JPS61153460A - Controller for refrigerant flow of heat pump type air conditioner - Google Patents

Controller for refrigerant flow of heat pump type air conditioner

Info

Publication number
JPS61153460A
JPS61153460A JP28028184A JP28028184A JPS61153460A JP S61153460 A JPS61153460 A JP S61153460A JP 28028184 A JP28028184 A JP 28028184A JP 28028184 A JP28028184 A JP 28028184A JP S61153460 A JPS61153460 A JP S61153460A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
heating operation
temperature
frosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28028184A
Other languages
Japanese (ja)
Inventor
寿夫 若林
宏治 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28028184A priority Critical patent/JPS61153460A/en
Publication of JPS61153460A publication Critical patent/JPS61153460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、外気を熱源とし、低外気時に室外熱交換器に
生じる着霜を防止又は軽減することで暖房運転を継続さ
せるヒートポンプ式空調機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump air conditioner that uses outside air as a heat source and continues heating operation by preventing or reducing frost formation on an outdoor heat exchanger when outside air is low. It is.

従来の技術 一般に、外気を熱源とするヒートポンプ式空調機は、暖
房運転時低外気になると室外熱交換器に着霜を生じ、運
転時間の経過とともにこの着霜が進行するので暖房能力
も徐々に低下していく。したがって適当な時期に通常は
暖房運転を一時停止して室外熱交換器の除霜を行なう必
要があるので、これがひんばんであれば居住者にとって
非常な不快感を伴なう。
Conventional technology In general, in heat pump air conditioners that use outside air as a heat source, when the outside air is low during heating operation, frost forms on the outdoor heat exchanger, and as the operating time progresses, the heating capacity gradually decreases. It continues to decline. Therefore, it is usually necessary to temporarily stop the heating operation and defrost the outdoor heat exchanger at an appropriate time, which causes great discomfort to the occupants if this is the case.

これを解消するものとして例えば実公昭51−5074
号公報に示されるものが知られている。
To solve this problem, for example, Utility Model Publication No. 51-5074
The one shown in Publication No. 1 is known.

以下図面を参照しながら上述した従来のヒートポンプ式
空調機の一例について説明する。
An example of the conventional heat pump air conditioner mentioned above will be described below with reference to the drawings.

第5図は従来のヒートポンプ式空調機の一例を示すもの
である。同図において11は圧縮機、12は室内熱交換
器、13はキャピラリ、14は室外熱変換器、15は四
方弁で、これらを順次環状に連結し、さらに圧縮機11
の吐出側と室外熱交換器14の暖房運転時入口側との間
に電磁開閉弁16と補助キャピラリ17を有するバイパ
ス回路18を設け、室外熱交換器14には低圧側の冷媒
温度を感知する感熱部19を備えている。
FIG. 5 shows an example of a conventional heat pump type air conditioner. In the figure, 11 is a compressor, 12 is an indoor heat exchanger, 13 is a capillary, 14 is an outdoor heat converter, and 15 is a four-way valve, which are connected in order in a ring shape, and the compressor 11
A bypass circuit 18 having an electromagnetic on-off valve 16 and an auxiliary capillary 17 is provided between the discharge side of the outdoor heat exchanger 14 and the inlet side during heating operation of the outdoor heat exchanger 14, and the outdoor heat exchanger 14 senses the refrigerant temperature on the low pressure side. A heat sensitive section 19 is provided.

以上のように構成されたヒートポンプ式空調機について
その動作を説明する。暖房運転中、冷媒の流れは第5図
に示す矢印方向となり、低外気下では冷媒の蒸発温度が
室外熱交換器14の着霜や着氷等により徐々に低下して
くる。感熱部19で室外熱交換器14におけるこのよう
な冷媒温度の変化を感知し、この冷媒温度が所定値(こ
の場合室外熱交換器14が凍結を開始する温度)近辺又
は以下となれば電磁開閉弁16を開き高圧のホットガス
の一部をバイパス回路18に導びくことにより冷凍サイ
クルの低圧を上げ、室外熱交換器14の凍結防止を行な
うものである。
The operation of the heat pump air conditioner configured as described above will be explained. During heating operation, the refrigerant flows in the direction of the arrow shown in FIG. 5, and under low outside air, the evaporation temperature of the refrigerant gradually decreases due to frost formation, icing, etc. on the outdoor heat exchanger 14. The heat sensing part 19 senses such a change in refrigerant temperature in the outdoor heat exchanger 14, and when the refrigerant temperature becomes around or below a predetermined value (in this case, the temperature at which the outdoor heat exchanger 14 starts freezing), electromagnetic opening/closing is performed. By opening the valve 16 and guiding a portion of the high-pressure hot gas to the bypass circuit 18, the low pressure of the refrigeration cycle is increased and the outdoor heat exchanger 14 is prevented from freezing.

発明が解決しようとする問題点 しかしながら上記のような構成では以下のような問題点
を有していた。
Problems to be Solved by the Invention However, the above configuration has the following problems.

第6図は第5図に示す従来のヒートポンプ式空調機の運
転経過時間に対する特性変化を示す図である。同図で実
線は電磁開閉弁16を閉としたまま運転を続行した時の
特性変化、波線は運転経過時間τ=τfで電磁開閉弁1
6を開としてさらに運転を続行した時の特性変化を示す
。除霜開始時期を同一の室外熱交換器温度trasとす
れば暖房運転継続時間は前者でで。、後者でτ。・とな
る。
FIG. 6 is a diagram showing changes in characteristics of the conventional heat pump type air conditioner shown in FIG. 5 with respect to elapsed operating time. In the same figure, the solid line shows the characteristic change when the operation continues with the electromagnetic on-off valve 16 closed, and the broken line shows the change in the characteristics of the electromagnetic on-off valve 1 at the elapsed operating time τ=τf.
6 is opened and the operation is continued further. If the defrosting start time is set to the same outdoor heat exchanger temperature tras, the heating operation duration will be the former. , τ in the latter.・It becomes.

ここで注目すべきことは、低外気下では室外熱交換器へ
の着霜量は運転経過時間に比例して直線的に増加してい
る点と、これに対して室外熱交換器温度は着霜量がかな
りの量にならないと低下し始めない点である。これは着
霜状態で運転する時のヒートポンプ式空調機に共通して
言えることである。
What should be noted here is that under low outside air conditions, the amount of frost on the outdoor heat exchanger increases linearly in proportion to the elapsed operation time, and in contrast, the outdoor heat exchanger temperature increases The point is that it does not start to decrease until the amount of frost reaches a considerable amount. This is common to heat pump air conditioners when operating in frosty conditions.

したがって低圧側の温度(又は圧力)の変化を感知シて
バイパス回路にホットガスを流しても、その時点で既に
室外熱交換器にはかなり多量の着霜量となっているため
、除霜開始時期を同一の室外熱交換器温度とすると、着
霜防止(凍結防止)効果の一つの尺度である運転時間の
延びはΔτ=τ0′−τ0にしかならない。(数値的に
はΔτ=5〜10分程度で運転時間の延び率で約10〜
ISチ程度)つまり室外熱交換器にかなり多量の霜が付
着してからホットガスを流しても、暖房運転を続行しな
がらこれらの付着した霜を融解して除去できない以上着
霜防止(凍結防止)による運転時間の延びはそれほど期
待できないという実際の効果上の問題点を有していた。
Therefore, even if a change in temperature (or pressure) on the low pressure side is detected and hot gas is flowed into the bypass circuit, a considerable amount of frost has already formed on the outdoor heat exchanger at that point, so defrosting is started. Assuming that the outdoor heat exchanger temperature is the same at all times, the length of operation time, which is one measure of frost prevention (freezing prevention) effect, is only Δτ = τ0' - τ0. (Numerically, Δτ = about 5 to 10 minutes, and the operating time extension rate is about 10 to 10 minutes.)
In other words, even if hot gas is supplied after a considerable amount of frost has adhered to the outdoor heat exchanger, the frost cannot be melted and removed while continuing heating operation. ) has a practical problem in that it cannot be expected to extend the operating time much.

本発明は上記問題点に鑑み、低外気下での暖房運転開始
時又は初期から冷媒蒸発温度を上げて室外熱交換器の着
霜速度を遅くすることにより着霜状態を変えて着霜防止
を有効に行ない、運転継続時間を飛躍的に延ばして除霜
回数を大巾に減少することでより快適なヒートポンプ式
空調機を提供しようとするものである。
In view of the above-mentioned problems, the present invention prevents frost formation by changing the frost formation state by increasing the refrigerant evaporation temperature and slowing down the frost formation speed of the outdoor heat exchanger at the start of heating operation under low outside air conditions or from the initial stage. The aim is to provide a more comfortable heat pump type air conditioner by effectively extending the operation duration and drastically reducing the number of defrosting operations.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
調機は、圧縮機、室内熱交換器、減圧装置、室外熱交換
器、四方弁等を順次環状に連結し、開閉弁とバイパス用
絞り装置を直列に備えて一端を前記圧縮機吐出側とし他
端を前記室外熱交換器の暖房運転時入口側又は前記圧縮
機吸入側とするホットガスバイパス回路を設けて冷凍サ
イクルを構成するとともに、外気温度または外気温湿度
検出素子を備え、さらに前記検出素子の出力により着霜
運転となるか否かを判別する着霜条件判別装置を設けて
、暖房運転開始時又は初期に前記着霜条件判別装置が着
霜を予測判別した時に暖房運転開始時又は初期より上記
開閉弁を開きホットガスバイパス運転を行なうようにし
たものである。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention sequentially connects a compressor, an indoor heat exchanger, a pressure reducing device, an outdoor heat exchanger, a four-way valve, etc. in an annular manner. , a hot gas bypass circuit is provided in which an on-off valve and a bypass throttling device are connected in series, and one end is used as a discharge side of the compressor and the other end is used as an inlet side during heating operation of the outdoor heat exchanger or as a suction side of the compressor. The refrigeration cycle is configured, and is equipped with an outside air temperature or outside temperature/humidity detection element, and is further provided with a frosting condition determination device that determines whether or not frosting operation is to be performed based on the output of the sensing element. When the frost formation condition discriminating device predicts and determines frost formation in the early stage, the opening/closing valve is opened at the start of heating operation or from the beginning to perform hot gas bypass operation.

作  用 本発明は上記構成によって、室外熱交換器が着霜状態と
なる着霜運転を外気温度や外気温湿度を入力とする着霜
条件判別装置で予測判別するので、外気温度や外気温湿
度が着霜運転範囲にあれば着霜量がゼロか又は少ない状
態の暖房運転開始時又は初期よりホットガスバイパス回
路にホットガスの一部を流すことで冷媒蒸発温度を上げ
、着霜速度を遅くし、さらにこれにより低圧側の冷媒の
圧力や温度が所定値になるまでにより多量の着霜量を許
容できるという霜の成長の仕方をも改善することで、従
来より運転継続時間を飛躍的に延ばし除霜回数を大巾に
減少することができる。
Effect of the Invention With the above-described configuration, the present invention predicts and determines the frosting operation in which the outdoor heat exchanger becomes frosted using the frosting condition determination device that receives outside air temperature and outside air temperature and humidity as input. is within the frosting operation range, at the start of heating operation when the amount of frosting is zero or small, or from the beginning, a part of the hot gas is flowed through the hot gas bypass circuit to raise the refrigerant evaporation temperature and slow down the frosting speed. Furthermore, by improving the way frost grows by allowing a larger amount of frost to form until the pressure and temperature of the low-pressure refrigerant reach a predetermined value, the continuous operation time can be dramatically increased compared to conventional methods. The number of defrosting operations can be greatly reduced.

実施例 以下に本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明のヒートポンプ式空調機の一実施例を示
したものである。同図において、1は圧縮機、2は室内
熱交換器、3は減圧装置、4は室外熱交換器、5は四方
弁であり、これらを順次環状に連結し、さらに圧縮機1
の吐出側と室外熱交換器4の暖房運転時入口側との間に
、開閉弁6とバイパス用絞り装置7とを直列に備えたホ
ットガスバイパス回路8を設けて冷凍サイクルを構成し
たものである。そしてさらに室外側に外気温湿度検出素
子9を設置し、この出力を着霜条件判別装置10に入力
して、この着霜条件判別装置10により開閉弁6を開閉
制御するように構成したものである。
FIG. 1 shows an embodiment of the heat pump type air conditioner of the present invention. In the figure, 1 is a compressor, 2 is an indoor heat exchanger, 3 is a pressure reducing device, 4 is an outdoor heat exchanger, and 5 is a four-way valve.
A refrigeration cycle is constructed by providing a hot gas bypass circuit 8 equipped with an on-off valve 6 and a bypass throttle device 7 in series between the discharge side of the outdoor heat exchanger 4 and the inlet side during heating operation of the outdoor heat exchanger 4. be. Further, an outside temperature/humidity detection element 9 is installed outside the room, and the output thereof is input to a frosting condition determining device 10, and the opening/closing valve 6 is controlled by the frosting condition determining device 10. be.

次にこの一実施例の構成における作用を図面を参照しな
がら説明する。
Next, the operation of the configuration of this embodiment will be explained with reference to the drawings.

第2図は室外熱交換器に着霜が生じる着霜条件の一例を
外気条件に対して表わしたものである。
FIG. 2 shows an example of frost formation conditions that cause frost formation on the outdoor heat exchanger, with respect to outside air conditions.

同図は室外熱交換器温度く0℃、かつ室外熱交換器温度
く外気露点温度を満足する外気条件(外気温度、相対湿
度)をプロットして得られたもので、これによれば着霜
運転範囲を外気条件で十分に予測判別することができる
This figure was obtained by plotting the outside air conditions (outside air temperature, relative humidity) that satisfy the outdoor heat exchanger temperature of 0°C and the outdoor heat exchanger temperature and the outside air dew point temperature. The operating range can be sufficiently predicted and determined based on outside air conditions.

第1図に戻って図中の実線矢印は暖房運転時の、破線矢
印は冷房運転時の冷媒の流れ方向を示している。
Returning to FIG. 1, solid line arrows in the figure indicate the flow direction of the refrigerant during heating operation, and broken line arrows indicate the flow direction of the refrigerant during cooling operation.

暖房運転時圧縮機1から吐出された高温冷媒は四方弁5
を介して室内熱交換器2に入り、ここで放熱して暖房を
行なった後凝縮液化して減圧装置で減圧される。減圧さ
れた低温冷媒は室外熱交換器4に入り、ここで外見より
吸熱した後四方弁を介して圧縮機1に戻る。
The high temperature refrigerant discharged from the compressor 1 during heating operation is passed through the four-way valve 5.
The air enters the indoor heat exchanger 2 through the air, where it radiates heat for heating, condenses and liquefies, and is depressurized by a depressurizer. The reduced-pressure low-temperature refrigerant enters the outdoor heat exchanger 4, where it absorbs heat from the outside and then returns to the compressor 1 via the four-way valve.

今暖房運転開始時に室外側に設置された外気温湿度検出
素子9で外気温度、外気湿度を検出し、これらを着霜条
件判別装置10に入力する。
At the start of the heating operation, the outside temperature and humidity are detected by the outside temperature and humidity detection element 9 installed outside the room, and these are input to the frosting condition determining device 10.

第3図にこの着霜条件判別装置のフローチャートを示す
。同図に示すように外気温度、外気湿度より相対湿度を
求め、得られた外気温度と相対湿度が第2図に示すよう
な着霜条件を満足するか否かを予測判別する。この場合
着霜条件判別袋!10はマイコン(図示せず)で構成す
る。こうして暖房運転開始時に着霜条件判別装置10で
着霜運転を予測判別すれば、開閉弁6を開き圧縮機1か
らの吐出ガスの一部をホットガスバイパス回路8を介し
て室外熱交換器4の入口側に導ひく。第4図は以上の実
施例の着霜防止効果の実施例を示したものである。
FIG. 3 shows a flowchart of this frosting condition determining device. As shown in the figure, the relative humidity is determined from the outside air temperature and the outside air humidity, and it is predictively determined whether the obtained outside air temperature and relative humidity satisfy the frost formation conditions as shown in FIG. In this case, use a frosting condition determination bag! 10 is composed of a microcomputer (not shown). In this way, if the frosting condition determining device 10 predicts and determines the frosting operation at the start of the heating operation, the on-off valve 6 is opened and a part of the gas discharged from the compressor 1 is passed through the hot gas bypass circuit 8 to the outdoor heat exchanger 4. lead to the entrance side. FIG. 4 shows an example of the frost formation prevention effect of the above example.

図中実線は着霜条件で運転していてもホットガスバイパ
スを行なわない場合、破線は従来の室外熱交換器温度の
変化を感知してからホットガスバイパスを行なう場合(
τ=τfでホットガスバイパス開始)、一点鎖線は本実
施例の場合で、いづれも外気条件は同一で、除霜開始は
室外熱交換器温度が同一の所定値trssになった時と
した。
The solid line in the figure shows the case where hot gas bypass is not performed even when operating under frost conditions, and the broken line shows the case where hot gas bypass is performed after sensing a change in the temperature of the conventional outdoor heat exchanger (
The hot gas bypass starts when τ=τf), and the dashed-dotted line is the case of this example, where the outside air conditions are the same in both cases, and defrosting is started when the outdoor heat exchanger temperature reaches the same predetermined value trss.

なお、除霜を開始するまでの暖房運転継続時間はそれぞ
れ項にτ。 、/ 、 、#である。
The duration of heating operation until the start of defrosting is indicated by τ in each term. , / , , #.

第4図かられかるように本実施例によれば着霜運転が予
想される場合には室外熱交換器の着霜量が少ない暖房運
転開始時よりホットガスバイパスを行なうことで、着霜
速度を遅らせるとともに霜の付き方も改善され着霜量も
より多くまで許容でき、暖房運転をさらに延ばすことが
できる(この場合暖房運転時間の延び率で約2倍)。ホ
ットガスバイパスすることで確かに瞬時の暖房能力は低
下するものの、除霜回数の減少や除霜効率を考えると、
時間平均した単位時間当りの暖房能力はほとんど低下し
ない領域があり、これを利用すれば暖房能力を維持しつ
つ着霜防止運転を有効に行なえる。また着霜運転が予想
されない場合にはもちろん開閉弁6は閉とした状態で通
常の暖房運転を行なえばよい。冷房運転時については詳
しく説明しないが室外熱交換器が凝縮器として働らくの
で着霜することはなく開閉弁6は閉とした状態で運転す
る。
As can be seen from Fig. 4, according to this embodiment, when frost formation is expected, hot gas bypass is performed from the start of heating operation when the amount of frost formation on the outdoor heat exchanger is small, thereby increasing the frost formation rate. As well as delaying the formation of frost, the formation of frost is also improved and a larger amount of frost can be tolerated, making it possible to further extend the heating operation (in this case, the rate of extension of the heating operation time is approximately doubled). Although hot gas bypass does reduce instantaneous heating capacity, considering the reduction in defrosting frequency and defrosting efficiency,
There is a region in which the time-averaged heating capacity per unit time hardly decreases, and if this is utilized, frost prevention operation can be performed effectively while maintaining the heating capacity. Furthermore, if frosting operation is not expected, normal heating operation may be performed with the on-off valve 6 closed. The cooling operation will not be described in detail, but since the outdoor heat exchanger functions as a condenser, no frost will form and the operation is performed with the on-off valve 6 closed.

以上の実施例では暖房運転開始時より開閉弁6を開とし
て説明したが、要は室外熱交換器に多量の霜が付着しな
いうちに開閉弁6を開いてホットガスバイパスすればよ
いのであり、したがって暖房運転開始後の短時間内の運
転初期に開閉弁6を開としてもよいことはもちろんであ
る。
In the above embodiment, the on-off valve 6 is opened from the start of the heating operation, but the point is that the on-off valve 6 should be opened to bypass the hot gas before a large amount of frost adheres to the outdoor heat exchanger. Therefore, it goes without saying that the on-off valve 6 may be opened at the beginning of the operation within a short time after the start of the heating operation.

また上記実施例では、ホットガスバイパス回路の他端を
室外熱交換器の暖房運転時入口側として説明したが、こ
れを圧縮機吸入側としても同等の効果を有する。
Further, in the above embodiment, the other end of the hot gas bypass circuit is described as being on the inlet side during heating operation of the outdoor heat exchanger, but the same effect can be obtained even if this is on the compressor suction side.

さらにまた上記実施例では着霜条件判別装置10の入力
を外気温度と外気湿度としたが、実際の使用条件、使用
状態からすると単に外気温度だけでも着霜運転か否かを
予測判別することが可能であるのは第2図を見れば明ら
かであり、前に説明した実施例と同等の効果を発揮する
Furthermore, in the above embodiment, the outside air temperature and outside air humidity are input to the frosting condition determination device 10, but considering the actual usage conditions and usage conditions, it is not possible to predict whether frosting operation is being performed or not simply from the outside air temperature. It is clear from FIG. 2 that this is possible, and the same effect as the previously described embodiment is achieved.

発明の詳細 な説明したように本発明は、圧縮機、室内熱交換器、減
圧装置、室外熱交換器、四方弁等を順次環状に連結し、
開閉弁とバイパス用絞り装置を直列に備えて一端を前記
圧縮機吐出側とし他端を前記室外熱交換器の暖房運転時
入口側又は前記圧縮機吸入側とするホットガスバイパス
回路を設けて冷凍サイクルを構成するとともに、外気温
度または外気温湿度検出素子を備え、さらに前記検出素
子の出力により着霜運転となるか否かを判別する着霜条
件判別装置を設けて、暖房運転開始時又は初期に前記着
霜条件判別装置が着霜運転を予測判別した時に暖房運転
開始時又は初期より上記開閉弁を開きホットガスバイパ
ス運転を行なうようにしたので、室外熱交換器への着霜
が予想される外気条件では着霜がゼロか又は少ない暖房
運転開始時又は初期からの非常に有効な着霜防止運転に
より暖房運転時間を大巾に延ばすことができ、また除霜
回数が大巾に減少することで単位時間当たりの暖房能力
もほとんど低下せずに維持できるなど、特に低外気時の
ヒートポンプ式空調機の欠点であったひんばんな除霜に
よる不快感を太き(軽減できる効果の高いものである。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention includes a compressor, an indoor heat exchanger, a pressure reducing device, an outdoor heat exchanger, a four-way valve, etc., which are sequentially connected in an annular manner.
A hot gas bypass circuit is provided in which an on-off valve and a bypass throttling device are connected in series, one end of which is the discharge side of the compressor, and the other end of which is the inlet side of the outdoor heat exchanger during heating operation or the suction side of the compressor. In addition to configuring the cycle, the system is equipped with an outside temperature or outside temperature/humidity detection element, and is further provided with a frosting condition determination device that determines whether or not frosting operation is to be started based on the output of the sensing element. When the frosting condition determination device predicts and determines frosting operation, the on-off valve is opened at the start of heating operation or from the beginning to perform hot gas bypass operation, so that frost formation on the outdoor heat exchanger is predicted. Under outside air conditions where there is no or little frost formation, very effective anti-frost operation at the start of heating operation or from the initial stage can greatly extend heating operation time and greatly reduce the number of times defrosting is required. As a result, the heating capacity per unit time can be maintained with almost no decrease, and it is highly effective in reducing the discomfort caused by slow defrosting, which is a drawback of heat pump air conditioners, especially when the outside air temperature is low. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のヒートポンプ式空調機の一実施例を示
す構成図、第2図は外気条件に対する着霜条件を示す説
明図、第3図は第1図に示す着霜条件判別装置のフロー
チャートを示す図、第4図は第1図に示す本発明の一実
施例の着霜防止効果を示す説明図、第6図は従来のヒー
トポンプ式空調機の一例を示す構成図、第6図は第5図
に示す従来のヒートポンプ式空調機の運転経過時間に対
する特性変化を示す図である。 1・・・・・・圧縮機、2・・・・・・室内熱交換器、
3・・・・・減圧装置、4・・・・・・室外熱交換器、
5・・・・・四方弁、6・・・・・・開閉弁、7・・・
・・・バイパス用絞り装置、8・・・・・・ホットガス
バイパス回路、9・・・・・・外気温湿度検出素子、1
0・・・・・・着霜条件判別装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 2・・・室yi邦、久羽り【 3−・戴万張1 4・・・室外弊支簑暮 5・・・回 方 査 6・・−関間丼 7−・ バイ2f2用鼻〉り竜しさ【 8・・・ホ・ソトσスノぐイノずス回エネトq−、−外
気?S1嶺Jり色奪子 10・・・着儒鼻件判別41L1i 第2図 外Iロ、乙i(’c) 第3図 第4図 #松怒過時間r
FIG. 1 is a configuration diagram showing an embodiment of the heat pump type air conditioner of the present invention, FIG. 2 is an explanatory diagram showing frost formation conditions with respect to outside air conditions, and FIG. 3 is a diagram of the frost formation condition determination device shown in FIG. 1. A diagram showing a flowchart, FIG. 4 is an explanatory diagram showing the frost formation prevention effect of an embodiment of the present invention shown in FIG. 1, and FIG. 6 is a configuration diagram showing an example of a conventional heat pump type air conditioner. 5 is a diagram showing characteristic changes with respect to elapsed operating time of the conventional heat pump type air conditioner shown in FIG. 5. FIG. 1...Compressor, 2...Indoor heat exchanger,
3... pressure reducing device, 4... outdoor heat exchanger,
5...Four-way valve, 6...Open/close valve, 7...
... Bypass throttle device, 8 ... Hot gas bypass circuit, 9 ... Outside temperature and humidity detection element, 1
0... Frosting condition determination device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2... Muro yi country, Kubari [ 3-・ Daimanzhou 1 4... Murogai Shiminku 5... Time survey 6...- Sekimadon 7-- Bai 2f2 nose 〉Riryusa [ 8... Ho soto σ Suno Guinozusu energy net q-, - outside air? S1 Mine J Riiro Deshi 10...Confucian nose discrimination 41L1i Figure 2 outside Iro, Otsu i ('c) Figure 3 Figure 4 #pine anger time r

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、室内熱交換器、減圧装置、室外熱交換器、四
方弁等を順次環状に連結し、開閉弁とバイパス用絞り装
置を直列に備えて一端を前記圧縮機吐出側とし他端を前
記室外熱交換器の暖房運転時入口側又は前記圧縮機吸入
側とするホットガスバイパス回路を設けて冷凍サイクル
を構成し、さらに外気温度または外気温湿度検出素子を
備え、さらに前記検出素子の出力により着霜運転となる
か否かを判別する着霜条件判別装置を設けて暖房運転開
始時又は初期に前記着霜条件判別装置が着霜を予測判別
した時に暖房運転開始時又は初期より前記開閉弁を開き
ホットガスバイパス運転を行なうヒートポンプ式空調機
の冷媒流制御装置。
A compressor, an indoor heat exchanger, a pressure reducing device, an outdoor heat exchanger, a four-way valve, etc. are sequentially connected in an annular manner, and an on-off valve and a bypass throttle device are connected in series, with one end being the compressor discharge side and the other end being the above-mentioned compressor discharge side. A refrigeration cycle is configured by providing a hot gas bypass circuit on the inlet side of the outdoor heat exchanger during heating operation or on the suction side of the compressor, further comprising an outside air temperature or outside temperature/humidity detection element, and further comprising an outside air temperature or outside temperature/humidity detection element, and further includes a A frosting condition determining device is provided to determine whether or not frosting operation is to be performed, and when the frosting condition determining device predicts and determines frosting at the start of heating operation or at the initial stage, the on-off valve is installed at the start of heating operation or from the initial stage. A refrigerant flow control device for a heat pump air conditioner that opens and performs hot gas bypass operation.
JP28028184A 1984-12-27 1984-12-27 Controller for refrigerant flow of heat pump type air conditioner Pending JPS61153460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28028184A JPS61153460A (en) 1984-12-27 1984-12-27 Controller for refrigerant flow of heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28028184A JPS61153460A (en) 1984-12-27 1984-12-27 Controller for refrigerant flow of heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS61153460A true JPS61153460A (en) 1986-07-12

Family

ID=17622798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28028184A Pending JPS61153460A (en) 1984-12-27 1984-12-27 Controller for refrigerant flow of heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS61153460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209016A (en) * 2007-02-23 2008-09-11 Fuji Electric Retail Systems Co Ltd Cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209016A (en) * 2007-02-23 2008-09-11 Fuji Electric Retail Systems Co Ltd Cooling system

Similar Documents

Publication Publication Date Title
JPS61240063A (en) Air-cooled heat pump type refrigeration cycle
JPH0529830B2 (en)
JPS61153460A (en) Controller for refrigerant flow of heat pump type air conditioner
JPS61159059A (en) Controller for refrigerant flow of heat pump type air conditioner
JPH0452469A (en) Air conditioner
JPS5997462A (en) Defrosting circuit for heat pump
JPH01155153A (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JPS61153464A (en) Controller for refrigerant flow of heat pump type air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH07159006A (en) Refrigerant-collecting device
JPH0420763A (en) Air conditioner
JPS60114661A (en) Method of operating heat-pump air conditioner
JPS62158951A (en) Heat pump type air conditioner
JPH0633910B2 (en) Heat pump refrigeration system
JPH01306755A (en) Defrosting control method for heat-pump type air conditioner
JPH0347161Y2 (en)
JPS63153374A (en) Air conditioner
JPS61159057A (en) Heat pump type air conditioner
JPH0633895B2 (en) Heat pump type air conditioner
JPS58124174A (en) Refrigeration cycle of air conditioner
JPS62119368A (en) Air conditioner
JPS63210581A (en) Air conditioner
JPH10153354A (en) Refrigeration plant
JPS62266365A (en) Air conditioner