JPS61153101A - Separation membrane using curdlan derivative as raw material - Google Patents
Separation membrane using curdlan derivative as raw materialInfo
- Publication number
- JPS61153101A JPS61153101A JP27986784A JP27986784A JPS61153101A JP S61153101 A JPS61153101 A JP S61153101A JP 27986784 A JP27986784 A JP 27986784A JP 27986784 A JP27986784 A JP 27986784A JP S61153101 A JPS61153101 A JP S61153101A
- Authority
- JP
- Japan
- Prior art keywords
- curdlan
- membrane
- separation membrane
- derivative
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、カードラン(β−1,3−グルカン)誘導体
を素材とする新規な限外濾過膜に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel ultrafiltration membrane made from a curdlan (β-1,3-glucan) derivative.
限外濾過の分野では、この十数年間に各種の合成高分子
膜が開発され1分子量分画性で分子量100万から50
0に到るまで各種の分離性能を有するものが市販され、
利用されている。In the field of ultrafiltration, various synthetic polymer membranes have been developed over the past ten years, with a molecular weight fractionation of 1 million to 50.
Products with various separation performances up to 0 are commercially available,
It's being used.
限外濾過法は、一般に、高分子及び中分子溶質を低分子
溶質及びイオンと分離するのに用いられ。Ultrafiltration is commonly used to separate large and medium molecule solutes from small molecule solutes and ions.
熱をかけないで、溶質を分子レベルで1分子の大きさに
よって1分画・分離・濃縮・精製することが可能な為、
熱やpH1化学薬品等に鋭敏で且つゲル濃度の大きい溶
質(例えば酵素、蛋白、生理活性物質など)の分離濃縮
等に特に適しておシ。Because it is possible to fractionate, separate, concentrate, and purify solutes according to the size of one molecule at the molecular level without applying heat,
It is particularly suitable for separating and concentrating solutes that are sensitive to heat and pH 1 chemicals and have a large gel concentration (e.g. enzymes, proteins, physiologically active substances, etc.).
医薬品工業1食品工業、高分子工業、塗料・塗装工業、
酪農・水産・畜産部門環、各穐分野に於て広く用いられ
ている。一般に、これら膜による分離法のメリットとし
ては、(1)低エネルギーであること、(2)装置及び
操作が簡単であること、(3)相変化がないこと(熱を
加えなくてもよいこと)、(4)連続的°操作が可能な
こと、などが挙げられる。Pharmaceutical industry 1 Food industry, polymer industry, paint/coating industry,
It is widely used in dairy farming, fisheries, livestock farming, and other fields. In general, the advantages of separation methods using these membranes are (1) low energy consumption, (2) simple equipment and operation, and (3) no phase change (no need to apply heat). ), (4) Continuous operation is possible.
現在実用化されている限外濾過用の高分子膜としては1
例えば、ポリスルホン系、酢酸セルロースエステル系、
ビニル重合体系、高分子電解質錯合体系等が挙げられる
が、これらはいずれも限外濾過膜として必ずしも未だ充
分満足し得るものとは言い難い。例えば、ポリスルホン
系やポリビニルアルコール系の膜の場合は1分画の選択
性が不良であって分子量の差に応じたシャープな分画が
出来ず、また1分子量が104〜105程度の溶質の分
画には比較的有効であるが、それより低分子量の溶質に
対してはシャープな分画性能を示さない。Currently, there are 1 polymer membranes for ultrafiltration in practical use.
For example, polysulfone type, cellulose acetate type,
Examples include vinyl polymer systems and polymer electrolyte complex systems, but it is difficult to say that any of these is still fully satisfactory as an ultrafiltration membrane. For example, in the case of polysulfone-based or polyvinyl alcohol-based membranes, the selectivity of one fraction is poor and it is not possible to perform sharp fractionation according to the difference in molecular weight. Although it is relatively effective for fractionation, it does not show sharp fractionation performance for lower molecular weight solutes.
一方、高分子電解質錯合体膜は分子量分両性は上記のも
のよシもいくらか浸れている。しかしながら、この膜で
は分子量が103〜104程度の溶質の分画は可能であ
るが、分子量が数百から1000の範囲での溶質の分離
は充分有効には行なわれず。On the other hand, polyelectrolyte complex membranes are somewhat more amphoteric than those mentioned above due to their molecular weight. However, although this membrane is capable of fractionating solutes with a molecular weight of about 103 to 104, it cannot sufficiently effectively separate solutes with a molecular weight in the range of several hundred to 1,000.
特に分子量500以下のものの分離は殆んど不可能であ
る。更に各極高分子電解質錯合体膜に共通する欠点とし
て、膜が弱いという点が挙げられる。In particular, it is almost impossible to separate substances with a molecular weight of less than 500. Furthermore, a common drawback of each type of polymer electrolyte complex membrane is that the membrane is weak.
即ち、高分子電解質錯合体膜はいずれも、物理的。In other words, all polymer electrolyte complex membranes are physical.
化学的に弱く、汚染され易く、且つ電解質に弱い。Chemically weak, easily contaminated, and sensitive to electrolytes.
かかる状況に鑑み1本発明者らは1分子量分画性に優れ
、且つ物理的、化学的に安定で、汚染にも、電解質にも
強い分離膜を形成する新規な素材を求めて鋭意研究を重
ねた結果、これまで分離膜の素材として取シ上げられ九
ことのな込、水不溶性の多糖類であるカードラン(β−
1,3−グルカン)の水酸基を修飾して得られるカード
ラン誘導体から得られる分離膜が、溶質の分離分画性に
優れた性能を有し、且つ、膜としての強度も大で。In view of this situation, the present inventors have conducted extensive research in search of a new material that has excellent molecular weight fractionation, is physically and chemically stable, and is resistant to pollution and electrolytes to form a separation membrane. As a result of repeated efforts, curdlan (β-
A separation membrane obtained from a curdlan derivative obtained by modifying the hydroxyl group of 1,3-glucan) has excellent performance in separating and fractionating solutes and has high strength as a membrane.
上記目的に充分適い得ることを見い出し1本発明を完成
するに到った。The present inventors have discovered that the above object can be fully met and have completed the present invention.
即ち1本発明は、下記構造を有するカードラン(β−1
,3−グルカン)
の水酸基を化学修飾して得られる一般式(1)%式%(
1)
〔式中、Rは炭素数1〜4の低級アルキル基又はR’C
0−(但し、R′は炭素数1〜4の低級アルキル基を表
わす。)で表わされるアシル基を表わし、Xは1〜3を
表わす。また、nは約200〜2000の整数を表わす
。〕で示されるカードラン誘導体を素材とする分離膜で
ある。That is, 1 the present invention provides curdlan (β-1
, 3-glucan) obtained by chemically modifying the hydroxyl group of the general formula (1) % formula % (
1) [In the formula, R is a lower alkyl group having 1 to 4 carbon atoms or R'C
It represents an acyl group represented by 0- (wherein R' represents a lower alkyl group having 1 to 4 carbon atoms), and X represents 1 to 3. Further, n represents an integer of about 200 to 2000. ] This is a separation membrane made from a curdlan derivative shown in the following.
本発明に於て1分離膜の素材として用いられる上記一般
式〔1〕で示されるカードラン誘導体のRで示される炭
素数1〜4の低級アルキル基としては、メチル基、エチ
ル基、n−プロピル基、 is。In the present invention, the lower alkyl group having 1 to 4 carbon atoms represented by R in the curdlan derivative represented by the above general formula [1] used as a material for the separation membrane 1 includes a methyl group, an ethyl group, an n- Propyl group, is.
−プロピル基、n−ブチル基、 tert−ブチル基
等が挙げられ、またR’CO−で辰わされるアシル基と
しては、アセチル基゛、プロピオニル基、ブタノイル基
、ペンタノイル基等が挙げられる。また。-propyl group, n-butyl group, tert-butyl group, etc., and examples of the acyl group represented by R'CO- include acetyl group, propionyl group, butanoyl group, pentanoyl group, etc. Also.
修飾基の置換度を表わすXは通常1〜3であるが、よ)
好ましくは2〜3である。また、nは通常約200〜2
000であるが、より好ましくは300今700゜であ
る。X, which represents the degree of substitution of the modifying group, is usually 1 to 3, but
Preferably it is 2-3. Also, n is usually about 200 to 2
000°, more preferably 300° to 700°.
一般式〔1〕で示されるカードラン誘導体は1通常カー
ドランの水酸基をアルキル化若しくはアシル化すること
によシ容易に得られる。The curdlan derivative represented by the general formula [1] is usually easily obtained by alkylating or acylating the hydroxyl group of curdlan.
即チ、カードランの水酸基のアルキル化は例えば多糖類
の水酸基のアルキル化の常法に従い、ベンゼン、)1ル
エン、キシレン、エーテル、N、N−ジメチルホルムア
ミド等の溶媒中、アルカリの存在下ハロゲン化アルキル
、硫酸ジアルキル等のアルキル化剤を用いて容易に行な
り得る。That is, the alkylation of the hydroxyl group of curdlan is performed, for example, according to the conventional method for alkylating the hydroxyl group of polysaccharides. This can be easily carried out using an alkylating agent such as an alkyl compound or a dialkyl sulfate.
また、カードランの水酸基のアシル化も1例えば多糖類
の水酸基のアシル化の常法に従い、容易に実施し得る。Furthermore, acylation of the hydroxyl groups of curdlan can be easily carried out according to conventional methods for acylating the hydroxyl groups of polysaccharides, for example.
例えば、アセチル化の場合につbて述べると、カードラ
ンをp−トルエンスルホン酸等の脱水剤の存在下、酢a
t溶媒中、理論量の1〜3倍モルの無水酢酸を用いて、
40〜50℃で1〜5@間(目的の置換度に応じて無水
酢酸量。For example, in the case of acetylation, curdlan is treated with vinegar a in the presence of a dehydrating agent such as p-toluenesulfonic acid.
Using 1 to 3 times the theoretical amount of acetic anhydride in a solvent,
Between 1 and 5 @ at 40 to 50°C (amount of acetic anhydride depending on the desired degree of substitution).
反応温度及び反応時間等は適宜調節する。)アセチル化
反応させ、次いで、常法によシこれを大量の水の中へ注
入して晶析させ、P取、水洗、乾燥することによシ、ア
セチルカードランが容易に得られる。The reaction temperature, reaction time, etc. are adjusted as appropriate. ) Acetyl curdlan can be easily obtained by carrying out an acetylation reaction, then crystallizing it by pouring it into a large amount of water in a conventional manner, removing P, washing with water, and drying.
本発明の分離膜は、カードラン誘導体をギ酸系溶媒に溶
解させて調製したキャスト溶液から膜状に注型したり、
成因はこれを多孔性の膜又は支持体上に流延し、、た後
、溶剤−ゲル化法により製膜するなど通常の製膜方法に
よシ容易に製造することが出来る。また、中空糸状に成
型することも勿論可能である。膜の分画分離性は、用い
る溶媒の種類1こよシ異なり、ギ酸単独の場合と、これ
に水。The separation membrane of the present invention can be cast into a membrane from a cast solution prepared by dissolving a curdlan derivative in a formic acid solvent, or
The material can be easily produced by a conventional film-forming method, such as casting this onto a porous membrane or support, and then forming a film by a solvent-gelling method. Moreover, it is of course possible to mold it into a hollow fiber shape. The fractional separation properties of the membrane differ depending on the type of solvent used; formic acid alone and water in addition to formic acid.
二塩化メチレン、 N、N−ジメチルホルムアミド等を
混合した場合とでは夫々分子量分画性が異なるし、また
、無機塩などを添加することによっても分子量分画性を
調整することが可能である。分子量分画性は、また、溶
媒中のカードラン誘導体の濃度によっても変わるし、カ
ードラン誘導体の分子量、加水分解度、置換基の置換度
などによっても変わる。The molecular weight fractionation is different when methylene dichloride, N,N-dimethylformamide, etc. are mixed, and it is also possible to adjust the molecular weight fractionation by adding an inorganic salt or the like. The molecular weight fractionation property also varies depending on the concentration of the curdlan derivative in the solvent, and also varies depending on the molecular weight, degree of hydrolysis, degree of substitution of substituents, etc. of the curdlan derivative.
カードラン誘導体を素材とする本発明の分離膜は、20
0〜20,000程度の範囲内の分子量を有する物質の
分画用に好ましく用いられ、特に1分画分子量の小さい
領域(1000以下)で優れた分画分離性を発揮する。The separation membrane of the present invention made from a curdlan derivative has a
It is preferably used for fractionating substances having a molecular weight within the range of about 0 to 20,000, and exhibits excellent fractional separation performance particularly in the region of small molecular weight cutoff (1000 or less).
本発明の分離膜は1例えば1分子量が同程度の有機酸と
糖類とを分離することが可能であり1例エバ、グルコー
スと乳酸、シュクロースとリンゴ酸(又は酒石l!り
、 ラフィノース(又は糖蜜)とクエン酸等を効果的に
分離することを出来る。従って、糖類の発酵による低級
有機酸の製造に於ける。有機酸と糖類との混合液力)ら
の有機酸の分離。The separation membrane of the present invention is capable of separating organic acids and sugars that have the same molecular weight, for example, evaporate, glucose and lactic acid, sucrose and malic acid (or tartar, etc.).
, Raffinose (or molasses) and citric acid can be effectively separated. Therefore, in the production of lower organic acids by fermentation of sugars. Separation of organic acids such as liquid mixture of organic acids and sugars.
精製や、糖類中に不純物として含まれる有機酸の除去な
どに本発明の分離膜を用いれば、極めて効果的にこれを
行なうことができる。If the separation membrane of the present invention is used for purification, removal of organic acids contained as impurities in saccharides, etc., this can be carried out extremely effectively.
本発明の分離膜は1例えば高分子電解質錯合体膜などと
異なり、膜としての物理的、化学的強度が大で、汚染に
も強く、また電解質にも強く、安定性が良すので、繰シ
返し使用が可能であシ、装置旧な面からも操作的な面か
らも非常に使い易く。The separation membrane of the present invention differs from, for example, polymer electrolyte complex membranes in that it has high physical and chemical strength as a membrane, is resistant to pollution, is resistant to electrolytes, and has good stability. It can be used repeatedly and is very easy to use, both from an old-fashioned device and from an operational standpoint.
また甚だ経済的である。It is also extremely economical.
以上述べた如く1本発明は、特に分画分子量の小さA領
域で優れた分画分離性を有し、Ix七しての強度が大で
、安定性の良い、新規な素材の新規な分離膜を提供する
ものであシ、斯業に貢献するところ大なるものである。As described above, the present invention provides a novel separation method for a novel material that has excellent fractional separation properties, especially in the A region with a small molecular weight cutoff, and has high Ix7 strength and good stability. Since it provides membranes, it is a great contribution to this industry.
以下に実施例及び参考例を示すが本発明はこれら実施例
及び参考例により何ら限定されるものではない。Examples and reference examples are shown below, but the present invention is not limited to these examples and reference examples in any way.
尚、実施例中に於ける透過流束(water flux
)は、バッチ型の限外−過装置(有効膜面積1213
crrt>を使用し、蒸留水を用いて20℃で4 kl
iF/iの操作圧下で透水量の測定を行なり1下式によ
シ算出した。In addition, the permeation flux (water flux) in the examples
) is a batch type ultra-filtration device (effective membrane area 1213
4 kl at 20°C using distilled water.
The water permeability was measured under the operating pressure of iF/i and calculated using the following formula.
また、阻止率は、下記0)式で求めた見掛けの阻止率(
Rj)から、(ロ)式で濃縮倍率の補正を行なって得ら
れる真の阻止率を用いて表わした。In addition, the rejection rate is the apparent rejection rate (
From Rj), it is expressed using the true rejection rate obtained by correcting the concentration factor using equation (b).
ここで、Aは濃縮倍率(=原液の容量〔d〕/濃縮液の
容1t(ffl/))を表わす。Here, A represents the concentration ratio (=volume of stock solution [d]/volume of concentrated solution 1 t (ffl/)).
参考例1゜
酢酸 1.88 lにカードラン(β−1,3−グルカ
ン) 308g(1,85モル)とp−トルエンスル
ホン酸 48.?(0,252モル)を溶解し。Reference Example 1 308 g (1,85 mol) of curdlan (β-1,3-glucan) and p-toluenesulfonic acid were added to 1.88 liters of acetic acid. ? (0,252 mol) was dissolved.
これに45〜50℃で無水酢酸 1.n 81 (11
,42モル)を1時間を要して滴下した。滴下量的50
℃で4時間アセチル化反応を行なった後、酢酸3.64
で希釈して吸引濾過した。F液を水 601中に注入し
て晶析させ、析出物をF取、水洗。Add acetic anhydride to this at 45-50°C 1. n 81 (11
, 42 mol) was added dropwise over a period of 1 hour. Dripping amount: 50
After carrying out the acetylation reaction at ℃ for 4 hours, acetic acid 3.64
The solution was diluted with water and filtered with suction. Pour F solution into water 601 to crystallize it, remove the precipitate from F, and wash with water.
乾燥してアセチルカードラン 376g(収率72.4
%)を得た。アセチル含量:43.4%、粘度(1,8
%ギam液、 20’C) : 12.8 cps。Dry to obtain 376 g of acetyl curdlan (yield 72.4
%) was obtained. Acetyl content: 43.4%, viscosity (1,8
%Gam Fluid, 20'C): 12.8 cps.
参考例2゜
酢酸 1.881にカードラン(β−1,3−グルカン
) 308&(1,85モ、ル)とp−トルエンスル
ホン酸 48.!9(0,252モル)を溶解し。Reference Example 2゜Acetic acid 1.881, curdlan (β-1,3-glucan) 308 & (1,85 mol) and p-toluenesulfonic acid 48. ! 9 (0,252 mol) was dissolved.
これに45〜50℃テ無水酢WIl 1.08 l
(11,42モル)を1時間を要して滴下した。調下量
的5【1℃で1時間アセチル化反応を行なった後、参考
例1と同様に処理してアセチルカードラン 380Iを
得た。アセチル含量:44.651 粘&(1g暢ギ酸
溶液、20℃):59cps。Add to this 1.08 l of anhydrous vinegar at 45-50℃.
(11.42 mol) was added dropwise over a period of 1 hour. After carrying out the acetylation reaction at 1° C. for 1 hour, the mixture was treated in the same manner as in Reference Example 1 to obtain acetylcurdlan 380I. Acetyl content: 44.651 Viscous & (1 g strong formic acid solution, 20°C): 59 cps.
参考り113゜
酢酸 1.881にカードラン(β−1,3−グルカン
) 308.9(1,85モル)とp−トルエンスル
ホ71!11’ 481 (0,252% ル)を俗
解し。For reference, 113° acetic acid 1.881, curdlan (β-1,3-glucan) 308.9 (1,85 mol) and p-toluenesulfo 71!11' 481 (0,252% mol).
これに45〜50℃で無水酢酸 1.086 (11,
42モル)を2時間を要して滴下した。滴下量的50℃
で4時間アセチル化反応を行なった後、酢酸3.61で
希釈して吸引濾過した。次いで、P液に浸硫M178.
99と水 1.26/を加え、50°Cで8時間処理し
、アセチル基を部分加水分解した。To this, acetic anhydride 1.086 (11,
42 mol) was added dropwise over a period of 2 hours. Dropped amount: 50℃
After carrying out an acetylation reaction for 4 hours, the mixture was diluted with 3.61 parts of acetic acid and filtered with suction. Next, sulfurize M178.
99 and water 1.26% were added and treated at 50°C for 8 hours to partially hydrolyze the acetyl groups.
反応終了後、これに水 60Jを加えて晶析させ。After the reaction was completed, 60 J of water was added to it for crystallization.
析出晶を戸数、水洗、乾燥して、アセチルカード:lF
7 328.!i+を得た。アセチル含i:37.3%
。The precipitated crystals are washed with water, dried, and acetyl card: 1F
7 328. ! I got i+. Acetyl content: 37.3%
.
粘度(1,8チギ酸溶液、20℃):27cps。Viscosity (1,8 thiformic acid solution, 20°C): 27 cps.
実施例1゜
参考例1.で合成したアセチルカードラン 2部をギ酸
11.3部に溶解、調製したキャスト溶液を水平に保
持されたガラス板上に0.2 tgmの厚さに流延した
後、20℃で4分間溶媒を部分蒸発させた。次論で、2
0℃の水中に浸漬させて膜を得た。Example 1゜Reference example 1. 2 parts of the acetyl curdlan synthesized in 1 were dissolved in 11.3 parts of formic acid, and the prepared casting solution was cast onto a horizontally held glass plate to a thickness of 0.2 tgm. was partially evaporated. In the next discussion, 2
A membrane was obtained by immersing it in water at 0°C.
膜性能を表1に示す。Membrane performance is shown in Table 1.
表 1
実施例2゜
参考例1.で合成したアセチルカードラン 2部をギ酸
8.2部とジメチルホルムアミド 1.7部との混合
溶媒に溶解し調製したキャスト溶液を水平に保持された
ガラス板上に0.211の厚さに流延した後、30℃で
3分間溶出を部分蒸発させた。Table 1 Example 2゜Reference example 1. A casting solution prepared by dissolving 2 parts of the acetyl curdlan synthesized in a mixed solvent of 8.2 parts of formic acid and 1.7 parts of dimethylformamide was poured onto a horizontally held glass plate to a thickness of 0.211 mm. After spreading, the eluate was partially evaporated for 3 minutes at 30°C.
後、氷水中に浸漬、ゲル化させて分離膜を得た。Thereafter, the membrane was immersed in ice water to form a gel, thereby obtaining a separation membrane.
実施例3゜ 参考例1.で合成したアセチルカードラン 2部。Example 3゜ Reference example 1. 2 parts of acetyl curdlan synthesized in
ギ#8.2部、二塩化メチ1/ン 3.4部からなるキ
ャスト溶液を水平に保持されたガラス板上に0、2 w
i、の厚さに流延しt後、20℃で2分間溶媒を部分蒸
発させた。次いで、20℃の水中に浸漬。A casting solution consisting of 8.2 parts of methane dichloride and 3.4 parts of methane dichloride was placed on a horizontally held glass plate at 0.2 w.
After casting to a thickness of i and t, the solvent was partially evaporated at 20° C. for 2 minutes. Then, it was immersed in water at 20°C.
ゲル化させて分離膜を得友。Separation membranes can be obtained by gelation.
膜性能を表3に示す。Membrane performance is shown in Table 3.
表 3
実施例4゜
参考例2.で合成したアセチルカードラン 2部をギ@
18部に溶解して調製したキャスト溶液を水平に保
持されたガラス板上に0.2uの厚さに流延した後、2
0℃で5分間溶媒を部分蒸発させた。次いで、20℃の
水中に浸漬させて分離膜を得た。Table 3 Example 4゜Reference example 2. 2 parts of acetyl curdlan synthesized with Gi@
After casting the cast solution prepared by dissolving 18 parts into a thickness of 0.2 u on a horizontally held glass plate,
The solvent was partially evaporated for 5 minutes at 0°C. Next, a separation membrane was obtained by immersing it in water at 20°C.
膜性能を表4に示す。Membrane performance is shown in Table 4.
表 4
実謄例、5シ1!
参考例3.で合成したアセチルカードラン 2部をギ#
18部に溶解し、調製したキャスト溶液を水平に保持
され几ガラス板上に9.2 mmの厚さに流延し、20
℃で1分間溶媒を部分蒸発させた。Table 4 Authentication example, 5shi1! Reference example 3. 2 parts of acetyl curdlan synthesized in #
The prepared casting solution was cast onto a horizontally held glass plate to a thickness of 9.2 mm.
The solvent was partially evaporated for 1 minute at °C.
次いで、20℃の水中に浸漬、ゲル化させて分離膜を得
た。Next, the membrane was immersed in water at 20° C. to form a gel, thereby obtaining a separation membrane.
膜性能を表5に示す。Membrane performance is shown in Table 5.
表 5 実施例6゜ 参考例1.で合成したアセチルカードラン 2部。Table 5 Example 6゜ Reference example 1. 2 parts of acetyl curdlan synthesized in
ギ@8.2部、二塩化メチレン 3.4部からなるキャ
スト溶液を水平に保持されたガラス板上に0、2 mm
の厚さに流延した後、20℃で2分間溶媒を部分蒸発さ
せた。次いで、20℃の水中に浸漬。A casting solution consisting of 8.2 parts of dichloromethane and 3.4 parts of methylene dichloride was placed on a horizontally held glass plate at a thickness of 0.2 mm.
After casting to a thickness of , the solvent was partially evaporated at 20° C. for 2 minutes. Then, it was immersed in water at 20°C.
ゲル化させて分離膜を得た。A separation membrane was obtained by gelation.
得られ九分離膜の操作圧 4に9/cdでの水の透過a
束!t 4.261 / rrl −hrであった。The operating pressure of the resulting nine separation membranes is 4 to 9/cd water permeation a
bundle! t 4.261/rrl-hr.
この膜を用いて11000ppの乳酸とIoooppm
のグルコースとの1:1混合液を処理した。Using this membrane, 11000pp of lactic acid and Ioooppm
of glucose in a 1:1 mixture.
結果を表6に示す。The results are shown in Table 6.
表 6 但し1分離度は次式によシ算出した。Table 6 However, the degree of separation was calculated according to the following formula.
実施例7゜
参考例1.で合成したアセチルカードラン 2部をギ酸
11.3部に溶解、調製したキャスト溶液を水平に保
持されたガラス板上に0.2 mtxの厚さに流延し友
後、20℃で4分間溶媒を部分蒸発させた。次いで、2
0℃の水中に浸漬させて分離膜を得た。Example 7゜Reference example 1. 2 parts of the acetyl curdlan synthesized in step 1 were dissolved in 11.3 parts of formic acid, and the prepared casting solution was cast onto a horizontally held glass plate to a thickness of 0.2 mtx, and then heated at 20°C for 4 minutes. The solvent was partially evaporated. Then 2
A separation membrane was obtained by immersing it in water at 0°C.
この分離膜の操作圧 4 klil/dでの水の透過流
束は6.61/イ・hrであった。The permeation flux of water through this separation membrane at an operating pressure of 4 klil/d was 6.61/I·hr.
この膜を用いて11000ppのリンゴ酸と11000
ppのシュクロースとの1部1混合液を処理した。Using this membrane, 11,000pp of malic acid and 11,000pp of
A 1 part 1 mixture with pp of sucrose was treated.
結果を表7に示す。The results are shown in Table 7.
表 7 実施例8゜ 参考例1.で合成したアセチルカードラン 2部。Table 7 Example 8゜ Reference example 1. 2 parts of acetyl curdlan synthesized in
ギ酸8.2部、二塩化メチレン 3.4部からなるキャ
ストH液を水平に保持されたガラス板上に0、2 mm
の厚さに流延した後、20℃で2分間溶媒を部分蒸発さ
せた。次すで、20℃の水中に浸漬。Cast H solution consisting of 8.2 parts of formic acid and 3.4 parts of methylene dichloride was placed on a horizontally held glass plate at a thickness of 0.2 mm.
After casting to a thickness of , the solvent was partially evaporated at 20° C. for 2 minutes. Next, immerse it in water at 20℃.
ゲル化させて分離膜を得た。A separation membrane was obtained by gelation.
この分離膜の操作圧 4kg/dでの水の透過流束は4
.261/rrl・hrであったVこの膜を限外ヂ過膜
として用いた場合の各種溶質の阻止率は表8に示す通り
であった。The permeation flux of water at an operating pressure of this separation membrane of 4 kg/d is 4
.. Table 8 shows the rejection rate of various solutes when this membrane was used as an ultrafiltration membrane.
八1会白81st meeting white
Claims (1)
H_7O_2(OR)_x(OH)_3_−_x〕_n
〔1〕〔式中、Rは炭素数1〜4の低級アルキル基又は
R′CO−(但し、R′は炭素数1〜4の低級アルキル
基を表わす。)で表わされるアシル基を表わし、xは1
〜3を表わす。また、nは約200〜2000の整数を
表わす。〕で示されるカードラン誘導体を素材とする分
離膜。[Claims] General formula [1] [C_6] obtained by chemically modifying the hydroxyl group of curdlan (β-1,3-glucan) having the following structure ▲There are mathematical formulas, chemical formulas, tables, etc.▼
H_7O_2(OR)_x(OH)_3_-_x〕_n
[1] [wherein R represents a lower alkyl group having 1 to 4 carbon atoms or an acyl group represented by R'CO- (wherein R' represents a lower alkyl group having 1 to 4 carbon atoms), x is 1
- represents 3. Further, n represents an integer of about 200 to 2000. A separation membrane made from a curdlan derivative shown in ].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27986784A JPS61153101A (en) | 1984-12-26 | 1984-12-26 | Separation membrane using curdlan derivative as raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27986784A JPS61153101A (en) | 1984-12-26 | 1984-12-26 | Separation membrane using curdlan derivative as raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61153101A true JPS61153101A (en) | 1986-07-11 |
JPH0468968B2 JPH0468968B2 (en) | 1992-11-04 |
Family
ID=17617048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27986784A Granted JPS61153101A (en) | 1984-12-26 | 1984-12-26 | Separation membrane using curdlan derivative as raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61153101A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60226830A (en) * | 1984-03-30 | 1985-11-12 | Daicel Chem Ind Ltd | Separating agent consisting of 1,3-glucan |
-
1984
- 1984-12-26 JP JP27986784A patent/JPS61153101A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60226830A (en) * | 1984-03-30 | 1985-11-12 | Daicel Chem Ind Ltd | Separating agent consisting of 1,3-glucan |
Also Published As
Publication number | Publication date |
---|---|
JPH0468968B2 (en) | 1992-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4054707A (en) | Sulphonated polyaryl-ether-sulphones and membranes thereof | |
FI97473C (en) | Process for Preparation of Purified Glycolipids Using Membrane Separation Process | |
US4036748A (en) | Asymmetric, semipermeable membranes of polybenz-1,3-oxazine diones-(2,4) | |
US4045337A (en) | Asymmetric, semipermeable membranes of cyclic polyureas | |
US4083904A (en) | Method for manufacturing phosphorylated cellulose ester membranes for use in the separation or concentration of substances | |
US4026978A (en) | Method of making asymmetric cellulose triacetate membranes | |
Chen et al. | Formalized poly (vinyl alcohol) membranes for reverse osmosis | |
US3962212A (en) | Phosphorylated cellulose ester membrane for use in separation or concentration of substances | |
JPS61153101A (en) | Separation membrane using curdlan derivative as raw material | |
US3544455A (en) | Itaconic acid purification process using reverse osmosis | |
US3527853A (en) | Process for manufacturing semipermeable cellulose acetate membranes suitable for desalination | |
JPS61152701A (en) | Novel curdlan derivative | |
JPS61153102A (en) | Novel separation of organic acid from saccharide | |
US5164475A (en) | Porous substrates with a high concentration of amine groups | |
JPH03109930A (en) | Filter membrane for ultrafiltration | |
SU968042A1 (en) | Method for making semipermeable membranes | |
JPS6366563B2 (en) | ||
JPS60209207A (en) | Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction | |
JPH03131328A (en) | Separation of liquid mixture | |
SU1503841A1 (en) | Method of producing microporous polyamid membrane | |
JPH04215827A (en) | Production of separation membrane for pervaporation | |
JP2023033802A (en) | Method for producing high-sodium low-calcium proteoglycan | |
JPS61222508A (en) | Removal of coloring component | |
SU555118A1 (en) | Composition for producing semipermeable cellulose acetate membranes | |
JPS6039403B2 (en) | Reverse osmosis membrane and its manufacturing method |