JPS61152067A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61152067A
JPS61152067A JP27322484A JP27322484A JPS61152067A JP S61152067 A JPS61152067 A JP S61152067A JP 27322484 A JP27322484 A JP 27322484A JP 27322484 A JP27322484 A JP 27322484A JP S61152067 A JPS61152067 A JP S61152067A
Authority
JP
Japan
Prior art keywords
wafer
layer
gaas
back surface
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27322484A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Fukuda
福田 勝義
Yasuyuki Saito
斎藤 靖幸
Shigeru Yasuami
安阿弥 繁
Akimichi Hojo
北條 顕道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27322484A priority Critical patent/JPS61152067A/en
Publication of JPS61152067A publication Critical patent/JPS61152067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Abstract

PURPOSE:To form a high speed integrated circuit by providing an electrode formed with a conductor layer which contains a metal boride of a main component of high melting point transition metal such as Ta, Nb, Ti, W, Mo, etc. or further contains nitrogen on a semiconductor substrate such as GaAs, etc. CONSTITUTION:A GaAs wafer 2 which has an epitaxial growth layer 1 is prepared and, e.g., boracic tungsten 3 3,000Angstrom thick is laid on he surface of the wafer by plasma decomposition. The boracic tungsten is finished to a required shape and dimensions using hot etching. Then, a COD-AlN film 4 is formed on all the surface of the wafer and annealed. Further, the back surface of the wafer is made thinner by polishing, an Au-Ge layer is formed on all the back surface by vacuum deposition, etc. and an ohmic electrode 5 of the back surface is formed by making an alloy with GaAs. At last, the AlN film 4 on the surfaces is removed with a solution of fluoric acid, etc.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高融点遷移金属のホウ素化合物またはこれに窒
素を含めた電極を備えている半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device equipped with an electrode containing a boron compound of a high melting point transition metal or nitrogen therein.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体基体に該基体を電気的に活性化させるために荷電
子数の異なった元素をイオンとして注入するイオン注入
技術は、半導体素子製造、特に微細なパターンを有する
集積回路製造工程で欠かせない技術となっている。この
工程と、該イオンを活性化するために高温下(保持する
アニール工程を用いるため、電極配線用金属、又は絶縁
用材料等も過酷な条件で用いられる。例えばGaAs 
等のような■−v族化合物半導体ではGaAs表面の所
要部分にマスク等で選択的に活性化不純物として8iを
適当な加速度で適当な濃度(例えば100で2 X 1
0’an−” )注入した後、マスクを取除き、高温度
で通常は750〜1000℃、1秒〜数十分間保持し注
入原子の活性化アニール処理を行なわなければならない
。イオン注入用のマスクとして、レジス)t  Sin
!、8iNもしくは高融点金属又はそれらの併用が用い
られるがあるが、集積回路の微細化や高性能化に供なっ
てマスクズレの低減、゛ソース抵抗の減少のため、七ル
ファウインメント技術が用いられるようになってきた。
Ion implantation technology, in which elements with different numbers of valence electrons are implanted as ions into a semiconductor substrate in order to electrically activate the substrate, is an indispensable technology in the manufacturing of semiconductor devices, especially in the manufacturing process of integrated circuits with fine patterns. It becomes. Since this process and an annealing process in which the ions are maintained at high temperatures are used to activate the ions, metals for electrode wiring or insulating materials are also used under harsh conditions.For example, GaAs
In the case of ■-V group compound semiconductors such as
After implanting (0'an-"), the mask must be removed and the implanted atoms must be activated by annealing by holding at a high temperature, usually 750 to 1000 degrees Celsius, for 1 second to several tens of minutes. For ion implantation. As a mask of Regis)t Sin
! , 8iN, high-melting point metals, or a combination thereof are used, but with the miniaturization and higher performance of integrated circuits, 7iN is used to reduce mask misalignment and source resistance. It's starting to look like this.

セルフアライメント技術は例えばイオン注入のマスクに
高融点金属層を用い、それを残してアニールを行ない、
そのまま電極として用いる方法である。このようなセル
フアラインメント技術ヲ使用するための高融点金属層と
して例えば、 VV; Ti+Ta等がある。しかしこ
れらの金属は700℃以上の温度となると、 GaAs
基体との反応がかなり促進され、電気的特性、例えばシ
ョットキーダイオードを作成した場合、ショットキ障壁
の高さφnの低下、ダイオードの良否の指標としてのn
値の増大による不良化等を起こす。又高融点金属の合金
としてT i W、 WS iや遷移金属の窒素化物等
があるが、TiW。
Self-alignment technology, for example, uses a high-melting point metal layer as a mask for ion implantation, leaves it in place, and performs annealing.
This method uses it as an electrode as it is. An example of a high melting point metal layer for using such self-alignment technology is VV; Ti+Ta. However, when these metals reach a temperature of 700°C or higher, GaAs
The reaction with the substrate is considerably promoted, and the electrical properties, for example, when a Schottky diode is created, the Schottky barrier height φn decreases, and n as an indicator of the quality of the diode decreases.
An increase in the value may cause defects, etc. In addition, there are TiW, WSi, transition metal nitrides, etc. as alloys of high melting point metals, and TiW.

WS i’iI Id シm y ) ’I’障壁の高
さφnは0.1〜0.75(V)と多少低く、遷移金属
の窒素化物は比抵抗が数百μΩ・偲と多少大きい欠点が
ある。又、基板との線膨張率差も重要な要点である。
WS i'iI Id Symy) 'I' barrier height φn is somewhat low at 0.1 to 0.75 (V), and transition metal nitrides have a somewhat large resistivity of several hundred μΩ・偲. There is. Furthermore, the difference in linear expansion coefficient with the substrate is also an important point.

〔発明の目的〕 本発明は高速集積回路の実現を可能とする半導体装置を
提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a semiconductor device that makes it possible to realize a high-speed integrated circuit.

〔発明の概要〕[Summary of the invention]

本発明は半導体、特にGaA s等の半導体基体上にT
atNbt Tit We Mo等の高融点遷移金属を
主成分とする金属のホウ素化物又はこれに窒素を含有す
るようにした導電体層(より形成された電極を備え、高
温度のアニール後にも、基体との反応を起こさず、良好
な電気的特性を示す半導体装置である。又、ホウ素化物
の形成には高融点遷移金属のハロゲン化物と水素化ホウ
素を含んだ雰囲気中での熱分解又はプラズマ分解によっ
て行なうことで容易に形成できる。
The present invention provides T
AtNbt Tit We Equipped with an electrode formed of a metal boride containing a high melting point transition metal as the main component or a conductor layer (containing nitrogen therein), it remains in contact with the substrate even after high-temperature annealing. It is a semiconductor device that exhibits good electrical characteristics without causing any reaction.Also, borides can be formed by thermal decomposition or plasma decomposition in an atmosphere containing high melting point transition metal halides and boron hydride. It can be easily formed by doing this.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高融点金属のホウ素化物又はこれに窒
素を入れたものを電極材料として用いることにより、高
温に耐え、なおかつGaAs との線膨張差を小さく選
べるため、特性変動の少ない良好な電極を具備した半導
体装置を提供できる。
According to the present invention, by using a boride of a high melting point metal or a material containing nitrogen therein as an electrode material, it is possible to withstand high temperatures and have a small linear expansion difference with GaAs. A semiconductor device including electrodes can be provided.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例について図面を参照しながら説
明する。第1図(a)〜(f)はこの発明の半導体装置
の一例でショットキダイオードを形成する工程で、虜に
得られる生成品の各断面図を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1(a) to 1(f) show cross-sectional views of products obtained in the process of forming a Schottky diode as an example of the semiconductor device of the present invention.

まずエピタキシャル成長層■を有するGaAaウェ八〇
をへ意する。エピタキシャル層は厚さ2μへn M ’
P +リア瞬度5 ×1 o”ots−”、GaAs 
下jtk tg 41 Fito”cm−”程度のn型
キャリア濃度を有するのが望ましい。次に第1図(b)
の如く核ウェハの表面に厚さ3QOOAの例えばホウ素
化タングステン(WB)■をプラズマ分解法で被着する
。プラズマ分解法の手順としては、前記ウェハをプラズ
マ分解装置内に配置し、まず装置内を〜lX10’To
rr台の真空にし次に例えば5慢程度の六弗化タ/グス
テ/7!/ステンガスを含んだアルゴンガスとλ5慢程
度の水素化ホウ素(ジボラン)を含んだアルゴンガスを
所定の比率(20:50CC/111m )で流しなが
ら真空度t 〜10−’Torr 台1c L ”Ck
き、約200WO高周波電力で〜1時間放電させて、ホ
ウ素化タングステンを2000人形成する。なおウェハ
は100〜300CK”加熱しておく。流量の比率でホ
ウ素化夕/グステ/の比率も変えることができる。次に
第1図(C)に示すようにホトエ、チ/グ法を用いて、
所筈の形状寸法にホウ素化タングステンをr)11工す
る。この例では、直径100μmの円型の11L極形成
予定域で一部を残して+I!部のホr7素化合金1−を
除去し、電f11It−形成する。WBA−を選択的に
除去するくは、)(F系の溶液又は反応性イオノエツチ
ング技術を用いる。次に@1図(dlの如くウェハ全面
に300’C〕fiIij下テC(JD−AJN[(り
を形成し、800℃テ20分間保持し、ケニーIJング
を施す。さらに第1図(e)の如くクエハIX面と研摩
によって2〜150μmまで薄くシ、裏面全体に真空蒸
着法等でAu−Ge層を形成し、〜35o℃、20分程
度保持し、GaAsとの合金化を行なって裏面のオーム
性11極追)を形成する。最後に第1図(f)の如く表
面上のAIN膜■を7ツfR溶液碑で除去する。このよ
うにして形成されたホウ素化タ/グステ/−シ冒ットキ
ーダイオードを電気的に測定しな結果、障壁の高さφn
=0.9  、 net 〜1.2、直列抵抗Rs =
0.5Ω、逆方向耐圧20  であった。
First, a GaAA wafer 80 having an epitaxially grown layer 1 is prepared. The epitaxial layer has a thickness of 2μ nM'
P + rear moment 5 ×1 o”ots-”, GaAs
It is desirable to have an n-type carrier concentration of about "cm-" below. Next, Figure 1(b)
For example, tungsten boride (WB) (3QOOA) is deposited on the surface of the nuclear wafer by plasma decomposition as shown in FIG. In the plasma decomposition method, the wafer is placed in a plasma decomposition apparatus, and the inside of the apparatus is heated to ~lX10'To.
rr vacuum and then, for example, about 5 degrees of hexafluoride/guste/7! / While flowing argon gas containing Sten gas and argon gas containing boron hydride (diborane) of about λ5 at a predetermined ratio (20:50CC/111m), the degree of vacuum t ~ 10-' Torr Table 1c L "Ck
Then, discharge with about 200 WO high frequency power for ~1 hour to form 2000 tungsten boride. Note that the wafer is heated to 100 to 300 CK". The ratio of boronization/boronization can be changed by changing the flow rate. Next, as shown in FIG. hand,
R) 11 Machining of tungsten boride to the desired shape and dimensions. In this example, a circular 11L pole with a diameter of 100 μm is planned to be formed, leaving a part of +I! The phor7 alloy 1- is removed to form an electric field f11It-. To selectively remove WBA-, use F-based solution or reactive ion etching technology. [()], hold at 800°C for 20 minutes, and perform Kenney IJ.Furthermore, as shown in Fig. 1(e), the wafer IX surface is polished to a thickness of 2 to 150 μm, and the entire back surface is coated with vacuum evaporation, etc. An Au-Ge layer is formed at ~35oC for about 20 minutes, and alloyed with GaAs to form an ohmic 11-pole layer on the back surface.Finally, the surface is heated as shown in Figure 1(f). The upper AIN film 2 is removed using a seven-layer fR solution.The thus formed boron-containing diode is electrically measured and the barrier height φn is
=0.9, net ~1.2, series resistance Rs =
The resistance was 0.5Ω and the reverse breakdown voltage was 20Ω.

又、ホウ素の比率を20〜80慢の範囲にすれば、Ga
Asとの線膨張差はI X 10”C−1であり、残留
歪の低域ができた。さらにこのWB層に窒素を入れても
上記実施例と特性的には同様であった。
Also, if the boron ratio is set in the range of 20 to 80%, Ga
The difference in linear expansion with As was I x 10''C-1, and a low residual strain was achieved.Furthermore, even if nitrogen was added to this WB layer, the characteristics were the same as in the above embodiment.

次にこのようなホウ素化タングステン層を用いたセルフ
アラインメント形FETについて説明する。
Next, a self-alignment type FET using such a tungsten boride layer will be explained.

第2図(a)〜(f)はこの例のFETを形成する工程
で、順に得られる生成品の断面図を示す。まず第1図(
a)に示す如(GaAs半絶縁性基板■に例えば第2図
(b)の如くレジスト等でイオン注入用窓■を形成し、
その上からSi原子をイオン注入して第1イオン注入層
■を形成する。次に第2図(C1の如くイオン注入用窓
を除去し、前記例と同じ様にホウ素化タングステン層を
〜3000λ被着した後、前述の様にホトエツチング法
を用いてゲート電極■を形成する。次に第1図(d)の
如くセルフアラインメント法として知られているように
、このゲート電極■とレジスト■とをマスクとして、第
1イオン注入層■より濃(Si原子をイオン注入して高
濃度の第2イオン注入層[相]を形成する。続いて第1
図(61の如くレジストを除し、ウェハ全面に〜300
℃の温度下で、CVDAlN■を3000人程度形成す
る。この後該ウェハを不活性又は還元性雰囲気中で、8
00℃、15分程度保持し、アニールによってイオン注
入層を活性化させる。その後第1図(f)の如く表面の
AIN膜■を除去する。さらにボ/ディ/グに便利な様
K例えばAuを真空蒸着等で行ない、ソース電極@、ド
レイン電極◎を形成して、セルフアラインメント型FE
Tが作成できる。
FIGS. 2(a) to 2(f) show cross-sectional views of products sequentially obtained in the steps of forming the FET of this example. First, Figure 1 (
As shown in a), an ion implantation window (2) is formed on a GaAs semi-insulating substrate (2) using a resist or the like as shown in FIG. 2 (b),
Si atoms are ion-implanted from above to form a first ion-implanted layer (2). Next, as shown in FIG. 2 (C1), the ion implantation window is removed, and a tungsten boride layer of ~3000λ is deposited as in the previous example, and then the gate electrode (2) is formed using the photoetching method as described above. Next, as shown in Fig. 1(d), as is known as the self-alignment method, using this gate electrode (■) and resist (■) as a mask, ions are implanted (Si atoms) in a higher concentration than the first ion-implanted layer (■). Form a high concentration second ion implantation layer [phase].Subsequently, the first ion implantation layer [phase] is formed.
As shown in Figure (61), the resist is removed and the entire surface of the wafer is coated with ~300
About 3,000 layers of CVD AlN■ are formed at a temperature of ℃. After this, the wafer was placed in an inert or reducing atmosphere for 8 hours.
The temperature is maintained at 00° C. for about 15 minutes to activate the ion-implanted layer by annealing. Thereafter, the AIN film 2 on the surface is removed as shown in FIG. 1(f). Furthermore, for example, Au is vacuum-deposited to form a source electrode @ and a drain electrode ◎ in a manner convenient for the body/disc/debug.
T can be created.

尚上記実施例では、導電体層がホウ素化タングステン層
、半導体基体がGaAsであるが、導電層は他の高融点
遷移金属Mo、 Nb、 Ti、 Zr等もしくはこれ
ら金属を主成分とする合金のホウ素化物、或いはこのホ
ウ素化物に窒素が含むものでありても良く、又その形成
法もプラズマ分解法だけではなく、熱分解法、スパッタ
法等何れの方法でも又半導体基体はGaAs以外のGe
、 8i、 InP等、セに7アライメント技術を用い
る半導体なら何でも良い。
In the above embodiment, the conductive layer is a tungsten boride layer and the semiconductor substrate is GaAs, but the conductive layer is made of other high melting point transition metals such as Mo, Nb, Ti, Zr, etc. or alloys containing these metals as main components. It may be a boride or a boronide containing nitrogen, and its formation method is not limited to plasma decomposition, but may also be any method such as thermal decomposition or sputtering.
, 8i, InP, etc., any semiconductor that uses 7 alignment technology may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明半導体装置の一実施例として、シwツ)
キダイオードの製造工程の一例を示す半完成品の断面工
程図、第2図は本発明半導体装置の他の実施例としてセ
ルフアライメント型FETの製造工程の一例を示す半完
成品の断面工程図である。 ■:エビタキシャル層 ■:エビタキシアルウェハ ■ニホウ素化タングステン金属層 ■: C0D−AIN層  ■:オーム性電極■:半絶
縁性GaAs基体 ■ニレジスト    ■:第1イオン注入層■ニホウ素
化タングステン金属層 [相]:第2イオン注入層 @: AJN層     @:ソース電極0ニドレイン
電極 代理人 弁理士 則 近 憲 佑 (ほか1名)
FIG. 1 shows an example of a semiconductor device according to the present invention.
FIG. 2 is a cross-sectional process diagram of a semi-finished product showing an example of the manufacturing process of a semiconductor device of the present invention, and FIG. be. ■: Ebitaxial layer ■: Ebitaxial wafer ■Tungsten diboride metal layer ■: C0D-AIN layer ■: Ohmic electrode ■: Semi-insulating GaAs substrate ■Niresist ■: First ion implantation layer ■Tungsten diboride Metal layer [phase]: Second ion-implanted layer @: AJN layer @: Source electrode 0 Nidrain electrode Representative Patent attorney Noriyuki Chika (and 1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)半導体の基体上の少なくとも一部にW、Mo、T
a、Nb、Ti、Vのいずれかの高融点遷移金属を主成
分とする金属とホウ素との化合物導電体層より形成され
た電極を具備することを特徴とする半導体装置。
(1) W, Mo, T on at least a portion of the semiconductor substrate
1. A semiconductor device comprising an electrode formed of a compound conductor layer of metal and boron, the main component of which is any one of a high melting point transition metal such as a, Nb, Ti, or V.
(2)上記化合物導電体層のホウ素の元素比は20〜8
0%であることを特徴とする特許請求の範囲第1項記載
の半導体装置。
(2) The elemental ratio of boron in the compound conductor layer is 20 to 8
2. The semiconductor device according to claim 1, wherein the amount is 0%.
(3)上記化合物導電体層に窒素を含むようにしたこと
を特徴とする特許請求の範囲第1項記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the compound conductor layer contains nitrogen.
JP27322484A 1984-12-26 1984-12-26 Semiconductor device Pending JPS61152067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27322484A JPS61152067A (en) 1984-12-26 1984-12-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27322484A JPS61152067A (en) 1984-12-26 1984-12-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61152067A true JPS61152067A (en) 1986-07-10

Family

ID=17524839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27322484A Pending JPS61152067A (en) 1984-12-26 1984-12-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61152067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303079A2 (en) * 1987-08-11 1989-02-15 Siemens Aktiengesellschaft Semiconductor element with a Schottky contact stable at a high temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303079A2 (en) * 1987-08-11 1989-02-15 Siemens Aktiengesellschaft Semiconductor element with a Schottky contact stable at a high temperature

Similar Documents

Publication Publication Date Title
Nicolet Ternary amorphous metallic thin films as diffusion barriers for Cu metallization
Moazed et al. A thermally activated solid state reaction process for fabricating ohmic contacts to semiconducting diamond
US4990994A (en) Electrode structure for silicon carbide semiconductors
JP2509713B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US4478881A (en) Tungsten barrier contact
US4141020A (en) Intermetallic aluminum-transition metal compound Schottky contact
EP0804802B1 (en) A method of producing an ohmic contact for a semiconductor device
JPH0673476A (en) Alloy used for electrical contact of semiconductor substrate
EP0458353B1 (en) Ohmic contact electrodes for n-type semiconductor cubic boron nitride
US4166279A (en) Electromigration resistance in gold thin film conductors
JP3646548B2 (en) SiC semiconductor devices
US3616380A (en) Barrier layer devices and methods for their manufacture
JP3079851B2 (en) Method for manufacturing silicon carbide electronic device
US5502003A (en) Silicon carbide electronic device manufacturing method
US5155559A (en) High temperature refractory silicide rectifying contact
US3767482A (en) Method of manufacturing a semiconductor device
JPS61152067A (en) Semiconductor device
US3674552A (en) Method of producing semiconductor components on a magnetic substrate
US5342793A (en) Process for obtaining multi-layer metallization of the back of a semiconductor substrate
JP6808952B2 (en) Manufacturing method of silicon carbide semiconductor device
JPS61183961A (en) Manufacture of electrode
JP2000106350A (en) Manufacture of ohmic electrode and semiconductor element
US3562606A (en) Subsurface gallium arsenide schottky-type diode and method of fabricating same
JPS5873136A (en) Method of producing semiconductor device
JPS5860535A (en) Preparation of multilayer electrode