JPS61151975A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS61151975A
JPS61151975A JP59277099A JP27709984A JPS61151975A JP S61151975 A JPS61151975 A JP S61151975A JP 59277099 A JP59277099 A JP 59277099A JP 27709984 A JP27709984 A JP 27709984A JP S61151975 A JPS61151975 A JP S61151975A
Authority
JP
Japan
Prior art keywords
metal
alloy
lithium
negative electrode
metal net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59277099A
Other languages
Japanese (ja)
Inventor
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59277099A priority Critical patent/JPS61151975A/en
Publication of JPS61151975A publication Critical patent/JPS61151975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To form a battery having a large charge and discharge cycle by specifying the open dimension of the mesh of a metal net. CONSTITUTION:A nonaqueous electrolyte secondary battery consists of a positive electrode 4, nonaqueous electrolyte, and a lithium negative electrode. The lithium negative electrode consists of an alloy negative electrode 3 occluding lithium metal ions at a charging time and ejecting the lithium metal ions at a discharging time, and a metal net 2 integrated with the electrode 3. In this case, the open dimension of the mesh of the metal net is limited to 0.25-0.5mm. According to the above constitution, such a metal negative electrode can be obtained as having a large charge/discharge cycle and a large capacity per unit of volume from view of its performance, being simply manufactured and easily connected to a sealing plate or a case, and capable of occluding lithium.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、充放電可能な非水電解液二次電池に関し、と
くにその集電体の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rechargeable and dischargeable non-aqueous electrolyte secondary battery, and in particular to improvements in its current collector.

従来の技術 非水電解液電池は高電圧・高エネルギー密度を有するこ
とから、−次電池では広く民生用機器の電源として用い
られている。最近では、これらの特徴を生かし、また軽
量であることから充放電可能な二次電池の開発が盛んに
行なわれている。しかし、一般に負極であるリチウムは
充放電をくり返すとその形状が変化し、たとえば表面が
石状や樹枝状になったり、球、状になって電解液中に浮
遊して機能しなくなる。そこで、たとえば充電するとリ
チウムを細孔中に吸蔵するポリアセチレンなどの高分子
材料やリチウムを吸蔵して金属間化合物を作るアルミニ
ウムを用い几すした報告(T、O,Be5sanhar
d 、 J、 Electroa71a1. Chem
、 、 94゜77(1978))があり、最近ではウ
ッド合金などの可融合金を用いた報告(豊ロ告徳他、第
24回電池討論会P、205(1983))がある。と
くに後者では合金の薄板’t=ツケルネット間に挾んで
検討している。
BACKGROUND OF THE INVENTION Non-aqueous electrolyte batteries have high voltage and high energy density, and are therefore widely used as power sources for consumer devices. Recently, there has been active development of rechargeable and dischargeable secondary batteries that take advantage of these characteristics and are lightweight. However, when lithium, which is a negative electrode, is repeatedly charged and discharged, its shape changes, for example, the surface becomes stone-like, dendritic, or spherical, and it becomes suspended in the electrolyte and ceases to function. Therefore, for example, a report was made using polymeric materials such as polyacetylene, which occludes lithium in its pores when charged, and aluminum, which occludes lithium and forms intermetallic compounds (T, O, Besanhar et al.
d, J, Electroa71a1. Chem
, 94°77 (1978)), and recently there has been a report using a fusible alloy such as a wood alloy (Toyoro Noritoku et al., 24th Battery Symposium P, 205 (1983)). In particular, the latter is being considered between the alloy thin plate 't = Tsukernet.

負極のLi 吸蔵基板に金属あるいは合金片を用いるの
はいいが、問題はその集電である。その方法として (1)  Li 吸蔵基板用の金属あるいは合金片の任
意個所をケースもしくは封口板にスポット溶接する。
Although it is possible to use a metal or alloy piece for the Li storage substrate of the negative electrode, the problem is current collection. The method is as follows: (1) Any part of the metal or alloy piece for the Li occlusion substrate is spot welded to the case or sealing plate.

(2)  Li 吸蔵基板用の金属あるいは合金片の所
定サイズのものの上から、このサイズよりやや大きめの
金属ネットや金属エキスパンデッドメタルなどの金属グ
リッドを重ね合わせ、グリッドのはみ出した部分を、ケ
ースもしくは封口板内面にスポット溶接する。
(2) Lay a metal grid, such as a metal net or expanded metal, that is slightly larger than this size on top of a metal or alloy piece of a specified size for the Li storage board, and use the protruding part of the grid to cover the case. Or spot weld to the inner surface of the sealing plate.

(3)  Li 吸蔵基板用の金属あるいは合金を不活
性雰囲気中で溶融し、その溶湯中に集電体となる金属ネ
ットや金属エキスパンデッドメタルなどの金属グリッド
を浸漬し、これを引上げる際に、金属グリッドの目の中
に溶融体をその表面張力で付着させ、他のグリッド部を
リード端子とともに封口板あるいはケース内にスポット
溶接する。
(3) When the metal or alloy for the Li occlusion substrate is melted in an inert atmosphere, a metal grid such as a metal net or metal expanded metal that will serve as a current collector is immersed in the molten metal and pulled up. First, the molten material is attached to the holes of the metal grid by its surface tension, and the other grid parts are spot-welded together with the lead terminals to the sealing plate or inside the case.

(4) L1吸蔵基板用の金属あるいは合金の所定厚み
のものを金属ネットや金属エキスパンデッドメタルなど
の金属グリッドとともにプレスして埋没させて一体化さ
せ、それを所定サイズに切出し、リードをスポット溶接
したり、もしくはそのまま封口板あるいはケース内部に
スポット溶接する。
(4) A metal or alloy of a predetermined thickness for the L1 storage board is pressed and buried with a metal grid such as a metal net or expanded metal to integrate it, cut it to a predetermined size, and spot the leads. Weld it or spot weld it directly to the sealing plate or inside the case.

などがある。and so on.

発明が解決しようとする問題点 上記(1)の方法は、充放電回数が小さいうちはいいが
、充放電回数が犬きぐなるとスポット溶接個所が剥離し
てくる。これはLi  t−吸蔵して金属間化合物を形
成するともろくなることになる。
Problems to be Solved by the Invention The above method (1) is good as long as the number of charging and discharging is small, but when the number of charging and discharging becomes too large, the spot welds begin to peel off. This results in brittleness when Li t-occlusion occurs to form an intermetallic compound.

(2)の方法は、集電方法としては良好であるが、製造
工程における合金と金属グリッドとの重ねたときの位置
合せが極めて煩雑であり、量産には向かない。
Method (2) is good as a current collection method, but the alignment of the alloy and the metal grid when they are stacked in the manufacturing process is extremely complicated and is not suitable for mass production.

(3)の方法では、金属あるいは合金の種類により融点
が異なり、表面張力の大きさや引上げ速度。
In method (3), the melting point varies depending on the type of metal or alloy, the magnitude of surface tension, and the pulling speed.

合金湯温、集電用ネットのメツシュなどにより付着する
金属と合金の量が異なるので、最適値を求めることが大
変である。
Since the amount of metal and alloy deposited varies depending on the temperature of the alloy water, the mesh of the current collection net, etc., it is difficult to find the optimum value.

(4)の方法が最も簡便で確実な集電が可能であるが、
充電時にリチウムを吸蔵し、金属間化合物になると体積
が数倍に増加し、放電時にはLi が放出され、はぼも
との形状にもどる。一般に充電(=吸蔵)リチウム量に
対し、放電リチウム量の比率が、小さい場合は形本変化
も小さいので充放電サイクルも大きくなるが、大きい場
合には形状変化が大きいので、金属あるいは合金側の疲
労が大きく、充放電サイクルが小さくなる傾向にある。
Method (4) is the simplest and allows for reliable current collection, but
During charging, it absorbs lithium and becomes an intermetallic compound, increasing its volume several times, and during discharging, Li is released and it returns to its original shape. In general, if the ratio of the amount of discharged lithium to the amount of charged (=occluded) lithium is small, the change in shape will be small and the charge/discharge cycle will be long. There is a tendency for fatigue to be large and charge/discharge cycles to be shortened.

従って、性能面および製造面から考えると(4)の方式
が最も有利であるが、未だ問題点が残っている。また、
エキスパンデッドメタルは金属ネットに比べて強度が弱
く実用に耐えない。
Therefore, from the standpoint of performance and manufacturing, method (4) is the most advantageous, but there are still problems. Also,
Expanded metal is weaker than metal net and cannot be put to practical use.

そこで本発明は、金属ネットを用い(4)の方式におい
て上記のような問題点を解消し、放電リチウム量の比率
が大きくても充放電サイクルが大きい電池を提供するも
のである。
Therefore, the present invention uses a metal net to solve the above-mentioned problems in the method (4), and provides a battery that has a long charge/discharge cycle even if the ratio of the amount of discharged lithium is large.

問題点を解決するための手段 この問題点を解決するため本発明は、金属ネットの目の
開き寸法を0.25〜0.50mに規制したものである
Means for Solving the Problem In order to solve this problem, the present invention limits the opening size of the metal net to 0.25 to 0.50 m.

作  用 この構成によれば、充放電サイクルが大きく、性能面で
も単位体積当りの容量も大きく、製造も簡単で封口板あ
るいはケースとの接続も容易なリチウムを吸蔵可能な金
属負極体が得られる。
Function: According to this configuration, a metal negative electrode body capable of occluding lithium can be obtained, which has a long charge/discharge cycle, a high capacity per unit volume in terms of performance, is easy to manufacture, and is easy to connect to a sealing plate or case. .

実施例 金属リチウムを吸蔵、つまりリチウムとの間で金属間化
合物を作りうる金属元素は多いが、電池の負極となりう
るような、即ちリチウムを大量に吸蔵できる金属は、単
体では崩壊し粉々になってしまう。これは、アルミニウ
ムや鉛の薄板を電解液中で大量のリチウム(Li > 
と接触させておくとすぐ分る。つまり単体では使いづら
く、これら金属間化合物同志を保持させておく結着剤的
な役目を果すカドミウムや亜鉛のような金属元素を添加
すること、つまり予め合金にしておく必要がある。
Example There are many metal elements that can absorb metallic lithium, that is, form intermetallic compounds with lithium, but metals that can be used as negative electrodes for batteries, that is, can absorb large amounts of lithium, will collapse and shatter when used alone. I end up. This is a process in which a thin plate of aluminum or lead is exposed to a large amount of lithium (Li >
You can tell right away if you come in contact with it. In other words, it is difficult to use alone, and it is necessary to add a metal element such as cadmium or zinc that acts as a binder to hold these intermetallic compounds together, in other words, it is necessary to form an alloy in advance.

当然であるがカドミウムのような金属元素を多く添加す
れば、合金は単位重量および単位体積当りのLi 吸蔵
量即ち電気容量は小さくなるが、充放電サイクルはその
分伸びていく。
Naturally, if a large amount of a metal element such as cadmium is added, the amount of Li occlusion per unit weight and volume of the alloy, that is, the electric capacity, will decrease, but the charge/discharge cycle will be lengthened accordingly.

従ってこの実施例では、集電金属ネットの目の開き寸法
の効果を見極めるために、Li  f吸蔵する合金とし
ては、カドミウム20wtqb−鉛80wt%からなる
合金(これを以下Cd (20)−Pb(80)と記す
)を選んだ。このCd(20)−Pb(80)合金の0
.1m厚みの薄板をニッケルネットで軽く挾持し、1モ
ル/2の過塩素酸リチウム/炭酸プロピレン電解液中に
て対極にしたリチウム板と短絡させ、20℃にて168
時間靜置装せると、Li  f吸蔵した合金(以下Li
 合金という)ができる。
Therefore, in this example, in order to determine the effect of the aperture size of the current collecting metal net, the Li f occluding alloy was an alloy consisting of 20wtqb cadmium and 80wt% lead (hereinafter referred to as Cd(20)-Pb( 80) was selected. 0 of this Cd(20)-Pb(80) alloy
.. A 1 m thick thin plate was lightly held between nickel nets, and short-circuited with a lithium plate serving as a counter electrode in a 1 mol/2 lithium perchlorate/propylene carbonate electrolyte at 20°C.
When a time-quiet device is used, the Li f-absorbed alloy (hereinafter referred to as Li
alloy).

このLi 合金は単位体積当りの容量が約1,700m
Ah /ccとなシ、Li 金属単体の2,060 m
Ah /CCに比べて孫色ないことが分る。ちなみにこ
の合金は単位重量当り400 mAhのLi t−吸蔵
する。またこのLL 化合金の液中での形状は大きく変
形しており、強度面ではかなりもろいものである。つま
り、Li 吸蔵容量は大きくてLi 金属に近く、LL
 化合金の機械強度は小さいという、集電体ネットの目
の開き寸法の効果が最も顕著にあられれるものを選択し
ている。
This Li alloy has a capacity of approximately 1,700 m per unit volume.
Ah / cc, Li 2,060 m of single metal
It can be seen that there is no grandson color compared to Ah /CC. Incidentally, this alloy stores 400 mAh of Lit-per unit weight. Moreover, the shape of this LL alloy in liquid is greatly deformed, and it is quite brittle in terms of strength. In other words, the Li storage capacity is large and close to that of Li metal, and LL
The mechanical strength of the alloy is low, and the aperture size of the current collector net is selected to have the most significant effect.

このCdlo)−Pb(go)合金は、金属Cd 2!
Ofと金属pbsoP2真空溶解炉中にて溶解させて合
金とし、これを圧延して100μmの薄板にしだ。
This Cdlo)-Pb(go) alloy contains metal Cd2!
Of and metal pbsoP2 were melted in a vacuum melting furnace to form an alloy, which was then rolled into a 100 μm thin plate.

金属ネットには、5US3o4 ステンレス鋼線ででき
た金属ネットで80メツシユ(ふるい目の開き寸法0.
18m+1.60メツシユ(同じ<0.25mm)、4
0メツシユ(同じ(o、3e mm)、32メツシユ(
同じ(0,50tram )および24メツシユ(同じ
< 0.70 am )のものを用いた。
The metal net is made of 5US3o4 stainless steel wire with 80 meshes (sieve mesh opening size 0.
18m + 1.60 mesh (same <0.25mm), 4
0 mesh (same (o, 3e mm), 32 mesh (
The same (0,50 tram) and 24 meshes (same < 0,70 am) were used.

次に、この合金薄板(soxsow)とそれぞれの金属
ネットとを重ね合わせ5トンの圧力でプレスしたのち、
これを直径16閣の円板状に打抜いた。この円板に保持
された合金の量と、吸蔵さ亡るLi の量を第1表に示
す。第1表で吸蔵させるLi 量はこの合金の最大吸蔵
量の86%にしている。以下図面とともに説明する。
Next, this alloy thin plate (soxsow) and each metal net were stacked and pressed under a pressure of 5 tons, and then
This was punched out into a disk shape with a diameter of 16. Table 1 shows the amount of alloy retained in this disk and the amount of Li occluded. In Table 1, the amount of Li to be stored is 86% of the maximum storage amount of this alloy. This will be explained below with reference to the drawings.

を 第1表 第1図は実施例に用いた電池の断面図である。of Table 1 FIG. 1 is a cross-sectional view of the battery used in the example.

第2図は金属ネットとLi 吸蔵合金とを一体化させた
ものを円板状に打抜いた図であり、aはその平面図、b
は断面図、Cは金属ネットの目の部分の拡大図を示す。
Figure 2 is a disk-shaped punched-out piece of an integrated metal net and Li storage alloy, where a is a plan view and b is a plan view.
C shows a cross-sectional view, and C shows an enlarged view of the mesh portion of the metal net.

第1図において、1は厚さo、2.oSUSso、*ス
テンレス鋼製の封口板であり、この封口板の内側に上記
の円板状に打抜いた合金体をスポット溶接する。2は打
抜き合金中の金属ネットである。
In FIG. 1, 1 is the thickness o, 2. oSUSso, *This is a sealing plate made of stainless steel, and the alloy body punched into the disk shape described above is spot welded to the inside of this sealing plate. 2 is a metal net in the punched alloy.

3は上記スポット溶接した合金体に第1表に示した量の
Li ディスク(直径15m)を圧着し、この上から炭
酸プロピレンと1.2−ジメトキシエタンとの等容積混
合溶媒に過塩素酸リチウムを1モル/2溶解した電解液
の所定量を注液すると、自発的に形成されるLi 合金
である。
In No. 3, Li disks (diameter 15 m) in the amount shown in Table 1 are crimped onto the spot-welded alloy body, and lithium perchlorate is added to the same volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane over the disks. It is a Li alloy that spontaneously forms when a predetermined amount of an electrolytic solution containing 1 mol/2 of Li is injected.

第2図中11は金属ネット、12はLL 吸蔵合金、1
3はネットの目の開き寸法を示す。4は正極であり、非
晶質のクロム酸化物01308100重量部と比表面積
が300m’/P  の人造黒鉛8重量部とフィラー状
のフッ素樹脂結着剤12重量部を混合してなる合剤から
なり、これは0.2閣の厚さの耐食性ステンレス鋼から
なるケース6の内面にスポット溶接した直径13+11
fflのチタン製エキスパンデッドメタルからなる集電
体6上に直径16闘、厚さ1.11011にケース内成
型している。この電池は正極容量が負極容量の少なくと
も1.4倍以上になっている。7および8はポリプロピ
レン製不織布からなるセパレータと含浸材であり、正極
側にも所定量の電解液を注液後、9であるポリプロピレ
ン製ガスケットとともにカシメ封口している。
In Figure 2, 11 is metal net, 12 is LL storage alloy, 1
3 indicates the opening size of the net. 4 is a positive electrode, which is made from a mixture of 100 parts by weight of amorphous chromium oxide 01308, 8 parts by weight of artificial graphite with a specific surface area of 300 m'/P, and 12 parts by weight of a filler-like fluororesin binder. This is a diameter 13+11 spot welded to the inner surface of the case 6 made of corrosion-resistant stainless steel with a thickness of 0.2 mm.
It is molded inside the case to a diameter of 16 cm and a thickness of 1.11011 mm on a current collector 6 made of expanded titanium metal of ffl. In this battery, the positive electrode capacity is at least 1.4 times the negative electrode capacity. 7 and 8 are a separator and an impregnating material made of a polypropylene nonwoven fabric, and after injecting a predetermined amount of electrolyte into the positive electrode side, the separator and the impregnating material are caulked together with a polypropylene gasket 9.

この電池の最大外径は20.0mm、最大総高は2.6
−である。
The maximum outer diameter of this battery is 20.0mm, and the maximum total height is 2.6mm.
− is.

次にこれらの電池A−Eft2.5mAで定電流充放電
する。充放電は放電下限電圧1.OV、充電上限電圧3
.8vとし、この範囲で充放電した。このときの充放電
サイクルにともなう容量変化、つまり負極の容量保持率
を1サイクル目の容量ヲ100としたときの指数で第3
図に示す。また、このときのLi 吸蔵合金と埋設され
た金属ネットからなる負極基板の充放電サイクルにとも
なう放電容量を第3図で80%時点まで積算し、これを
負極基板の体積で割った積算サイクル容量密度を第4図
に示す。
Next, these batteries are charged and discharged at a constant current of A-Eft of 2.5 mA. Charging and discharging are performed at the discharge lower limit voltage 1. OV, charging upper limit voltage 3
.. The battery was charged and discharged at a voltage of 8V within this range. The third index is the index when the capacity change due to the charge/discharge cycle at this time, that is, the capacity retention rate of the negative electrode is set as 100 for the capacity of the first cycle.
As shown in the figure. In addition, the discharge capacity accompanying the charge/discharge cycle of the negative electrode substrate made of the Li storage alloy and the buried metal net at this time is integrated up to the 80% point in Figure 3, and the cumulative cycle capacity is calculated by dividing this by the volume of the negative electrode substrate. The density is shown in Figure 4.

発明の効果 以上の説明において、第3図からは負極の充放電サイク
ルにともなう劣化は金属ネットの目の開き寸法が大きく
なるにつれ急激に低下していることが分る。しかし、単
に容量劣化度のみから判断するのは片手落ちであり、充
填容量とサイクル特性を加味した点を評価する必要があ
る。これを示したのが第4図であり、これから金属ネッ
トの目の開き寸法を小さくするとこんどはネッi構成す
る金属線の量が邪魔して第1表に示したように容量が小
さくなるため、総合的に積算サイクル容量密度が低下し
てきていることが分る。
Effects of the Invention In the above explanation, it can be seen from FIG. 3 that the deterioration of the negative electrode due to charge/discharge cycles decreases rapidly as the opening size of the metal net increases. However, it would be a mistake to make a judgment based solely on the degree of capacity deterioration, and it is necessary to evaluate the filling capacity and cycle characteristics as well. This is shown in Figure 4, and if you reduce the opening size of the metal net, the amount of metal wires that make up the net will get in the way and the capacity will decrease as shown in Table 1. , it can be seen that the cumulative cycle capacity density is decreasing overall.

これら第3図および第4図から総合的に判断して電池で
はB−D、つまり金属ネ・フトで言えば目の開き寸法が
0.25〜0.50wmの範囲が良好であり、より好ま
しくは目の開き寸法が0.25〜0.36rranとす
ることがリチウム二次電池用負極合金の集電体に最適な
ものである。
Comprehensively judging from these Figures 3 and 4, it is good for batteries to have an opening size of 0.25 to 0.50 wm (B-D for metal wires), and is more preferable. It is optimal for the current collector of the negative electrode alloy for lithium secondary batteries to have an opening size of 0.25 to 0.36 rran.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における電池の断面図、第2図
はリチウム吸蔵合金負極体の説明図であり、aは平面図
、bは断面図、Cは金属ネット集電体の目の開き寸法を
示す拡大図であり、第3図は各種の目の開き寸法を有し
た金属ネッ)1−使用した合金負極を用いた電池の充放
電サイクルと容量保持率の関係を示す図、第4図は積算
サイクル容量密度を示す図である。 1・・・・・・封口板、2・・・・・・金属ネット、3
・・・・・・リチウム合金、4・・・・・・正極、6・
・・・・・ケース、6・・・・・・集電体、7・・・・
・・セパレータ、8・・・・・・含浸材、9・・・・・
・ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 8含涜J第 4正砲 第2図 路 」1 イ芽、 4 率  (シー)区 憾
FIG. 1 is a cross-sectional view of a battery according to an embodiment of the present invention, and FIG. 2 is an explanatory view of a lithium storage alloy negative electrode body, where a is a plan view, b is a cross-sectional view, and C is an eye of the metal net current collector. Fig. 3 is an enlarged view showing the opening size of metal nets with various opening sizes; FIG. 4 is a diagram showing the integrated cycle capacity density. 1...Sealing plate, 2...Metal net, 3
...Lithium alloy, 4...Positive electrode, 6.
...Case, 6...Current collector, 7...
...Separator, 8...Impregnating material, 9...
·gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 8 Contains J 4th cannon 2nd diagram 1 Ime, 4 rate (shi) gu 澾

Claims (1)

【特許請求の範囲】[Claims] 正極と、非水電解液と、リチウム負極よりなる非水電解
液二次電池であって、このリチウム負極は充電時にリチ
ウム金属イオンを吸蔵し、放電時にリチウム金属イオン
を放出する合金負極と、これに一体化された金属ネット
とからなり、金属ネットは目の開き寸法が、0.25〜
0.50mmである非水電解液二次電池。
A nonaqueous electrolyte secondary battery consisting of a positive electrode, a nonaqueous electrolyte, and a lithium negative electrode. It consists of a metal net integrated with the metal net, and the opening size of the metal net is 0.25~
A non-aqueous electrolyte secondary battery with a thickness of 0.50 mm.
JP59277099A 1984-12-24 1984-12-24 Nonaqueous electrolyte secondary battery Pending JPS61151975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277099A JPS61151975A (en) 1984-12-24 1984-12-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277099A JPS61151975A (en) 1984-12-24 1984-12-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS61151975A true JPS61151975A (en) 1986-07-10

Family

ID=17578759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277099A Pending JPS61151975A (en) 1984-12-24 1984-12-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS61151975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041416A1 (en) * 2008-10-08 2010-04-15 株式会社アルバック Evaporation material and method for producing evaporation material
JP2016029652A (en) * 2014-07-16 2016-03-03 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Metal lithium electrode plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041416A1 (en) * 2008-10-08 2010-04-15 株式会社アルバック Evaporation material and method for producing evaporation material
JP5348670B2 (en) * 2008-10-08 2013-11-20 株式会社アルバック Evaporation material
JP2013237929A (en) * 2008-10-08 2013-11-28 Ulvac Japan Ltd Method of manufacturing evaporating material
US9434002B2 (en) 2008-10-08 2016-09-06 Ulvac, Inc. Evaporating material and method of manufacturing the same
JP2016029652A (en) * 2014-07-16 2016-03-03 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Metal lithium electrode plate
US9755228B2 (en) 2014-07-16 2017-09-05 Prologium Holding Inc. Lithium metal electrode

Similar Documents

Publication Publication Date Title
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JPS61151975A (en) Nonaqueous electrolyte secondary battery
JPS63308868A (en) Secondary cell
JPH0855618A (en) Sealed alkaline storage battery
JP2671387B2 (en) Cylindrical lithium secondary battery
JPS63274060A (en) Negative electrode for lithium secondary battery
JPS62226562A (en) Nonaqueous electrolyte secondary battery
JPS634562A (en) Paste type nickel positive electrode
JP2002260721A (en) Nickel hydrogen secondary battery
JP2000200612A (en) Rectangular alkaline secondary battery
JPS60167279A (en) Electrochemical device capable of recharging
JP2000315490A (en) Storage battery
JPH11191410A (en) Sealed alkaline storage battery
JPH0272564A (en) Alkaline storage battery
JP2001351673A (en) Alkali storage battery
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JP2966434B2 (en) Sealed nickel-metal hydride secondary battery
JPH0729562A (en) Alkaline accumulator
KR101589471B1 (en) Plate using emulsion-treated anode material and ni-mh battery having the same
JPH08315850A (en) Alkaline secondary battery and its manufacture
JP3235895B2 (en) Nickel hydride rechargeable battery
JPS63292570A (en) Negative electrode for lithium secondary cell
JPH01143140A (en) Nonaqueous electrolyte secondary cell
JPS62123651A (en) Lithium secondary battery
JPH0381958A (en) Nonaqueous system secondary battery, manufacture thereof, and current collector for secondary battery