、切換え的に燃料弁開度を
制御する手段と、前記煙道ダンパ開度信号が燃料
弁開度を制御するときはこの制御による炉内温度
の上昇に合わせ前記炉内温度の昇温プログラムを
連続的に修正する手段と、を設け、前記還元焼成
中の炉内ふんい気のガス濃度を還元濃度に制御す
るよう構成してなる陶磁器焼成炉の自動制御装置
にかかるものである。
In view of the above-mentioned current situation, this invention improves the reduction firing process of the conventional program-type automatic control device. The so-called override method constantly compares the control deviation (difference in controller output with respect to the target) between the Through control, the reduction concentration is stabilized with the minimum amount of burning fuel consumed, and the quality and thermal efficiency are improved. In other words, in a kiln that burns fuel such as heavy oil and fires ceramics using a program that includes oxidation, reduction, and neutralization in one cycle, the fuel valve opening signal that controls the temperature inside the furnace and the smoke that controls the atmosphere inside the furnace are used. means for converting and comparing the flue damper opening signal into a required combustion fuel supply amount, selecting the signal with the larger supply amount, and selectively controlling the fuel valve opening; and the flue damper opening signal. means for continuously modifying the temperature increase program for the furnace temperature in accordance with the rise in furnace temperature caused by this control when controlling the fuel valve opening, and This invention relates to an automatic control device for a ceramic firing furnace configured to control the gas concentration to a reducing concentration.

以下図面によつて詳説する。第1図は燃料とし
てLPGを使用したこの考案の一実施例装置のブロ
ツク図で、LPGボンベより液化ガス気化器で気化
され、このLPガスは1のガス圧調整器で減圧さ
れ一定圧で、2のガス量自動調節弁およびストツ
プバルブ3を至てバーナ4に導かれ燃焼する。焼
成品を台車に積んで窯炉内に入れ、扉を閉めると
燃焼用空気は煙道のドラフトによりバーナ4の周
囲から供給される。ドラフトは煙道の側面の窓を
ダンパ自動操作器7で開閉されるダンパー6で制
御されるが、尚ドラフトを自由に設定しかつ安定
化するため強制排風機5を併用する。この窯炉の
温度制御系は通常熱電対8を検出端とし、9の炉
内温度調節器に検出信号Tiとして入力し9の調
節器はその信号Tiと温度プログラム設定器10
の設定信号Tsとを比較し、制御偏差信号Saを高
信号選択器11(これの動作は後述する)を経て
信号SCを電空変換器12に送る。ここで電気信
号Scが空気信号Atとなりガスしや断弁13など
を至て前記ガス量自動調節弁2を制御する。つぎ
にふんい気制御系はまず炉内ふんい気ガスをガス
抽出端14にて抽出し、ガス冷却装置を経由して
CO濃度調節器15に検出信号Ciとして入力し1
5の調節器はその信号CiとCO濃度プログラム設
定器16の設定信号Csとを比較し、制御偏差信
号Sdを電空変換器17に送り、17は空気信号
Acを前記ダンパ自動操作器7を制御する。5の
強制排風機はドラフトを任意に調整し安定させる
ため併用するものである。つぎにふんい気切換器
18について説明する。一般に陶磁器の焼成曲線
は第2図に示す通り、酸化、還元、中性のふんい
気の切換が必要であり、この切換えを自動的に行
うためふんい気切換器18は任意の設定電圧を内
蔵してこれに対する入力信号Tiの電圧がそれに
達すればつぎの各信号を出力するもので、Siは温
度プログラム設定器10への信号で入力信号Ti
が第2図T0,T1,T2,T3,T4温度のときそれぞ
れ発信し、昇温率を変更させる。S2はCO濃度プ
ログラム設定器16への信号で同じくTiが第2
図T1,T2,T3,T4のとき発信し、ダンパー開度
プログラムを変更させる。ふんい気切換器18の
S1,S2の出力信号によつて作動する温度・CO濃
度のそれぞれのプログラム設定器10,16は一
種のタイマで、設定時間中任意のパルス信号
Ts,Csをそれぞれの調節器9,15のパルスモ
ータへ送り、その調節設定値をプログラムに従つ
て変化させるものである。以上の構成と作動が従
来のプログラム式自動制御装置の基本的なもので
あり、第1図の2ガス量自動調節弁の開度Vは前
述のとおり、温度制御系だけで作動し、第2図の
V曲線のようになり、一方煙道ダンパー6の開度
Dもふんい気制御系だけで作動し、第2図D曲線
を示す。この従来装置においては焼成品の種別、
形状、または窯詰状態など数々の原因によつて煙
道ダンパーの開度Dだけでは第2図のCO濃度特
性Cのように還元に入つたH1時点からH2までの
ΔH1間のような緩漫な立上りを生ずることもあ
り、これでは所要還元濃度の不足となり、焼成品
を完全に還元し得ない。この欠点を改善するのが
この発明の目的であり、第2図に示すブロツク1
9,20,21,22がこの発明の一実施例装置
の特徴を示す構成であり、19はバランスアンプ
で20のモニタスイツチの出力信号にてON・
OFFし、ONのときは2つの入力信号の何れか1
方を基準値とし、他の信号をその基準値に等しく
なる補正値を出力するいわゆる調節器のような機
能を有するもの、20は数個の入力信号を常時監
視し、それらの信号が特定の条件になつたとき上
記19に出力信号を速るモニタスイツチ、21は
信号演算器で入力信号(たとえば4〜
20mADC)を比率・特性またはバイアス値など
を変換して出力するもの、22は信号制限器であ
る設定電圧以下の入力信号はそのまま出力し、そ
れ以上の入力信号は設定電圧を出力電圧とするも
のである。つぎにこの実施例装置の作動を第1、
第2図によつて説明する。第2図の酸化焼成制御
中は第1図のブロツク18が信号S3をモニタスイ
ツチ20に送り、その機能を停止するとともに信
号演算器21にもその出力信号Sb′がほぼ零とな
るように作動する。また還元焼成制御中において
もCO濃度Ciが所定濃度Csで安定しているとき
(第2図のC特性のH2以後のように)は信号制限
器22の出力信号Sdと炉内温度調節器9の出力
信号Saとの関係はSd<Saになるようにしてあり
モニタスイツチ20およびバランスアンプ19は
共に信号を出力しない。したがつて従来のプログ
ラム制御と同様炉内温度調節器9の制御偏差信号
SaはそのままScとなりガス量調節弁2を制御
し、一方ダンパ操作器7もその制御偏差信号Sd
により制御され、それぞれ独自の制御系を構成す
る。しかしここで第2図のΔH1の時間のように
CO濃度Cの立上りが悪い場合や還元焼成中に燃
焼燃料量が異常に減少した場合にはCO濃度検出
器14の検出信号Ciが調節器15の設定値信号
Csより小さくなり、その制御偏差信号Sdが次第
に大きくなると、信号演算器21は出力信号
Sb′を制限器22が制限するまでその出力信号Sb
を高信号選択器11に入力する。11はその2つ
の入力信号SaとSbを比較し、何れか高い方の信
号を出力するもので、Sb>Saとなればその出力
信号ScはSbとなり、ガス量調節弁2はも早や炉
内温度によらず炉内CO濃度によつて制御される
こととなる。これがこの発明の要点の第一であ
り、また上記モニタスイツチ20がSb>Saの条
件によつて作動し、その出力信号Smをバランス
アンプ19に送りこの19は上記したようにその
入力信号TiとTsとの差を補正する信号S4=Ti−
Tsをブロツク10に発信し、ブロツク10はこ
のS4によつてその出力信号をTs′とし、調節器9
に送るとともにバランスアンプ19にフイードバ
ツクするという一連の制御作動がこの発明の第二
の要件である。なおこの制御作動時においてもふ
んい気制御系は上記のようにもとのままCO濃度
調節器15によつて制御されているということは
いうまでない。以上のオーバライド制御によつて
炉内ふんい気と炉内温度がどのように制御される
かを第2図で説明する。まずガス弁開度Vが
V′のように大となり、CO濃度Cは燃焼燃料量の
増加に比例してC′のように急速に希望濃度に達
する。また炉内温度Tも上記のように燃料の増加
に従つて上昇しT′のような昇温率になるが前述
のように温度プログラム設定器10がこの昇温率
に追随してTs′の信号を出し、調節器9はT′の温
度勾配で制御をつづける。このオーバライド制御
がΔH1間行なわれた後H2時点で希望濃度に達す
るCi≒Csとなりその制御偏差信号Sdが減少する
と、モニタスイツチ20への2つの信号SbとSa
の関係が元のSa<Sbとなりモニタスイツチ20
からの信号Smが停止し、バランスアンプ19も
OFFとなり、通常の還元焼成制御に復帰する。
しかし炉内温度プログラムは第2図のT″のよう
にH2時点から元のTと平行移動した特性とな
り、中性焼成に切換える温度T3がH3よりΔH3
りΔH3速くH3′で得られる。また信号制限器22
は信号Sbが異常に増大し、ガス弁2の開度を必
要以上に大きくし、燃料のムダだきと、還元焼成
中の急激な焼成温度上昇を防止する役目を持ち、
前述したように信号Sb′を適切に制限し、信号Sb
とする。
This will be explained in detail below with reference to the drawings. Figure 1 is a block diagram of an embodiment of this invention using LPG as fuel.The LPG cylinder is vaporized by a liquefied gas vaporizer, and this LP gas is depressurized by a gas pressure regulator (1) to maintain a constant pressure. The gas is introduced into a burner 4 through an automatic gas amount control valve 2 and a stop valve 3, where it is combusted. When the fired products are loaded onto a trolley and put into the kiln, and the door is closed, combustion air is supplied from around the burner 4 by the draft of the flue. The draft is controlled by a damper 6 that opens and closes a window on the side of the flue using an automatic damper operator 7, but a forced exhaust fan 5 is also used to freely set and stabilize the draft. The temperature control system of this furnace usually uses a thermocouple 8 as the detection end, and inputs the detection signal Ti to the furnace temperature regulator 9, and the regulator 9 uses the signal Ti and the temperature program setting device 10.
The control deviation signal Sa is sent to the electro-pneumatic converter 12 via the high signal selector 11 (the operation of which will be described later). Here, the electrical signal Sc becomes the air signal At, which controls the gas flow valve 13 and the like to control the gas amount automatic control valve 2. Next, the air control system first extracts the air in the furnace at the gas extraction end 14 and passes it through the gas cooling device.
Input the detection signal Ci to the CO concentration regulator 15.
The controller 5 compares the signal Ci with the setting signal Cs of the CO concentration program setting device 16, and sends the control deviation signal Sd to the electro-pneumatic converter 17.
AC controls the damper automatic operating device 7. The forced exhaust fan No. 5 is used in combination to arbitrarily adjust and stabilize the draft. Next, the air exchanger 18 will be explained. Generally, the firing curve for ceramics requires switching between oxidizing, reducing, and neutral air, as shown in Figure 2. In order to automatically perform this switching, the air air switch 18 can be set to any set voltage. When the voltage of the input signal Ti reaches the built-in voltage, the following signals are output.
When the temperature is T 0 , T 1 , T 2 , T 3 , and T 4 in Figure 2, each signal is transmitted and the temperature increase rate is changed. S 2 is a signal to the CO concentration program setting device 16, and Ti is the second signal.
It is transmitted at times T 1 , T 2 , T 3 , and T 4 in the diagram to change the damper opening program. Air changer 18
The temperature and CO concentration program setters 10 and 16, which are activated by the output signals of S 1 and S 2 , are a type of timer, and are activated by any pulse signal during the set time.
Ts and Cs are sent to the pulse motors of the respective regulators 9 and 15, and the adjustment set values are changed according to the program. The above configuration and operation are the basics of the conventional program-type automatic control device.As mentioned above, the opening degree V of the two gas amount automatic control valves in Fig. On the other hand, the opening degree D of the flue damper 6 is operated only by the air control system, and shows the D curve in FIG. 2. In this conventional device, the type of fired product,
Depending on a number of factors such as the shape and the condition of the kiln, the opening degree D of the flue damper alone will cause the difference between ΔH 1 from the time H 1 when reduction begins to H 2 , as shown in the CO concentration characteristic C in Figure 2. A slow rise may occur, which results in a lack of the required reduction concentration, making it impossible to completely reduce the fired product. The purpose of this invention is to improve this drawback, and the block 1 shown in FIG.
Reference numerals 9, 20, 21, and 22 are configurations showing the characteristics of an embodiment of the device of the present invention, and 19 is a balanced amplifier that is turned on and off by the output signal of the monitor switch 20.
When it is OFF, when it is ON, it is either one of the two input signals.
20 has a function similar to a so-called regulator that outputs a correction value that makes one signal equal to the reference value and other signals equal to that reference value. The monitor switch 19 speeds up the output signal when a condition is met, and the signal calculator 21 speeds up the input signal (for example, 4 to 4).
20mADC) converts the ratio, characteristics or bias value, etc. and outputs it. 22 is a signal limiter. Input signals below the set voltage are output as they are, and input signals above that are set to the set voltage as the output voltage. It is. Next, the operation of this embodiment device will be explained first.
This will be explained with reference to FIG. During the oxidation firing control shown in FIG. 2, the block 18 shown in FIG. Operate. Also, even during reduction firing control, when the CO concentration Ci is stable at the predetermined concentration Cs (as after H 2 of the C characteristic in Fig. 2), the output signal Sd of the signal limiter 22 and the furnace temperature regulator The relationship between the output signal Sa of the output signal 9 and the output signal Sa is such that Sd<Sa, and neither the monitor switch 20 nor the balance amplifier 19 outputs a signal. Therefore, as with conventional program control, the control deviation signal of the furnace temperature controller 9
Sa remains as Sc and controls the gas amount control valve 2, while the damper operating device 7 also receives its control deviation signal Sd.
Each of them has its own control system. However, like the time of ΔH 1 in Figure 2,
If the CO concentration C rises poorly or the amount of combustion fuel decreases abnormally during reduction firing, the detection signal Ci of the CO concentration detector 14 becomes the set value signal of the regulator 15.
When the control deviation signal Sd becomes smaller than Cs and gradually becomes larger, the signal calculator 21 outputs an output signal.
The output signal Sb until the limiter 22 limits Sb'
is input to the high signal selector 11. 11 compares the two input signals Sa and Sb and outputs the higher signal. If Sb>Sa, the output signal Sc becomes Sb, and the gas flow control valve 2 immediately closes the furnace. It is controlled by the CO concentration in the furnace, regardless of the internal temperature. This is the first point of this invention, and the monitor switch 20 operates under the condition of Sb>Sa, and sends its output signal Sm to the balance amplifier 19, which, as described above, receives the input signal Ti. Signal S 4 to correct the difference from Ts = Ti−
Ts is transmitted to the block 10, which uses this S4 to set its output signal as Ts', and the regulator 9
The second requirement of the present invention is a series of control operations in which the signal is sent to the balance amplifier 19 and fed back to the balance amplifier 19. It goes without saying that even during this control operation, the air control system is still controlled by the CO concentration regulator 15 as described above. How the in-furnace air and the in-furnace temperature are controlled by the above-mentioned override control will be explained with reference to FIG. 2. First, the gas valve opening degree V
The CO concentration C rapidly reaches the desired concentration as C' in proportion to the increase in the amount of combustion fuel. Furthermore, as mentioned above, the temperature T in the furnace increases as the fuel increases, reaching a temperature rise rate of T', but as mentioned above, the temperature program setting device 10 follows this temperature rise rate and maintains Ts'. A signal is issued, and the regulator 9 continues to control with a temperature gradient of T'. After this override control is carried out for ΔH 1 , at time H 2 the desired concentration is reached, Ci≈Cs, and the control deviation signal Sd decreases, and the two signals Sb and Sa to the monitor switch 20 are
The relationship becomes the original Sa<Sb, and the monitor switch 20
The signal Sm from is stopped, and the balance amplifier 19 also stops.
It turns OFF and returns to normal reduction firing control.
However, the furnace temperature program has a characteristic that moves parallel to the original T from the H2 point, as shown by T'' in Figure 2, and the temperature T3 at which switching to neutral firing is H3 is faster than H3 by ΔH3 . Also, the signal limiter 22
When the signal Sb increases abnormally, the opening degree of the gas valve 2 is made larger than necessary, which serves to prevent wasted fuel and a sudden rise in firing temperature during reduction firing.
As mentioned above, by appropriately limiting the signal Sb′, the signal Sb
shall be.

以上がこの発明の一実施例装置の構成と作動で
あるが、今一つの別の実施例装置を第3図で説明
する。23は煙道ダンパ開度設定器で予め設定さ
れる値で時間毎に段階的にダンパの開度の変化さ
せるタイマであり、その他すべて第1図と同符号
の各機器で構成される。この装置の作動は15の
CO濃度調節器の連続操作でダンパの開度は制御
せず18のふんい気切換器の信号S5で上記23の
設定器がスタートし、上記のように段階的に(ま
たは連続的に)ダンパ開度を設定していくのであ
り、その基本プログラムは第2図に示すD特性と
類似である。一方この装置のガス弁2の制御系は
常に温度とふんい気のオーバライド制御によつて
行なように構成されいるが前述の説明のとおり重
要な工程である還元焼成中ふんい気制御が主とな
ることは同様である。なお第1図と異なる点は1
5のCO濃度調節器の制御偏差信号を第1図の2
1信号演算器および22の信号制限器を介せず直
接Sa信号と同特性のガス弁2を制御しうるSb信
号としている点であるが、この場合調節器9,1
5にはそれぞれの出力信号が過大となり、燃料の
ムダだきを防止する信号制限機能は付加してい
る。前述の実施例と比較して、信号演算器が不要
となり廉価に製作できる装置であるとともにこの
発明の要旨に即応した装置といえるものである。
この発明は以上のように構成されているので従来
の陶磁器焼成炉のプログラム式自動制御装置のふ
んい気制御が単に煙道ダンパ開閉によつてガス成
分と空気との混合比制御に偏よつており、そのた
め還元焼成制御時、炉内ふんい気のCO濃度を希
望濃度にするのに時間がかかつたり、また異常に
濃度不足を生じ、これが原因で焼成品の歩留りを
低下したり、またそれを防止するため一時手動制
御に切換え燃料を必要以上に消費したりする欠点
を解消し、全自動制御によつて還元焼成ふんい気
を安定させ、製品の品質を向上させ、一方、炉内
温度の急上昇を抑えながら、必要最小限の燃料消
費量で燃焼制御ができかつ還元焼成プログラムが
短縮しうるので熱効率が向上しうる効果が奏する
装置となる。
The structure and operation of one embodiment of the device of the present invention have been described above, and another embodiment of the device will be explained with reference to FIG. Reference numeral 23 denotes a timer that changes the damper opening degree step by step at each time with a value preset by the flue damper opening degree setting device, and all other devices are configured with the same symbols as in FIG. 1. The operation of this device is 15
The damper opening degree is not controlled by continuous operation of the CO concentration regulator, but the setting device 23 starts with the signal S 5 of the air switch 18, and the setting device 23 starts as shown above in stages (or continuously). The damper opening degree is set, and its basic program is similar to the D characteristic shown in FIG. On the other hand, the control system for the gas valve 2 of this device is configured to always perform override control of temperature and air, but as explained above, air control is mainly performed during reduction firing, which is an important process. The same thing applies. The difference from Figure 1 is 1.
The control deviation signal of the CO concentration regulator in step 5 is shown in step 2 in Figure 1.
The point is that the Sb signal is used to directly control the gas valve 2 with the same characteristics as the Sa signal without going through the signal calculator 1 and the signal limiter 22. In this case, the controllers 9 and 1
5 is equipped with a signal limiting function to prevent excessive output signals and to prevent fuel wastage. Compared to the above-mentioned embodiments, this device does not require a signal calculator and can be manufactured at low cost, and can be said to be a device that readily meets the gist of the present invention.
Since the present invention is constructed as described above, the air flow control of the conventional program-type automatic control device of the ceramic firing furnace is biased to the control of the mixture ratio of gas components and air simply by opening and closing the flue damper. Therefore, during reduction firing control, it takes time to bring the CO concentration in the furnace air to the desired concentration, and abnormally low concentrations occur, which reduces the yield of fired products. To prevent this, we temporarily switched to manual control to eliminate the disadvantage of consuming more fuel than necessary, and fully automatic control stabilized the reduction firing atmosphere and improved product quality. This device can control combustion with the minimum amount of fuel consumed while suppressing a sudden rise in temperature, and can shorten the reduction firing program, resulting in an apparatus that can improve thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成ブロツク
図、第2図は陶磁器焼成の基本プログラムとこの
発明の装置による効果を説明する図、第3図はこ
の発明の別の実施例装置の構成ブロツク図であ
る。 2……ガス量自動制御弁、4……バーナ、5…
…強制排風機、6……煙道ダンパ、7……煙道ダ
ンパ操作部、8……炉内温度検出端(熱電対)、
14……炉内ガス抽出端(ガスサンプリングプロ
ーブ)、Ti……炉内温度検出値、(被制御値)、Ts
……温設定値、Ci……炉内CO濃度検出値、Cs…
…CO濃度設定値、Sa′……温度制御偏差値、Sd
……CO濃度制御偏差値、Sb……上記Sd信号をガ
ス弁2の制御偏差値に変換したもの、Sm……モ
ニタスイツチの出力信号、S4……TiとTsとの差
に相当する信号、Ts′……修正された温度設定
値、ΔH1……還元焼成切換直後のCO濃度不足期
間、ΔH3……還元焼成時間の短縮時間、C′,
V′,T′……オーバライド制御時のCO濃度・ガス
弁開度・炉内温度のそれぞれの特性曲線。
Fig. 1 is a block diagram of the configuration of one embodiment of this invention, Fig. 2 is a diagram explaining the basic program for firing ceramics and the effects of the device of this invention, and Fig. 3 is the configuration of another embodiment of the device of this invention. It is a block diagram. 2... Gas amount automatic control valve, 4... Burner, 5...
... Forced ventilation fan, 6... Flue damper, 7... Flue damper operating section, 8... Furnace temperature detection end (thermocouple),
14...Furnace gas extraction end (gas sampling probe), Ti...Furnace temperature detection value, (controlled value), Ts
...Temperature setting value, Ci...Furnace CO concentration detection value, Cs...
...CO concentration set value, Sa'...Temperature control deviation value, Sd
...CO concentration control deviation value, Sb...The above Sd signal converted to the control deviation value of gas valve 2, Sm...Monitor switch output signal, S4 ...Signal corresponding to the difference between Ti and Ts , Ts'... Revised temperature setting value, ΔH 1 ... CO concentration shortage period immediately after switching to reduction firing, ΔH 3 ... Shortening time of reduction firing time, C',
V', T'...Characteristic curves of CO concentration, gas valve opening, and furnace temperature during override control.

Claims (1)

【特許請求の範囲】[Claims] 1 重油などの燃料を燃焼せしめ陶磁器を酸化・
還元および中性を1サイクルとするプログラムで
焼成する窯炉において、炉内温度を制御する燃料
弁開度信号と炉内ふんい気を制御する煙道ダンパ
開度信号とを必要燃焼用燃料供給量に変換比較
し、この供給量の多い方の信号を選択し、切換え
的に燃料弁開度を制御する手段と、前記煙道ダン
パ開度信号が燃料弁開度を制御するときはこの制
御による炉内温度の上昇に合わせ前記炉内温度の
昇温プログラムを連続的に修正する手段と、を設
け、前記還元焼成中のふんい気のガス濃度を還元
濃度に制御するよう構成してなる陶磁器焼成炉の
自動制御装置。
1 Burning fuel such as heavy oil to oxidize and oxidize ceramics.
In a kiln that fires with a program that has one cycle of reduction and neutralization, the fuel valve opening signal that controls the temperature inside the furnace and the flue damper opening signal that controls the air inside the furnace are necessary for supplying fuel for combustion. a means for converting and comparing the signals into supply amounts, selecting the signal with a larger supply amount, and selectively controlling the fuel valve opening; and when the flue damper opening signal controls the fuel valve opening; means for continuously modifying the heating program for the temperature inside the furnace in accordance with the rise in temperature inside the furnace due to the increase in the temperature inside the furnace, and the gas concentration of the air during the reduction firing is controlled to the reduction concentration. Automatic control device for ceramic firing furnace.
JP2794778A 1978-03-10 1978-03-10 Automatic control device of pottery baking oven Granted JPS54120210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2794778A JPS54120210A (en) 1978-03-10 1978-03-10 Automatic control device of pottery baking oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2794778A JPS54120210A (en) 1978-03-10 1978-03-10 Automatic control device of pottery baking oven

Publications (2)

Publication Number Publication Date
JPS54120210A JPS54120210A (en) 1979-09-18
JPS6115355B2 true JPS6115355B2 (en) 1986-04-23

Family

ID=12235078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2794778A Granted JPS54120210A (en) 1978-03-10 1978-03-10 Automatic control device of pottery baking oven

Country Status (1)

Country Link
JP (1) JPS54120210A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791115B2 (en) * 1988-12-28 1995-10-04 財団法人国際超電導産業技術研究センター Oxide superconductor firing equipment

Also Published As

Publication number Publication date
JPS54120210A (en) 1979-09-18

Similar Documents

Publication Publication Date Title
US3602487A (en) Blast furnace stove control
CN101270880B (en) Air-fuel ratio control system of combustion heating furnace
US20130304263A1 (en) Method and apparatus for controlling a furnace pressure of a continuous annealing furnace
CN106196052A (en) Intelligent pulse combustion system
RU2020106916A (en) FURNACE SYSTEM AND METHOD OF FURNACE OPERATION
JPS6115355B2 (en)
KR200301073Y1 (en) Apparatus for controlling burner
US4108594A (en) Method for fuel/air feed pressure control by stack temperature
JPS6117359Y2 (en)
JPH06174381A (en) Controlling equipment of atmosphere of furnace
SU673831A1 (en) Method of controlling roasting process
JPH07103461A (en) Air ratio regulating method for furnace employing heat accumulation type burner
KR101070065B1 (en) Hot stove combustion control apparatus capable of controlling carbon dioxide
SU1286616A1 (en) Method of automatic control of process of coke burning out in tube pyrolysis furnaces
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace
JPS5828922A (en) Controlling device of combustion apparatus
EP4137745A1 (en) Method for operating a heater, computer program, storage medium, regulation and control device, heater and use of a signal
SU1121545A1 (en) Method of controlling fuel supply to heating furnace
Voicu et al. Digital Control Systems for Thermal Regimes in Industrial Furnaces.
SU1168542A1 (en) Method of automatic control for roasting process in fluidized bed furnace
JPH07247157A (en) Method for controlling combustion of baking furnace for ceramic art
NO20211587A1 (en) A chimney control assembly for optimizing the combustion process in a fuel burning heating device and a method for optimizing the combustion process in a fuel burning heating device
SU897836A1 (en) Method of automatic control of coke burn out in tubular pyrolysis furnace
JP4802383B2 (en) Method for controlling generation of high temperature, low calorie fuel gas
SU1200109A1 (en) Method of regulating furnace temperature