JPS60209207A - Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction - Google Patents

Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction

Info

Publication number
JPS60209207A
JPS60209207A JP6506984A JP6506984A JPS60209207A JP S60209207 A JPS60209207 A JP S60209207A JP 6506984 A JP6506984 A JP 6506984A JP 6506984 A JP6506984 A JP 6506984A JP S60209207 A JPS60209207 A JP S60209207A
Authority
JP
Japan
Prior art keywords
sugar
membrane
film
treatment
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6506984A
Other languages
Japanese (ja)
Inventor
Yasuhide Sawada
泰秀 澤田
Toshio Nakao
中尾 俊夫
Fumiaki Matsunaga
松永 文昭
Yasuo Uchida
内田 安雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP6506984A priority Critical patent/JPS60209207A/en
Publication of JPS60209207A publication Critical patent/JPS60209207A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a separating film capable of fractionating an object to fractions having smaller mol.wt. than the separating film before the treatment without impairing the high rate of permeation of the untreated film by immersing the separating film in an aq. soln. of sugar and drying thereafter. CONSTITUTION:The treatment can be applied to separating films consisting of wide variety of kind without being restricted by the structure and shape of the film. A separating film is immersed in an aq. soln. contg. monosaccharide or polysaccharide in water, or the aq. soln. of sugar is sprayed on the separating film. The aq. soln. of the sugar may contain inorg. or org. compds. which does not react with the sugar. Preferred concn. of the sugar is 1-5wt%, and preferred temp. of the aq. soln. is 10-50 deg.C, and preferred treating time is 10-24hr. After the treatment, the film is dried until the weight of the film attains a constant value by an appropriate method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分離膜の低分画化法に関し、その目的とする
ところは調整された分画分子量と高い透過ii′t−有
する膜を得るための簡略な方法を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for low fractionation of separation membranes, and its purpose is to provide membranes with controlled molecular weight cut-off and high permeability ii't-. This is to provide an easy way to obtain.

〔従来技術〕[Prior art]

近年、膜による物質分離は、技術の目覚ましい進歩に伴
い広範囲に応用されるようになった。例えば、海水、か
ん水の淡水化、廃水処理などの製水分野、食品、発こう
工業分野、あるいは人工腎臓などの医療分野等がめる。
In recent years, material separation using membranes has come to be widely applied due to remarkable advances in technology. Examples include the water production field, such as seawater and brine desalination, and wastewater treatment; the food and gas production industry; and the medical field, such as artificial kidneys.

膜に要求嘔れる機能は、各分野固有のものと共通のもの
とがめるが、その使用条件と相俟りてよシ高度になpつ
つめる。
The functions required of membranes are considered to be both unique to each field and common, but they are expected to be more sophisticated depending on the conditions of use.

各゛分野固有の要求性能というのは、固有の物理的、化
学的安定性であり、例えば海水の淡水化では、耐塩素性
、耐#I性、耐熱性、耐加水分解性、耐薬品性、耐微生
中性などがある。また、食品関連分野では、衛生面が、
医療分野では生体への無毒性が特に要求されている。
The required performance specific to each field is its own physical and chemical stability. For example, in seawater desalination, chlorine resistance, #I resistance, heat resistance, hydrolysis resistance, and chemical resistance are required. , microbial resistant and neutral. In addition, in the food-related field, hygiene is
In the medical field, non-toxicity to living organisms is particularly required.

そして、この様な各分野固有の要請とともにいずれの分
野においても、より精密な分画性と、より大きな透過量
が望まれているが、一般的に分画性と透過量は相反した
性質のものであり分画性を保ったtま高い透過量の膜を
得る事は容易ではない。
In addition to the unique demands of each field, more precise fractionation and a larger permeation amount are desired in each field, but in general, fractionation and permeation amount have contradictory properties. However, it is not easy to obtain a membrane with high permeability while maintaining fractionation.

従来より多くの工夫が行なわれているが、不充分であっ
たり、また高度な技術を必要とする等の問題点が残され
ている。すなわち、透過量金高める方法としては、従来
親水性ポリマーを利用する方法、官能基を導入する方法
、複合化方法などがめる。
Although many attempts have been made in the past, there still remain problems such as insufficiency and the need for advanced technology. That is, conventional methods for increasing the permeation amount include methods using hydrophilic polymers, methods for introducing functional groups, and methods for compounding.

親水性ポリマーとしては、セルロース及びセルロ、、−
ス誘導体系の膜がおるがこれらの膜は、水や水浴液の濾
過目的には最も広く使用されている。
Hydrophilic polymers include cellulose and cellulose, -
Although there are membranes based on gas derivatives, these membranes are most widely used for the purpose of filtration of water and bath liquids.

しかしながら耐薬品性、耐熱性などの化学的安定親水性
官能基は、一般に物理的化学的安定性に優れているポリ
サルホンやポリテトラフルオロエチレン、ポリプロピレ
ン、ポリエチレンなどの疎水性、為水性高分子への導入
が主である。官能基としては、酸性基であるスルホン酸
基yカルホン基などと雲れらの塩で69種′の方法で導
入されている。しかしながら、反応条件と性能の制御が
峻しく膜の安定性に支障をきたす場合が多い。
However, chemically stable hydrophilic functional groups such as chemical resistance and heat resistance are generally compatible with hydrophobic and hydrophilic polymers such as polysulfone, polytetrafluoroethylene, polypropylene, and polyethylene, which have excellent physical and chemical stability. The main thing is introduction. Functional groups include acidic groups such as sulfonic acid groups and carphonic groups, and salts of clouds, which are introduced in 69 different ways. However, the reaction conditions and performance must be tightly controlled, which often impairs the stability of the membrane.

−万、複合化膜は、特に逆浸透膜として種々開発されて
2す、その特長は分離膜素材の部分と支持体の部分とが
機能的に分けられている点にある。
- Various types of composite membranes have been developed, particularly as reverse osmosis membranes, and their feature is that the separation membrane material part and the support part are functionally separated.

しかしながら、分離膜素材の選択や製膜方法には特殊な
技術が必要である。従って海水やかん水の淡水化等の様
な量産メリットの出ろ分野しか実用化されていないのが
現状である。
However, special techniques are required for selection of separation membrane materials and membrane manufacturing methods. Therefore, at present, it has only been put to practical use in areas where mass production advantages can be achieved, such as desalination of seawater and brine water.

以上のようにいくつか問題点がある中で、特に高透過性
tl!求している分野に低中分子濾過がめる。例えば、
食塩等の無機塩類と塗料粒子、たん白の様な高分子量物
質との間には、アミノ酸、糖、色素、等々多種多様の有
用な、あるいは好ましくない化合物があるがそれらの回
収や除去全必要とする分野で食品、発こう、医薬品工業
に2けるプロセス内での精製、廃水処理、有価物回収等
である。これらの分野での膜分離の適用も鋭意研究が進
められているが種々の固有の問題金銭している。
Among the above-mentioned problems, especially the highly transparent TL! Focus on low and medium molecule filtration in the field you are looking for. for example,
Between inorganic salts such as table salt and high molecular weight substances such as paint particles and proteins, there are a wide variety of useful and undesirable compounds such as amino acids, sugars, and pigments, and it is necessary to recover and remove them. These fields include refining, wastewater treatment, and recovery of valuables within processes in the food, gas, and pharmaceutical industries. Application of membrane separation in these fields is also being intensively researched, but it is fraught with various inherent problems.

従来よりROまたはUF用の膜素材を適応させる試みが
なされているが、充分満足な性能、つまり物理的化学的
安定性と分画性を保持し、高い透過量を有する膜は得ら
れていないのが現状である。
Attempts have been made to adapt membrane materials for RO or UF, but a membrane with sufficiently satisfactory performance, that is, a membrane that maintains physical and chemical stability and fractionability and has a high permeation rate, has not been obtained. is the current situation.

例えば、分画性について、現状のRO用膜すなわち非常
に分画の小さい膜では運転に高い圧力を要する上に、問
題となっている透過量が小さすぎる。
For example, regarding fractionation, current RO membranes, that is, membranes with very small fractions, require high pressure to operate, and the amount of permeation, which is a problem, is too small.

一方分画分子量が10,000のオーダーのUP’用膜
では充分な透過量は得られるが、分画性能が不光分であ
る。
On the other hand, a membrane for UP' having a molecular weight cut-off on the order of 10,000 can obtain a sufficient amount of permeation, but its fractionation performance is poor.

〔発明の目的〕[Purpose of the invention]

本発明者らは、上記に鑑みて鋭意研究し7’tli果、
分離膜t−糖水浴液に浸漬後乾燥すれば、高い透過量を
保持しつつ処理前の分離膜よりも小さφ分画分子量を有
せしめることが出来ることを見い出して、さらに検討を
進め本発明に至ったものである。
In view of the above, the present inventors conducted extensive research and found that
It was discovered that by drying the separation membrane after immersing it in a sugar water bath, it was possible to maintain a high permeation rate and have a smaller φ cut-off molecular weight than the separation membrane before treatment, and further studies led to the invention of the present invention. This is what led to this.

従って本発明の目的は、分離膜の低分画化方法に2いて
調整された分画分子量と高い透過量を有する膜を得るた
めの簡略な方法を提供するにある。
Therefore, an object of the present invention is to provide a simple method for obtaining a membrane having a controlled molecular weight cutoff and a high permeation amount by using a separation membrane with a low fractionation method.

〔発明の槽底〕[Battle bottom of invention]

本発明は、分離膜を糖の水溶液に浸漬後乾燥することを
特徴とする低分画化7方法である。
The present invention is a seventh method for low fractionation characterized by immersing a separation membrane in an aqueous sugar solution and then drying it.

本発明で言う分離膜は、気−気分熱膜、気−液分離膜、
液−液分離膜、液−同分離膜など物質分離の目的で使用
されうる膜であれば特に限定されない。造水分野、食品
、発こう工業分野、医療分野などで使用される分離膜に
利用でき、分離膜の分画性についても何ら制限されない
。好適には逆浸透膜−?限外濾過膜に適用される。
The separation membrane referred to in the present invention includes a gas-gas thermothermal membrane, a gas-liquid separation membrane,
The membrane is not particularly limited as long as it can be used for the purpose of substance separation, such as a liquid-liquid separation membrane or a liquid-liquid separation membrane. It can be used in separation membranes used in the field of water production, food products, the gas production industry, the medical field, etc., and there are no restrictions on the fractionability of the separation membrane. Preferably a reverse osmosis membrane? Applied to ultrafiltration membranes.

膜素材も広範な素材に適用でき、例えば、酢酸ポリアミ
ド、ポリカーボネート、ポ リアクリロニトリル、ポリメチルメタクリレート、ポリ
イミド、ポリエーテルイミド、ポリサルホンポリエーテ
ルサルホンやそれらのブレンド、ブロック共重合体、そ
してグラフト共重合体などがあげられる。
Membrane materials can also be applied to a wide variety of materials, such as polyamide acetate, polycarbonate, polyacrylonitrile, polymethyl methacrylate, polyimide, polyetherimide, polysulfone polyethersulfone and their blends, block copolymers, and graft copolymers. etc.

膜組織は、非対称膜、対称膜、あるいは複合膜でもよく
膜形状も、平板状、中空子状、管状のいずれでもよい。
The membrane structure may be an asymmetric membrane, a symmetric membrane, or a composite membrane, and the membrane shape may be flat, hollow, or tubular.

本発明で言う糖とは、単糖類とこれが複数個互いにグリ
コシド結合し次長糖類である。炭素骨格が直鎖状なもの
、分枝しているもの、アルコール性水酸基の一部が水素
原子や他の基に置換しているものなど合成糖でもよい。
The term saccharides used in the present invention refers to monosaccharides and sub-long saccharides in which a plurality of monosaccharides are glycosidic bonded to each other. Synthetic sugars such as those with a straight carbon skeleton, those with branched carbon skeletons, and those with some of the alcoholic hydroxyl groups substituted with hydrogen atoms or other groups may also be used.

本発明で言う糖の水溶液は、糖を水で溶解させた溶液で
あり、液中に糖と化学反応上おこ適ない水浴性無機物、
アセトン、アルコール等の有機物、あるいは高分子を含
む混合溶液系も用いる事が出来る。
The aqueous solution of sugar referred to in the present invention is a solution in which sugar is dissolved in water.
A mixed solution system containing organic substances such as acetone and alcohol, or polymers can also be used.

糖の水溶液濃度についても何ら制限されない。There is also no restriction on the concentration of sugar in the aqueous solution.

しかし水溶液濃度が0.5wt%以下では効果がなく極
端に低い透過量となり実用上好ましぐないので好適には
1〜5.wtチの濃度が用いられる。
However, if the aqueous solution concentration is less than 0.5 wt%, there will be no effect and the amount of permeation will be extremely low, which is not practical, so it is preferably 1 to 5. A concentration of wt.

水溶液による分離膜の処理方法としては、静置又は攪拌
した水溶液中に分離膜1浸漬する方法、膜に水溶液を循
環、供給する方法、分離膜に水浴液を噴霧する方法のい
ずれでも゛よい。水浴液温度は均一な溶液を保つ範囲で
めればよ〈通常10υ〜50℃の範囲で10〜24時間
の処理で充分である。
As a method for treating the separation membrane with an aqueous solution, any of the following methods may be used: immersing the separation membrane in a standing or stirring aqueous solution, circulating and supplying the aqueous solution to the membrane, and spraying a water bath liquid onto the separation membrane. The temperature of the water bath should be adjusted within a range that maintains a homogeneous solution (usually treatment in the range of 10υ to 50°C for 10 to 24 hours is sufficient).

分離膜を糖水浴液で処理後乾燥する際は、自然乾燥、加
熱乾燥、送風乾燥、減圧乾燥のいずれでもよく、また乾
燥時間についても膜中の水分が蒸発して膜が恒量に達す
るまで乾燥すnばよくいずれの方@tもちいてもよい。
When drying the separation membrane after treating it with a sugar water bath, it may be dried naturally, by heating, by blow drying, or by vacuum drying, and the drying time is determined until the water in the membrane evaporates and the membrane reaches a constant weight. You can use either @t.

〔発明の効果〕〔Effect of the invention〕

以上本発明に従うと、簡略な方法により処理前の分離膜
の@埋的化学的安定性を保持し茂まま分画分子1量を低
くし、かつ高い透過量を有する膜を得ることが出来る。
As described above, according to the present invention, it is possible to obtain a membrane that maintains the chemical stability of the separation membrane before treatment, reduces the amount of fractionated molecules per unit amount, and has a high permeation amount, by a simple method.

特に低中分子濾過については、従来の限外濾過膜を本発
明の方法で処理することによりその性能は、高排除率、
高透過量となりこれに適用させることが出来る。
Particularly for low-middle molecule filtration, by treating conventional ultrafiltration membranes with the method of the present invention, their performance can be improved by high rejection rates,
It has a high permeation amount and can be applied to this.

また本発明は、乾燥膜として得られるので、従来の湿潤
膜の保存や装置の組立あるいは輸送とiつた問題が解決
される。そのうえ、糖水溶液で処理、乾燥を行なってい
るので、界面活性剤溶液へ浸漬し乾燥する方法や、アル
コール、ケトン等の蒸気による処理方法に較べ衛生面で
の安全性が向上する。本発明による乾燥膜は、再湿潤化
が容易であるので使用時の前処理での時間を大幅に短縮
することが出来非常に実際的である。
Furthermore, since the present invention is obtained as a dry membrane, problems associated with storage, assembly, and transportation of conventional wet membranes are solved. Furthermore, since the treatment and drying are performed using an aqueous sugar solution, sanitary safety is improved compared to a method of immersing the product in a surfactant solution and drying it, or a method of processing using vapor of alcohol, ketone, or the like. Since the dry membrane according to the present invention can be easily rewetted, the time required for pretreatment before use can be significantly shortened, making it very practical.

〔実施例〕〔Example〕

以下、実施例2よび比較例によp本発明の効果を具体的
に説明する。
The effects of the present invention will be specifically explained below using Example 2 and Comparative Examples.

実施例−1比較例−1 芳香族ポリエーテルイミドULTEM100O(GE社
製)203!量部會N−メチルー2−ピ冑リドン80重
蓋部に加熱溶解ざゼ、レジン溶液t−1111した。脱
泡後、室温にてガラス板上に流延しさらに29’0の水
に浸漬して厚嘔100〜110μの未処理膜を得た。
Example-1 Comparative Example-1 Aromatic polyetherimide ULTEM100O (manufactured by GE) 203! In a weighing section, N-methyl-2-pyrolydone was heated and dissolved in a 80-layer lid, and a resin solution of t-1111 was added. After degassing, it was cast onto a glass plate at room temperature and further immersed in 29'0 water to obtain an untreated film with a thickness of 100 to 110 μm.

比較例−1では得られた未処理膜上そのtま用い、実施
例−1ではこの未処理at−go℃の1wtチシ冒糖水
溶液に12時間浸漬後、80℃で2時間加熱乾燥しさら
に20°0の水に12時間浸漬処理した。このようにし
て得られた実施例−1及び比較例−1の分離膜の性能は
、逆浸透装置で操作圧力20時/ぺ供給水5wtチショ
糖水浴液、供給水温度20℃で測定した結果全第1表に
示す。
In Comparative Example-1, the obtained untreated membrane was used for the entire time, and in Example-1, the untreated film was immersed in a 1 wt lactose aqueous solution at 80°C for 12 hours, and then heated and dried at 80°C for 2 hours. It was immersed in water at 20°0 for 12 hours. The performance of the separation membranes of Example-1 and Comparative Example-1 thus obtained was measured using a reverse osmosis device at an operating pressure of 20 hours/5wt of feed water in a tisucrose water bath solution and at a feed water temperature of 20°C. All are shown in Table 1.

第 1 表 な2、ショ糖排除率と透過量の経時変化は、測定開始後
80分で定常状態となりその後の変化はなかった。また
、この処理膜は、水洗後もショ糖排除率、透過量共にほ
とんど変化が認められ゛なかった。
Table 1.2. The time-dependent changes in the sucrose rejection rate and permeation amount reached a steady state 80 minutes after the start of the measurement, and there were no changes thereafter. Further, in this treated membrane, almost no change was observed in both the sucrose rejection rate and the permeation amount even after washing with water.

実施例8〜1lI −施例−IKj?いて、1wt%シg糖水溶液?+−0
.1.0.6,1.0.2.0wt%の各デキストラy
T−10水浴液に変え、他の秦件荀同−にして得られた
処理膜の性能を測定した結果を第2表に示す。
Examples 8-1lI-Example-IKj? 1wt% sig sugar aqueous solution? +-0
.. 1.0.6, 1.0.2.0wt% of each dextra
Table 2 shows the results of measuring the performance of treated membranes obtained by changing to the T-10 water bath solution and using other Qin systems.

第 2 表 比較例−2 実施例−1で得られた未処理膜を糖水溶液に浸漬せず8
0°0で2時間転線し、12時間水に浸漬した。ショ糖
排除率10.0%で透過量4.2t/a?hrであった
Table 2 Comparative Example-2 The untreated membrane obtained in Example-1 was not immersed in the sugar aqueous solution8
It was turned at 0°0 for 2 hours and immersed in water for 12 hours. Permeation amount 4.2t/a with sucrose rejection rate 10.0%? It was hr.

比較例−8 実施例−I Vt spイテ1wt% シw糖水浴液r
Comparative Example-8 Example-I Vt spite 1wt% sugar water bath liquid r
.

1wt% NhC1水溶液に変え他の条件を同一にして
得らnた処理膜の性能を測定したところシ璽糖排除率1
4.5 %透過量20放hrでめった。
When we measured the performance of the treated membrane obtained by changing to a 1wt% NhC1 aqueous solution and keeping other conditions the same, the sucrose rejection rate was 1.
4.5% transmission amount was reached after 20 hours.

実施例−6 実施例−1に&いて芳香族ポリエーテルイずドを芳香族
ポリサルホンUl)ELP−1700(ユニオンカーバ
イト社製)に変え他の条件を同一にして得られた処理膜
の性能を測定した。その結果シ曹糖排除率29.0 %
、透過量4?t//wPhrでめった。
Example-6 The performance of the treated membrane obtained by changing the aromatic polyether oxide to aromatic polysulfone (UL) ELP-1700 (manufactured by Union Carbide) in Example-1 and keeping the other conditions the same was measured. did. As a result, the elimination rate of sulfate sugar was 29.0%.
, transmission amount 4? t//wPhr was rare.

Claims (1)

【特許請求の範囲】[Claims] 分離膜内及び表面に糖の水溶液tlI!!触させ、その
まま乾燥することを特徴とする分離膜の低分画化方法。
Aqueous sugar solution tlI inside and on the surface of the separation membrane! ! A method for reducing the fractionation of a separation membrane, which is characterized by contacting the membrane and drying it as is.
JP6506984A 1984-04-03 1984-04-03 Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction Pending JPS60209207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6506984A JPS60209207A (en) 1984-04-03 1984-04-03 Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6506984A JPS60209207A (en) 1984-04-03 1984-04-03 Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction

Publications (1)

Publication Number Publication Date
JPS60209207A true JPS60209207A (en) 1985-10-21

Family

ID=13276289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6506984A Pending JPS60209207A (en) 1984-04-03 1984-04-03 Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction

Country Status (1)

Country Link
JP (1) JPS60209207A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053133A (en) * 1990-02-09 1991-10-01 Elias Klein Affinity separation with activated polyamide microporous membranes
EP0992277A1 (en) * 1998-10-09 2000-04-12 Saehan Industries, Inc. Dry semipermeable reverse osmosis membrane and process for preparing the same using saccharides
EP2633901A1 (en) * 2010-10-26 2013-09-04 Toray Industries, Inc. Separation membrane, separation membrane element and separation membrane production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053133A (en) * 1990-02-09 1991-10-01 Elias Klein Affinity separation with activated polyamide microporous membranes
EP0992277A1 (en) * 1998-10-09 2000-04-12 Saehan Industries, Inc. Dry semipermeable reverse osmosis membrane and process for preparing the same using saccharides
EP2633901A1 (en) * 2010-10-26 2013-09-04 Toray Industries, Inc. Separation membrane, separation membrane element and separation membrane production method
EP2633901A4 (en) * 2010-10-26 2014-09-17 Toray Industries Separation membrane, separation membrane element and separation membrane production method

Similar Documents

Publication Publication Date Title
US5444097A (en) Porous polymeric structures and a method of making such structures by means of heat-induced phase separation
US4125462A (en) Coated membranes
AU576364B2 (en) High flux membrane
Hasegawa et al. Preparation of blood‐compatible hollow fibers from a polymer alloy composed of polysulfone and 2‐methacryloyloxyethyl phosphorylcholine polymer
KR960003152B1 (en) Stable membranes from sulfonated polyarylethers
US5039420A (en) Hydrophilic semipermeable membranes based on copolymers of acrylonitrile and hydroxyalkyl esters of (meth) acrylic acid
JP2008043948A (en) Solvent-resistant nanofiltration membrane
US5238570A (en) Asymmetric semipermeable membranes of aromatic polycondensates, processes for their preparation and their use
US4159251A (en) Ultrafiltration membranes based on heteroaromatic polymers
US4083904A (en) Method for manufacturing phosphorylated cellulose ester membranes for use in the separation or concentration of substances
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
US4319008A (en) Polyether admixture and semi-permeable membranes comprised thereof
JPS61238834A (en) Porous polysulfone resin membrane
CN102512997B (en) Hydrophilic polyethersulfone with cardo alloy ultrafiltration membrane and preparation method thereof
JPS60209207A (en) Treatment of separating film to acquire capacity for fractionating lower molecular weight fraction
DK156813B (en) A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE
US5132059A (en) Process for producing a polyvinyl formal ultrafiltration membrane
Li et al. Exploration of ionic modification in dual‐layer hollow fiber membranes for long‐term high‐performance protein separation
JPH0568292B2 (en)
JPS61222503A (en) Method for preparing desalted water
USRE34239E (en) Semi-permeable membranes
JPH03109930A (en) Filter membrane for ultrafiltration
US5221482A (en) Polyparabanic acid membrane for selective separation
JPH0516290B2 (en)
JP2000210544A (en) Production of semipermeable membrane