JPS61153552A - Automatic x-ray diffraction device - Google Patents

Automatic x-ray diffraction device

Info

Publication number
JPS61153552A
JPS61153552A JP59277329A JP27732984A JPS61153552A JP S61153552 A JPS61153552 A JP S61153552A JP 59277329 A JP59277329 A JP 59277329A JP 27732984 A JP27732984 A JP 27732984A JP S61153552 A JPS61153552 A JP S61153552A
Authority
JP
Japan
Prior art keywords
sample
ray beam
semiconductor
ray
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59277329A
Other languages
Japanese (ja)
Inventor
Yasubumi Kameshima
亀島 泰文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59277329A priority Critical patent/JPS61153552A/en
Publication of JPS61153552A publication Critical patent/JPS61153552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make possible automatic adjustment by applying a DC voltage between two electrodes on the diagonal lines of two square semiconductor plates disposed in a measuring sample position and X-ray detector position to form a Wheatstone bridge and using the current flowing between the electrodes on the other diagonal lines as a control signal for a driving device. CONSTITUTION:The square semiconductor 22 is attached, perpendicularly to an X-ray beam, to a supporting part 13 of a head of a goniometer 11. The X-ray beam is irradiated to the plate 22 and a DC voltage 27 is impressed to lead wires 23, 25. A sample stage 17 is moved in directions x, z by the driving device 18 so as to minimize the current flowing in the lead wires 24, 26. The X-ray beam is thereby positioned to the center of the plate 22 and thereafter the plate 22 is removed and a sample crystal is attached to the same position. The semiconductor plate 28 is attached to a supporting part 20 of a detector stage 19 and is irradiated with the X-ray beam emitted from the sample. The stage 19 is moved in the directions x', z' so as to minimize the current flowing in the lead wires 30, 32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は手動によるX線ビーム調整を排除したX線回折
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray diffraction apparatus that eliminates manual X-ray beam adjustment.

〔従来技術とその問題点〕[Prior art and its problems]

X線回折装置は結晶評価の手段として非常に重要なもの
である。例えば、半導体産業に利用される種々の結晶の
評価において、その格子定数、格子欠陥分布等がX線ロ
ッキングカーブ、X線トポグラフで測定されている。
X-ray diffractometers are very important as a means of crystal evaluation. For example, in evaluating various crystals used in the semiconductor industry, their lattice constants, lattice defect distributions, etc. are measured using X-ray rocking curves and X-ray topography.

X線装置を取り扱う上でX線ビームを意図する回折角で
正確に試料へ入射させる事、及び試料から出射したX線
を正確に検知器あるいは乾板へ導く事が極めて重要であ
る。従来、この調整は作業者の経験に基づいて手動で行
われている0周知の如く、X線被爆は健康上極めて有害
な影響をもたらし、特に長期間の累積被爆は生命の危険
さえもありうる。このため作業者は常に細心の注意を払
って装置の調整を行うが、意図しない方向からの散乱1
反射による被爆は避けがたく、特にX線が可視でない事
からくる危険性は大きい。
When handling an X-ray device, it is extremely important to make the X-ray beam accurately enter the sample at an intended diffraction angle, and to accurately guide the X-rays emitted from the sample to a detector or dry plate. Traditionally, this adjustment has been done manually based on the operator's experience.As is well known, exposure to X-rays has extremely harmful effects on health, and cumulative exposure over a long period of time can even be life-threatening. . For this reason, workers always pay close attention to adjusting the equipment, but scattering from unintended directions 1
Exposure due to reflection is unavoidable, and there is a particular danger from the fact that X-rays are not visible.

このような危険性を避けるため、微小の位置変動を検出
できる検知器を多数並置して位置調整を容易にしたもの
があるが装置自体が高価であるという問題がある。
In order to avoid such a risk, there is a system in which a large number of detectors capable of detecting minute positional changes are arranged side by side to facilitate position adjustment, but there is a problem that the system itself is expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような従来の欠点を除去せしめて
、自動調整が可能なX線回折装置を提供することにある
An object of the present invention is to eliminate such conventional drawbacks and provide an X-ray diffraction apparatus that can be automatically adjusted.

〔発明の構成〕[Structure of the invention]

本発明の自動X線回折装置は、X線源と、このX線源よ
り出射されたX線を照射する測定試料を支持するゴニオ
メータと、前記測定試料を経たX線を検知する手段と、
4つの隅にオーミック電極が設けられ、前記測定試料の
位置および前記検知手段の位置にそれぞれ着脱可能な正
方形状の第1および第2の半導体板とを備え、前記半導
体板の対角線上で対向する2つの前記オーミー/り電極
の間に直流電圧を加えてホイートストンブリッジを形成
し、X線が入射しているときに残りの2つの前記オーミ
ック電極間に流れる電流を、前記ゴニオメータの駆動装
置およびまたは前記検知手段の駆動装置の制御信号とし
て、少なくとも前記測定試料の位置、前記測定試料の傾
きおよび前記検知手段の位置を自動調整することを特徴
としている。
The automatic X-ray diffraction apparatus of the present invention includes an X-ray source, a goniometer that supports a measurement sample that is irradiated with X-rays emitted from the X-ray source, and means for detecting the X-rays that have passed through the measurement sample.
Ohmic electrodes are provided at four corners, and square-shaped first and second semiconductor plates, which are removable at the position of the measurement sample and the position of the detection means, respectively, are provided and are opposite to each other on a diagonal line of the semiconductor plate. A Wheatstone bridge is formed by applying a DC voltage between the two ohmic electrodes, and when X-rays are incident, a current flowing between the remaining two ohmic electrodes is applied to the drive device of the goniometer and/or The present invention is characterized in that at least the position of the measurement sample, the inclination of the measurement sample, and the position of the detection unit are automatically adjusted as control signals for the drive device of the detection unit.

〔発明の作用・原理〕[Function/principle of the invention]

本発明は、半導体の内部光電効果を利用するものである
。第2図に示すように正方形状の半導体板lの4つの隅
にオーミック電極2,3.4.5を設け、対角線上にお
いて対向する2個の電極2と4との間には定直流電圧源
6を接続し、対向する他の2個の電極3と5との間に高
精度の電流計7を接続する。第3図には、その電気的な
等価回路を示す。半導体板1が精度よく均一な抵抗体で
ある限り、半導体板1は第3図に示すように4(固の抵
抗R,,R2,R3,R4がブリフジ状に接続された抵
抗回路とみなすことができ、したがってこれら抵抗と定
電圧源6と電流計7とによりホイートストンブリッジが
構成される。
The present invention utilizes the internal photoelectric effect of semiconductors. As shown in Figure 2, ohmic electrodes 2, 3, 4, 5 are provided at the four corners of a square semiconductor board l, and a constant DC voltage is applied between the two diagonally opposing electrodes 2 and 4. A high precision ammeter 7 is connected between the other two opposing electrodes 3 and 5. FIG. 3 shows its electrical equivalent circuit. As long as the semiconductor board 1 is a highly accurate and uniform resistor, the semiconductor board 1 can be regarded as a resistance circuit in which 4 (solid resistances R, , R2, R3, and R4 are connected in a bridging shape) as shown in Fig. 3. Therefore, these resistors, the constant voltage source 6, and the ammeter 7 constitute a Wheatstone bridge.

半導体板1にX線ビームを照射すると照射された部分は
局部的にキャリアが発生し、その部分の導電率が変化す
る。このため、X線ビームが半導体板1の中心部よりは
ずれた例えば第3図に○印8で示す位置に照射されこの
部分が励起されると、抵抗R,が低抵抗化する結果、ホ
イートストンブリッジの平衡条件R1・R3==R2・
R4がくずれ、電流計7に微小電流が検出される。した
がって、電流計7の電流値が最小になるようにX線ビー
ムの照射位置を調整すれば、半導体板lの中心に正確に
X線ビームが一致するようにする事ができる。
When the semiconductor board 1 is irradiated with an X-ray beam, carriers are generated locally in the irradiated area, and the conductivity of that area changes. For this reason, when the X-ray beam is irradiated to a position deviated from the center of the semiconductor board 1, for example, as shown by circle 8 in FIG. Equilibrium condition R1・R3==R2・
R4 collapses, and the ammeter 7 detects a minute current. Therefore, by adjusting the irradiation position of the X-ray beam so that the current value of the ammeter 7 is minimized, the X-ray beam can be aligned accurately with the center of the semiconductor plate 1.

このような半導体板を用いたホイートストンブリフジを
X線回折装置に利用すれば、X線ビームを測定試料に正
確に入射させ、及び試料から出射したX線ビームを検知
器あるいはフィルムに正確に導くように装置を自動化す
る事が可能となる。
If a Wheatstone brigade using such a semiconductor board is used in an X-ray diffraction device, the X-ray beam can be accurately incident on the measurement sample, and the X-ray beam emitted from the sample can be accurately guided to the detector or film. This makes it possible to automate the device.

〔実施例〕〔Example〕

第1図は、本発明の一実施例である自動X線回折装置の
概略斜視図である。この装置は、基本的には、X線源1
0と、測定試料を保持するゴニオメータ11と、検知器
12とを備えている。ゴニオメータ11は、そのヘッド
に試料及び後述する半導体板を着脱可能に支持する支持
部13.X軸ゴニ第14.Y軸ゴニ第15.Z軸ゴニ第
16により構成されており、試料ステージ17上に設け
られている。X軸ゴニ第14.Y軸ゴニ第15゜Z軸ゴ
ニ第16は図示のx、y、z座標軸方向にそれぞれ回転
軸を有しておりサーボモータなどを備える駆動装置18
によって回転される。また、試料ステージ17は駆動装
置18によりx、z方向に移動される。
FIG. 1 is a schematic perspective view of an automatic X-ray diffraction apparatus that is an embodiment of the present invention. This device basically consists of an X-ray source 1
0, a goniometer 11 that holds a measurement sample, and a detector 12. The goniometer 11 has a support section 13. which removably supports a sample and a semiconductor plate to be described later on its head. X-axis goni 14th. Y-axis goni 15th. It is composed of a 16th Z-axis goni and is provided on the sample stage 17. X-axis goni 14th. The 15th Y-axis goni and the 16th Z-axis goni have rotational axes in the x, y, and z coordinate axes shown in the figure, and are drive devices 18 equipped with servo motors and the like.
rotated by Further, the sample stage 17 is moved in the x and z directions by a drive device 18.

検知器12は、検知器ステージ19に設けられており、
この検知器ステージには検知器12の前面に後述する半
導体板が着脱可能な支持部20が取り付けられている。
The detector 12 is provided on a detector stage 19,
A support section 20 to which a semiconductor board, which will be described later, can be attached and detached is attached to the front surface of the detector 12 on this detector stage.

検知器ステージ19は、サーボモータなどを備える駆動
装置21によって図示のx / 、  y l 、  
z ’座標のx′、z′方向に移動される。
The detector stage 19 is moved by a drive device 21 including a servo motor or the like to move x / , y l ,
It is moved in the x' and z' directions of the z' coordinate.

ゴニオメータ11の支持部13には、半導体板22を着
脱可能に支持することができる。この半導体板は、測定
しようとする試料程度の大きさの薄膜あるいは薄板状の
正方形の半導体である。半導体の材料は精度よく均一な
抵抗が得られるものであれば、シリコン、ゲルマニウム
などの真性半導体、これらに不純物を加えた不純物半導
体、また単結晶、多結晶を問うことなく、どのような半
導体材料を用いてもよい。さらにその厚さについては、
前述したホイートストンブリッジの平衡条件を満足でき
るような厚さに適宜選定するものとする。
The support portion 13 of the goniometer 11 can removably support the semiconductor board 22 . This semiconductor plate is a thin film or thin square semiconductor having a size comparable to the sample to be measured. Semiconductor materials can be any semiconductor material, including intrinsic semiconductors such as silicon and germanium, impurity semiconductors made by adding impurities to these materials, and single crystal or polycrystalline materials, as long as they can provide accurate and uniform resistance. may also be used. Furthermore, regarding its thickness,
The thickness shall be appropriately selected so as to satisfy the above-mentioned Wheatstone bridge equilibrium conditions.

このような半導体板22の四隅には第2図において説明
したようにオーミック電極(図示せず)が設けられ、こ
れらオーミック電極からはそれぞれリード線23,24
,25.26が引き出されている。対角線上で対向する
オーミック電極より引き出されているリード線23と2
5との間には直流定電圧源27が接続され、残りのオー
ミック電極より引き出されているリード線24.26は
駆動装置18に接続されている。
As explained in FIG. 2, ohmic electrodes (not shown) are provided at the four corners of such a semiconductor board 22, and lead wires 23 and 24 are connected from these ohmic electrodes, respectively.
, 25.26 are drawn out. Lead wires 23 and 2 drawn out from diagonally opposing ohmic electrodes
A DC constant voltage source 27 is connected between the ohmic electrode 5 and the lead wires 24 and 26 drawn out from the remaining ohmic electrodes are connected to the drive device 18.

一方、検知器12のステージ19の支持部20にも、半
導体板22と同様の半導体板28を着脱可能に支持する
ことができる。この場合、半導体板28の大きさは、検
知器12の検知面を覆う大きさとする。この半導体板2
8の四隅にはオーミック電極(図示せず)が設けられ、
これらオーミック電極からはそれぞれリード線29.3
0,31.32が引き出されている。対角線上に対向す
るオーミック電極より引き出されているリード線29と
31との間には直流定電圧源33が接続され、残りのオ
ーミック電極より引き出されているリード線30.32
は駆動装置21に接続されている。これらリード線30
.32は、さらにリード線34.35を経て駆動装置1
8に接続されている。
On the other hand, the support portion 20 of the stage 19 of the detector 12 can also removably support a semiconductor board 28 similar to the semiconductor board 22. In this case, the size of the semiconductor board 28 is made large enough to cover the detection surface of the detector 12. This semiconductor board 2
Ohmic electrodes (not shown) are provided at the four corners of 8.
Lead wires 29.3 from each of these ohmic electrodes
0.31.32 is drawn. A DC constant voltage source 33 is connected between lead wires 29 and 31 drawn out from diagonally opposing ohmic electrodes, and lead wires 30 and 32 drawn out from the remaining ohmic electrodes.
is connected to the drive device 21. These lead wires 30
.. 32 is further connected to the drive device 1 via lead wires 34 and 35.
8 is connected.

以上のような構造の自動X線回折装置においては、まず
、ゴニオメータ11のヘッドにある支持部13に半導体
板22を取り付ける。X線源10からはy軸に平行にX
線ビームが出射されるものとし、半導体板22はX線ビ
ームに対して垂直に配置する。この状態で、X線源10
に電源を投入してX線ビームを半導体板22に照射する
。そして、半導体板22のリード線24.26に流れる
電流が最小となるように、駆動装置18によって試料ス
テージ17をx、  z方向に移動させる。第2図にお
いて説明したように、X線ビームが半導体板22の中心
部に照射されるときには、ホイートストンブリッジの平
衡条件が成立して流れる電流が最小になるので、X線ビ
ームが半導体板22の中心部に照射するように調整され
る。このような動作は、駆動装置18が半導体板22の
リード線24.26に流れる電流を制御信号として検出
することによって自動的に行われる。X線ビームの入射
位置調整が終了すると、X線源10の電源を切って、半
導体板22を支持部13より取りはずし、同じ位置に試
料結晶を取り付け、Z軸ゴニ第16の回転で所定の回折
角の入射角となるように設定する。この動作は、駆動装
置18内に設けられているサーボモータで自動的に行わ
れる。
In the automatic X-ray diffraction apparatus having the above structure, first, the semiconductor plate 22 is attached to the support part 13 in the head of the goniometer 11. From the X-ray source 10, X is emitted parallel to the y-axis.
It is assumed that a ray beam is emitted, and the semiconductor plate 22 is arranged perpendicular to the X-ray beam. In this state, the X-ray source 10
The power is turned on and the semiconductor board 22 is irradiated with an X-ray beam. Then, the sample stage 17 is moved in the x and z directions by the drive device 18 so that the current flowing through the lead wires 24 and 26 of the semiconductor board 22 is minimized. As explained in FIG. 2, when the X-ray beam is irradiated to the center of the semiconductor plate 22, the Wheatstone bridge equilibrium condition is established and the flowing current is minimized. Adjusted to illuminate the center. Such an operation is automatically performed by the drive device 18 detecting the current flowing through the lead wires 24 and 26 of the semiconductor board 22 as a control signal. When the adjustment of the incident position of the X-ray beam is completed, the power to the X-ray source 10 is turned off, the semiconductor plate 22 is removed from the support part 13, the sample crystal is attached to the same position, and the Z-axis goni is rotated for a predetermined number of times at the 16th rotation. Set the angle of incidence to a reasonable value. This operation is automatically performed by a servo motor provided within the drive device 18.

次に、半導体板28を検知器ステージ19の支持部20
に取り付ける。この半導体板は、検知器12とは異なり
、微小の位置変動を敏感に測定できることを特徴として
いる。半導体板28を支持部20に取り付けた状態でX
線源10の電源を再び投入しX線ビームを出射させる。
Next, the semiconductor board 28 is attached to the support part 20 of the detector stage 19.
Attach to. Unlike the detector 12, this semiconductor board is characterized in that it can sensitively measure minute positional fluctuations. With the semiconductor board 28 attached to the support part 20,
The power to the radiation source 10 is turned on again to emit an X-ray beam.

出射したX線ビームは前述の調整により試料結晶の中心
位置に正確に入射し、試料から出射する。試料から出射
したX線ビームは半導体板28に入射する。そして、試
料ステージ17の調整と同様に、半導体板28のリード
線30.32に流れる電流が最小となるように、駆動装
置21によって検知器ステージ19をx′、z′方向に
移動させる。電流が最。
The emitted X-ray beam is accurately incident on the center position of the sample crystal by the above-mentioned adjustment, and is emitted from the sample. The X-ray beam emitted from the sample enters the semiconductor plate 28. Then, similarly to the adjustment of the sample stage 17, the detector stage 19 is moved in the x' and z' directions by the drive device 21 so that the current flowing through the lead wires 30 and 32 of the semiconductor board 28 is minimized. The current is the best.

小となる位置で、試料から出射したX線ビームは半導体
板28の中心部に入射する。このような検知器の位置調
整は、駆動装置21が半導体板28のリード線30.3
2に流れる電流を検出することによって自動的に行われ
る。
The X-ray beam emitted from the sample enters the center of the semiconductor plate 28 at the position where it becomes smaller. In order to adjust the position of the detector in this way, the drive device 21 connects the leads 30.3 of the semiconductor board 28.
This is done automatically by detecting the current flowing through 2.

リード線30.32を流れる電流は、さらにリード線3
4.35を経て駆動装置18に供給され、X軸ゴニ第1
4およびY軸ゴニ第15の調整のための制御信号として
用いられる。駆動装置18は、この制御信号すなわち電
流が最小となるように、X軸ゴニ第14およびY軸ゴニ
第15を回転させて・試料の垂直性の補正(いわゆる、
あおりの補正)を行う。これら動作は、駆動装置18内
に設けられているサーボモータで自動的に行われる。
The current flowing through lead wires 30 and 32 further flows through lead wire 3.
4.35 to the drive device 18, and the X-axis goni first
4 and Y-axis goni are used as control signals for the 15th adjustment. The drive device 18 rotates the 14th X-axis goni and the 15th Y-axis goni so that this control signal, that is, the current, is minimized and corrects the verticality of the sample (so-called
Perform tilt correction). These operations are automatically performed by a servo motor provided within the drive device 18.

以上のようにして、測定試料の位置、傾き、および検知
器位置が正確に定まった後、自動機構により半導体板2
8を支持部20より取りはずすことによって、測定が開
始される。
After the position, inclination, and detector position of the measurement sample are accurately determined as described above, the semiconductor board 2 is
8 from the support 20, the measurement is started.

以上、本発明の一実施例を説明したが、本発明はこの実
施例にのみ限定されるものではなく、本発明の範囲内で
種々の変形、変更が可能なことは勿論である。例えば、
検知器の支持にもゴニオメータを用いることができ、こ
の場合には、検知器の位置のみならず傾きをも調整する
ことができる。
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and it goes without saying that various modifications and changes can be made within the scope of the present invention. for example,
A goniometer can also be used to support the detector, in which case not only the position but also the inclination of the detector can be adjusted.

また、検知器の代わりにフィルムを置くようにしてもよ
い。
Also, a film may be placed in place of the detector.

【発明の効果〕【Effect of the invention〕

以上説明したように、本発明の自動X線回折装置によれ
ば、X線ビーム位置、測定試料の位置、検知器の位置が
一義的に定まるため非常に再現性のあるデータを得る事
ができる。この事はロッキングカーブの半値中の測定に
より結晶性評価を行う上で特に有用である。
As explained above, according to the automatic X-ray diffraction apparatus of the present invention, the X-ray beam position, measurement sample position, and detector position are uniquely determined, making it possible to obtain highly reproducible data. . This is particularly useful for evaluating crystallinity by measuring at half-maximum of the rocking curve.

また、作業者の手動による調整が不必要となるので、X
線被爆を避けることができ、したがうて作業者の安全上
の問題を解決することができる。
In addition, manual adjustment by the operator is unnecessary, so
radiation exposure can be avoided, thus solving the safety problem for workers.

さらに、微小の位置変動を検出できる検知器を多数並置
した従来のX線回折装置に比べて、半導体板を用い廷ホ
イートストンブリッジを利用するようにしているので安
価な自動X線回折装置を得ることができる。
Furthermore, compared to conventional X-ray diffraction equipment that has a large number of detectors arranged side by side that can detect minute positional fluctuations, it is possible to obtain an automatic X-ray diffraction equipment that is inexpensive because it uses a semiconductor board and uses a Wheatstone bridge. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自動X線回折装置の一実施例を示す概
略斜視図、 第2図は半導体板を用いたホイートストンブリッジを示
す図、 第3図は第2図の等価回路図である。 10・・・・・X、線源 11・・・・・ゴニオメータ 12・・・・・検知器 13.20・・支持部 14・・・・・X軸ゴニ第 15・・・・・Y軸ゴニオ 16・・・・・2軸ゴニ第 17・・・・・試料ステージ 18.21・・駆動装置 19・・・・・検知器ステージ 22.28・・半導体板 27.33・・直流定電圧源
Fig. 1 is a schematic perspective view showing an embodiment of the automatic X-ray diffraction apparatus of the present invention, Fig. 2 is a diagram showing a Wheatstone bridge using a semiconductor board, and Fig. 3 is an equivalent circuit diagram of Fig. 2. . 10...X, radiation source 11...goniometer 12...detector 13.20...support part 14...X axis goni 15th...Y axis Goniometer 16...2-axis gonier 17...Sample stage 18.21...Driver 19...Detector stage 22.28...Semiconductor plate 27.33...DC constant voltage source

Claims (1)

【特許請求の範囲】[Claims] (1)X線源と、このX線源より出射されたX線を照射
する測定試料を支持するゴニオメータと、前記測定試料
を経たX線を検知する手段と、4つの隅にオーミック電
極が設けられ、前記測定試料の位置および前記検知手段
の位置にそれぞれ着脱可能な正方形状の第1および第2
の半導体板とを備え、前記半導体板の対角線上で対向す
る2つの前記オーミック電極の間に直流電圧を加えてホ
イートストンブリッジを形成し、X線が入射していると
きに残りの2つの前記オーミック電極間に流れる電流を
、前記ゴニオメータの駆動装置およびまたは前記検知手
段の駆動装置の制御信号として、少なくとも前記測定試
料の位置、前記測定試料の傾きおよび前記検知手段の位
置を自動調整することを特徴とする自動X線回折装置。
(1) An X-ray source, a goniometer that supports a measurement sample that is irradiated with X-rays emitted from the X-ray source, a means for detecting the X-rays that have passed through the measurement sample, and ohmic electrodes provided at four corners. square-shaped first and second electrodes which are detachably attached to the position of the measurement sample and the position of the detection means, respectively.
A Wheatstone bridge is formed by applying a DC voltage between the two ohmic electrodes facing each other diagonally on the semiconductor board, and when X-rays are incident, the remaining two ohmic electrodes A current flowing between the electrodes is used as a control signal for a drive device of the goniometer and/or a drive device for the detection means to automatically adjust at least the position of the measurement sample, the inclination of the measurement sample, and the position of the detection means. Automatic X-ray diffraction equipment.
JP59277329A 1984-12-26 1984-12-26 Automatic x-ray diffraction device Pending JPS61153552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277329A JPS61153552A (en) 1984-12-26 1984-12-26 Automatic x-ray diffraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277329A JPS61153552A (en) 1984-12-26 1984-12-26 Automatic x-ray diffraction device

Publications (1)

Publication Number Publication Date
JPS61153552A true JPS61153552A (en) 1986-07-12

Family

ID=17582008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277329A Pending JPS61153552A (en) 1984-12-26 1984-12-26 Automatic x-ray diffraction device

Country Status (1)

Country Link
JP (1) JPS61153552A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630242A (en) * 1979-08-20 1981-03-26 Jeol Ltd Automatic axis-matching device for electron rays device
JPS5956774A (en) * 1982-09-24 1984-04-02 Hamamatsu Tv Kk Semiconductor device for detecting incidence position of particle ray, and the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630242A (en) * 1979-08-20 1981-03-26 Jeol Ltd Automatic axis-matching device for electron rays device
JPS5956774A (en) * 1982-09-24 1984-04-02 Hamamatsu Tv Kk Semiconductor device for detecting incidence position of particle ray, and the like

Similar Documents

Publication Publication Date Title
EP0156867B1 (en) Setting the orientation of crystals
Ohama et al. Improvement of high-angle double-crystal X-ray diffractometry (HADOX) for measuring temperature dependence of lattice constants. II. Practice
US4361900A (en) Radiation monitoring device
JP3081002B2 (en) Test object inspection device by gamma or X-ray
JPS61153552A (en) Automatic x-ray diffraction device
JPH05126768A (en) Fluorescent x-ray analyzing method
JP3659553B2 (en) X-ray equipment
JP2003254918A (en) Orientation measuring device of single crystal, detection method of angle error of guide member in the device and orientation measuring method of single crystal
JP4211192B2 (en) X-ray diffractometer
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
US3816747A (en) Method and apparatus for measuring lattice parameter
Cahn A precision back-reflexion microbeam X-ray camera with provision for pre-selecting the irradiated area
KR100489711B1 (en) Parallax Radiographic Testing for the Measurement of Flaw Depth
US3639760A (en) X-ray diffraction apparatus for measuring stress in a specimen
JP3847913B2 (en) Crystal orientation determination device
JPH0654265B2 (en) 2-axis swing X-ray stress measurement device
JPH065661Y2 (en) Current density distribution measuring device
JPH0626787B2 (en) Tilt detection method for cutting device
JP4540184B2 (en) X-ray stress measurement method
JP2000180388A (en) X-ray diffraction apparatus and x-ray diffracting and measuring method
Berger et al. Application of the/spl Omega/scan to the sorting of doubly rotated quartz blanks
JPH0358058B2 (en)
JP2899056B2 (en) Optical axis adjustment method and apparatus for sample fixed X-ray diffractometer
JPH0972864A (en) X-ray diffraction measuring device
JPH0225738A (en) X-ray diffraction apparatus