JPS6115169B2 - - Google Patents

Info

Publication number
JPS6115169B2
JPS6115169B2 JP10881281A JP10881281A JPS6115169B2 JP S6115169 B2 JPS6115169 B2 JP S6115169B2 JP 10881281 A JP10881281 A JP 10881281A JP 10881281 A JP10881281 A JP 10881281A JP S6115169 B2 JPS6115169 B2 JP S6115169B2
Authority
JP
Japan
Prior art keywords
yarn
type composite
spinning
spinneret
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10881281A
Other languages
Japanese (ja)
Other versions
JPS5813721A (en
Inventor
Toshimasa Kuroda
Tatsuya Shibata
Seiji Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP10881281A priority Critical patent/JPS5813721A/en
Publication of JPS5813721A publication Critical patent/JPS5813721A/en
Publication of JPS6115169B2 publication Critical patent/JPS6115169B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固有粘度〔η〕fの異なるポリエチレ
ンテレフタレート系ポリマーを各々独立して吐出
し、口金面直後の1点において接合し、サイド・
バイ・サイド型の複合繊維を形成する分離型複合
紡糸口金を用いてサイド・バイ・サイド型に複合
紡糸し、延伸、熱処理後、直結して高温加熱流体
押込ノズルに導き、捲縮を発現させると同時に、
発現した捲縮を熱固定、冷却してからノズルより
取り出し、巻き取るノントルク捲縮加工糸の製造
法に関し、特に衣料用途に適する高性能の捲縮加
工糸を紡糸直結で、かつ、高速度で連続加工する
方法(いわゆるSDTY)を提供せんとすることに
ある。 従来、捲縮糸の加工法は、延伸糸に実撚を入れ
加熱セツト後冷却、解撚する、いわゆる仮撚加工
法が主流となつており、この方法は近年、部分配
向糸(POY)と高速フリクシヨン仮撚ユニツト
の出現により、それまでのスピンドル仮撚機より
高速化が可能となり、いわゆるPOY―DTYとし
て1000m/mmの加工速度の領域に入つた。しか
し、この方法は機械的加工法であるので、その速
度にも自ずと限界があり、例えば紡糸直結の連続
化には企業的メリツトは殆んど出ない。 これに対し、延伸糸を予熱後、加熱=空気加工
する方法が種々提案されている(特公昭53―
35175;USP3729831;USP3852857)が、これら
の方法は高速化という点では良い方法なるも、衣
料に用いる加工糸としては、嵩性において劣り、
又、加工方法が繊維に過度の熱収縮率を起こさせ
る方法であるので、加工糸は染斑及び力学的特性
において劣る欠点(伸びやすい糸)がある。そこ
で、これらの適用範囲はカーペツトのタフト糸
BCFを製造する方法に使用されているのが現状
である。 これらに対し、フリクシヨンユニツトで仮撚
後、空気押込ノズルで熱セツトする方法(特開昭
53―119348;特開昭54―68433)が提案されてい
るが、これらもやはり紡糸直結加工に適する様な
加工速度(2000m/mm以上)にはなりえないし、
又、糸掛性が複雑である。 そこで、これらの方法に対し本発明と同一考え
で、紡糸時に異種、又は異質ポリマーを複合紡糸
し、延伸熱処理後、加熱空気加工する方法
(USP4115989;USP4118534;実公昭46―9535;
特開昭45―37576;特開昭54―42441)が提案され
ている。しかし、これらの方法は速度的には適し
た方法であるが、捲縮加工糸としての嵩性と力学
的特性において、仮撚加工糸の如き品質からはか
なり低いもので、衣料用途的には依然として適し
たものとはいえない。 従つて、本発明の目的はかかる欠点を除去し、
衣料用途に適する高捲縮性能を有する加工糸を
2000m/mm以上もの速度で紡糸直結で連続加工し
うる、高生産性のある加工法(いわゆるSDTY)
を提供することにある。 本発明の要旨とするところは、 (1) 成分間に固有粘度〔η〕f差のあるサイド・
バイ・サイド型複合ポリエステル系捲縮繊維を
紡糸直結連続加工により製造する際に前述した
固有粘度〔η〕fの異なるポリエチレンテレフ
タレート系ポリマーを各々独立して吐出し、口
金直後の1点において接合し、サイド・バイ・
サイド型の複合繊維を形成する分離型複合紡糸
口金を用い、低〔η〕f側成分の固有粘度
〔η〕fが0.33〜0.45、成分間の固有粘度の差
△〔η〕fが0.20〜0.30であるサイド・バイ・
サイド型複合繊維を紡糸速度500〜1300m/mmで
溶融紡糸し、直結して延伸、熱処理して糸伸度
を13〜23%の範囲に調節し、引続き加熱流体押
込ノズルにより捲縮発現加工することを特徴と
する、ノントルク捲縮加工糸の製造法にある。 本発明を更に詳細に説明する。サイド・バイ・
サイド型複合紡出糸を加熱空気で加工すれば捲縮
発現することは前記の方法(USP4115989;
USP4118534;実公昭46―9535;特公昭45―
37576;特開昭54―42441)により知られている事
であるが、これらの方法では衣料用途に適した高
品質の加工糸とはなりえない。そこで本発明者ら
は鋭意検討を重ねた結果、本発明に至つたもので
ある。 まず、ここで本発明で使用する語句、記号の説
明をしておく。 (イ) 固有粘度〔η〕fはフリーホール(自由落
下)のフイラメントで測定した固有粘度であ
り、フリーホールフイラメントはサイド・バ
イ・サイド型複合紡糸条件において片側のポリ
マーを停止し、もう一方のポリマーのみを紡糸
したフリーホールのフイラメントより測定す
る。この場合、〔η〕fは次式で決定される。 〔(ηrel)は60%フエノールと40%四塩化炭素
の混合物を溶媒とするポリエステルの希薄溶液
の粘度と同温同単位で測定した前記溶媒混合物
の粘度との比であり、Cは100c.c.混合物中のポ
リエステルのグラム数である。〕 (ロ) △〔η〕f〕高〔η〕f−低〔η〕f (ハ) 延伸熱処理後の伸度とは、複合紡出糸を80〜
95℃で所定の延伸倍率で延伸後、ホツトローラ
ー又はそれに代るホツトプレート等で140〜220
℃で緊張熱処理して巻き取つたフイラメントの
破断伸度をいう。破断伸度は試料長20cmを引張
り速度100%/分で行なつた時の破断点の伸度
であり、テストは5回行なつた平均で表わす。 本発明において、第1に重要なことは、サイ
ド・バイ・サイド型複合紡糸口金として、固有粘
度〔η〕fの異なるポリマーを各々独立して吐出
し、口金面直後の1点において接合する分離型複
合紡糸口金、例えば第1図に示すような口金を採
用したことにある。従来より検討されてきた口金
内で固有粘度〔η〕fの異なるポリマーを合流、
貼り合わせて複合紡糸する如くした口金、例えば
第2図に示すような口金においては、△〔η〕f
を大きくすれば、口金内での両成分の力学的相互
作用によつて紡出糸が大きく屈曲して口金面に附
着するいわゆるニーリング現象を起し、安定した
紡糸が不可能となることが多い。従つて△〔η〕
fを大きくとることが出来ず、嵩高性に優れた複
合紡出糸を安定して得ることは難かしい。その
点、第1図に示したような分離型複合紡糸口金に
おいては、口金内での両成分が力学的相互作用を
受けることがないのでニーリングを防止でき、嵩
高性に優れた複合紡出糸を得るに必要な高△
〔η〕fの条件でも安定した紡糸が可能となり、
紡糸直結連続加工においてはその効果は極めて大
である。 尚、第1図,第2図について若干の説明をする
と、両者共に紡糸口金の一例を示す部分縦断側面
図である。第1図の場合、高粘度成分Aと低粘度
成分Bは各々単独に導入孔2,3、吐出孔4,5
を経て吐出されるが、その際、各吐出孔4,5は
口金面6への垂線に対して等しく傾斜し、口金面
6直後の1点において両吐出孔の延長線が交わる
ように口金面6上で適正間隔を介して穿設してあ
るため、高粘度成分Aと低粘度成分Bは各々の吐
出孔4,5を出た後、口金面6直後の1点におい
て接合することができる。 一方、第2図の場合、高粘度成分Aと低粘度成
分Bは各々単独に導入孔2,3に導入され、口金
1内で合流・貼り合わされて吐出孔4より吐出さ
れるが、導入孔3は導入孔2よりも孔径が小さ
く、かつ導入孔2と交わるように穿設されている
ため、高粘度成分Aと低粘度成分Bは口金内で合
流・貼り合わせられ、吐出孔4より吐出される。 第2に低〔η〕f側の〔η〕fが0.33〜0.45で
あることが大切である。この〔η〕fが0.33より
小であれば、溶融紡糸時の糸切れや紡糸口金面を
汚し、紡糸出来なくなり、一方、0.45を越えると
紡糸性は良くなるが、高〔η〕f側の〔η〕fが
高くなりすぎ、次の延伸熱処理工程にて充分な分
子配向と熱処理が高速(200m/mm以上)で行なえ
なくなる。従つて衣料に適する強度及び嵩性が得
られない。 第3に△〔η〕fが0.20〜0.30であることが必
要である。この△〔η〕fが0.20未満では充分な
潜在捲縮性能を与えることができず、衣料に適す
る高捲縮加工糸にはなりえない。又、0.30を越え
ると高速で充分な高配向の延伸糸が得られず、そ
の結果、高捲縮加工糸とはなりえない。又、この
様な紡出糸を高配向にしようにすれば、高速では
糸切れが多く、生産性をはなはだ悪くする。 第4に延伸熱処理後の糸伸度が13〜23%である
ことが大切である。これは、次の空気押込ノズル
に入る前の伸度が23%を越えると、高〔η〕f側
の配向が充分上つてない状態にあるので空気押込
ノズル中で高温加熱気体(又は加熱蒸気)によ
り、捲縮発現する際、熱応力が不足し捲縮度が上
らなくなる。一方、13%未満の伸度に延伸する
と、2000m/mm以上での延伸性が悪く、毛羽ラツ
プが多く発生し、操業上問題となる。 第5に紡糸速度は500〜1300m/mmの範囲が好ま
しい。この紡糸速度と複合紡出糸の捲縮性能との
関係は、高〔η〕fが高くなると捲縮率最高値を
得る紡速が低速側に移行する。一方、高〔η〕f
側の〔η〕fが低くなると捲縮率の最高値を得る
紡速は高速側に移行し、かつ又、捲縮率のレベル
は低くなる。しかし、前記の低〔η〕f側の
〔η〕fの範囲及び△〔η〕fの範囲を満足し、
しかも紡糸速度500〜1300m/mmで紡糸したものは
高捲縮の加工糸となりうる。この紡糸速度が500
m/mm未満になると捲縮性能が低下するのみなら
ず、加工速度が低下し、高速加工の面でメリツト
がない。一方、1300m/mmを越える紡出糸は、高
捲縮糸とならないばかりか、強度の低下が大きく
高速加工に適さない。 以上述べたように、本発明によれば衣料用途に
適する高捲縮性能を有する加工糸を高能率下に安
定して製造できるノントルク捲縮加工法が提供さ
れる。 以下、実施例により本発明を説明するが、本発
明で捲縮率を表わすTCは以下の測定法で行なつ
たものである。 TC=×100(%) はde当り2mgの荷重を掛け沸水中で20分
間処理し、この状態で1昼夜40℃以下で乾燥後
de当り200mgの荷重を掛けて1分後の長さであ
る。測定後3分後にde当り2mgの荷
重を掛け1分後の長さである。 実施例 本実施例では第1図に示す紡糸口金を用いて紡
糸し、加工糸としては最終的に145〜170デニール
の48フイラメントとなる様、紡糸吐出量をコント
ロールした、加工糸の評価は筒編、染仕上げを行
ない、風合、ひけ、斑を肉眼にて判定した。 これらの結果を表―1に示す。 尚、本実施例において低〔η〕f側成分と高
〔η〕f側成分との重量比率が50%:50%となる
よう調節して紡糸した。
In the present invention, polyethylene terephthalate polymers with different intrinsic viscosities [η]f are discharged independently, and they are joined at one point immediately behind the mouth surface.
Composite spinning is performed side-by-side using a separate composite spinneret that forms bi-side composite fibers, and after drawing and heat treatment, the fibers are directly connected and introduced into a high-temperature heating fluid push nozzle to develop crimp. At the same time,
Regarding the manufacturing method of non-torque crimped yarn, in which the developed crimps are heat-fixed, cooled, taken out from a nozzle, and wound, high-performance crimped yarn particularly suitable for clothing applications can be produced directly by spinning and at high speed. The aim is to provide a continuous processing method (so-called SDTY). Conventionally, the mainstream processing method for crimped yarn has been the so-called false twisting method, in which the drawn yarn is actually twisted, heated and set, then cooled and untwisted. With the advent of high-speed friction false twisting units, it became possible to run faster than previous spindle false twisting machines, and the so-called POY-DTY entered the processing speed range of 1000 m/mm. However, since this method is a mechanical processing method, there is a natural limit to its speed, and for example, there is almost no commercial benefit in continuous direct spinning. On the other hand, various methods have been proposed in which the drawn yarn is preheated and then subjected to heating = air processing (Special Publications Act 1973-
35175; USP 3729831; USP 3852857), although these methods are good in terms of speeding up, they are inferior in bulk as processed yarn used for clothing.
Furthermore, since the processing method is a method that causes the fibers to have an excessive heat shrinkage rate, the processed yarn has the drawbacks of uneven dyeing and poor mechanical properties (the yarn is easy to stretch). Therefore, the scope of these applications is carpet tufted yarn.
Currently, it is used in the method of manufacturing BCF. On the other hand, there is a method (Japanese Unexamined Patent Publication No. 2001-120100) of false twisting with a friction unit and then heat setting with an air forced nozzle.
53-119348; Japanese Patent Application Laid-open No. 54-68433), but these also cannot achieve processing speeds (2000 m/mm or more) suitable for direct spinning processing.
In addition, threading properties are complicated. Therefore, in accordance with the same concept as the present invention, in contrast to these methods, there is a method in which different types or different polymers are composite-spun during spinning, and heated air processing is performed after drawing heat treatment (USP 4115989; USP 4118534; Utility Model Publication No. 46-9535;
JP-A-45-37576; JP-A-54-42441) has been proposed. However, although these methods are suitable in terms of speed, the bulk and mechanical properties of crimped yarn are considerably lower than those of false twisted yarn, making them unsuitable for clothing applications. It is still not suitable. It is therefore an object of the present invention to eliminate such drawbacks and to
Processed yarn with high crimp performance suitable for clothing applications
Highly productive processing method (so-called SDTY) that allows continuous processing with direct spinning at speeds of over 2000m/mm
Our goal is to provide the following. The gist of the present invention is as follows: (1) A side film with a difference in intrinsic viscosity [η]f between the components.
When manufacturing by-side type composite polyester crimped fibers by direct spinning continuous processing, the aforementioned polyethylene terephthalate polymers with different intrinsic viscosities [η]f are separately discharged and joined at one point immediately after the spinneret. , side by
Using a separate type composite spinneret that forms side-type composite fibers, the intrinsic viscosity [η] f of the low [η] f side component is 0.33 to 0.45, and the difference in intrinsic viscosity △ [η] f between the components is 0.20 to 0.20. Side by side which is 0.30
Side-type composite fibers are melt-spun at a spinning speed of 500 to 1300 m/mm, directly connected, drawn, and heat treated to adjust the yarn elongation to a range of 13 to 23%, followed by crimp processing using a heated fluid forcing nozzle. A method for producing a non-torque crimped yarn is characterized by the following. The present invention will be explained in more detail. side by
The method described above (USP4115989;
USP4118534; Actual Publication Showa 46-9535; Special Publication Showa 45-
37576; Japanese Patent Application Laid-open No. 54-42441), these methods cannot produce high-quality processed yarn suitable for clothing applications. The inventors of the present invention have conducted extensive studies, and as a result, have arrived at the present invention. First, the words and symbols used in the present invention will be explained here. (a) Intrinsic viscosity [η] f is the intrinsic viscosity measured with a free-hole (free-falling) filament, and free-hole filaments are used under side-by-side composite spinning conditions, with one side of the polymer stopped and the other side It is measured from a free hole filament spun with only polymer. In this case, [η]f is determined by the following equation. [(ηrel) is the ratio of the viscosity of a dilute solution of polyester in a mixture of 60% phenol and 40% carbon tetrachloride to the viscosity of the solvent mixture measured at the same temperature and in the same units, and C is 100 c.c. .The number of grams of polyester in the mixture. ] (B) △[η] f] High [η] f - Low [η] f (C) The elongation after drawing heat treatment refers to the elongation of the composite spun yarn from 80 to
After stretching at a predetermined stretching ratio at 95℃, the film is stretched to 140 to 220 degrees using a hot roller or hot plate instead.
This refers to the elongation at break of a filament that has been subjected to tension heat treatment at ℃ and then wound. The elongation at break is the elongation at the break point when a sample length of 20 cm is pulled at a tensile rate of 100%/min, and the test is expressed as the average of 5 tests. The first important thing in the present invention is that, as a side-by-side composite spinneret, polymers with different intrinsic viscosities [η]f are discharged independently, and the separation is performed by joining them at one point immediately behind the spinneret surface. The reason is that a type composite spinneret, for example, a spinneret as shown in FIG. 1 is employed. Merging polymers with different intrinsic viscosities [η]f in the nozzle, which has been studied in the past,
In a spinneret that is bonded together for composite spinning, such as the one shown in Figure 2, △[η]f
If the value is increased, the mechanical interaction of both components within the spindle causes the spun yarn to bend significantly and adhere to the spindle surface, a so-called kneeling phenomenon, which often makes stable spinning impossible. . Therefore △ [η]
It is difficult to stably obtain a composite spun yarn with excellent bulkiness because f cannot be made large. On this point, in a separate type composite spinneret as shown in Figure 1, the two components within the spinneret do not undergo mechanical interaction, which prevents knealing and produces a composite spun yarn with excellent bulk. High △ required to obtain
Stable spinning is possible even under [η] f conditions,
The effect is extremely large in direct spinning continuous processing. In addition, to explain a little about FIG. 1 and FIG. 2, both are partial vertical side views showing an example of a spinneret. In the case of Fig. 1, the high viscosity component A and the low viscosity component B are separately provided at the introduction holes 2, 3 and the discharge holes 4, 5.
At that time, each of the discharge holes 4 and 5 is equally inclined with respect to the perpendicular to the mouthpiece surface 6, and the mouthpiece surface is aligned so that the extension lines of both discharge holes intersect at a point immediately after the mouthpiece surface 6. 6 at appropriate intervals, the high viscosity component A and low viscosity component B can be joined at one point immediately behind the mouthpiece surface 6 after exiting the respective discharge holes 4 and 5. . On the other hand, in the case of Fig. 2, the high viscosity component A and the low viscosity component B are introduced into the introduction holes 2 and 3 individually, and are combined and bonded together in the mouthpiece 1 and discharged from the discharge hole 4. 3 has a smaller hole diameter than the introduction hole 2 and is bored so as to intersect with the introduction hole 2, so the high viscosity component A and the low viscosity component B are merged and bonded together in the mouthpiece and are discharged from the discharge hole 4. be done. Secondly, it is important that [η]f on the low [η]f side is 0.33 to 0.45. If this [η] f is smaller than 0.33, the yarn will break during melt spinning and the spinneret surface will become dirty, making spinning impossible. On the other hand, if it exceeds 0.45, spinnability will improve, but [η]f becomes too high, and sufficient molecular orientation and heat treatment cannot be performed at high speed (200 m/mm or more) in the next stretching heat treatment step. Therefore, strength and bulk suitable for clothing cannot be obtained. Thirdly, it is necessary that Δ[η]f be between 0.20 and 0.30. If this Δ[η]f is less than 0.20, it will not be possible to provide sufficient latent crimp performance and it will not be possible to obtain a highly crimped yarn suitable for clothing. Moreover, if it exceeds 0.30, a sufficiently highly oriented drawn yarn cannot be obtained at high speed, and as a result, a highly crimped yarn cannot be obtained. Furthermore, if such a spun yarn is made to have a high degree of orientation, the yarn will break frequently at high speeds, which will greatly impair productivity. Fourthly, it is important that the yarn elongation after drawing heat treatment is 13 to 23%. This is because if the elongation exceeds 23% before entering the next air-pushing nozzle, the orientation on the high [η]f side is not sufficiently raised, so high-temperature heated gas (or heated steam) is heated in the air-pushing nozzle. ), when crimp occurs, thermal stress is insufficient and the degree of crimp does not increase. On the other hand, when stretched to an elongation of less than 13%, the stretchability is poor at 2000 m/mm or more, and a lot of fuzz lapping occurs, which poses operational problems. Fifth, the spinning speed is preferably in the range of 500 to 1300 m/mm. Regarding the relationship between the spinning speed and the crimp performance of the composite spun yarn, as [η]f increases, the spinning speed at which the crimp ratio reaches the maximum value shifts to a lower speed side. On the other hand, high [η] f
When [η]f on the side becomes lower, the spinning speed at which the crimp ratio reaches the highest value shifts to a higher speed side, and the level of the crimp ratio becomes lower. However, satisfying the range of [η]f and the range of △[η]f on the low [η]f side,
Furthermore, yarn spun at a spinning speed of 500 to 1300 m/mm can result in highly crimped processed yarn. This spinning speed is 500
If it is less than m/mm, not only will the crimp performance deteriorate, but the processing speed will also decrease, and there will be no merit in terms of high-speed processing. On the other hand, spun yarn exceeding 1300 m/mm not only does not become a highly crimped yarn, but also has a large decrease in strength and is not suitable for high-speed processing. As described above, the present invention provides a non-torque crimping method that can stably produce processed yarn with high crimping performance suitable for clothing use under high efficiency. The present invention will be described below with reference to Examples. In the present invention, TC, which represents the crimp rate, was measured by the following measuring method. TC = 0 - 1 / 0 × 100 (%) 0 is treated in boiling water for 20 minutes with a load of 2 mg per de, and after drying in this state at below 40 ° C for 1 day and night.
This is the length after 1 minute after applying a load of 200 mg per de. 1 is the length after 1 minute after applying a load of 2 mg per DE 3 minutes after 0 measurement. Example In this example, yarn was spun using the spinneret shown in Figure 1, and the yarn output was controlled so that the final processed yarn was 48 filaments of 145 to 170 deniers. After knitting and dyeing, the texture, sink marks, and spots were visually judged. These results are shown in Table-1. In this example, the weight ratio of the low [η] f-side component and the high [η] f-side component was adjusted to 50%:50% for spinning.

【表】 表―1においてNo.1〜2は紡糸口金構造の検討
であるが、No.1は第1図に示す分離型複合紡糸口
金を用いた例であり、ニーリング現象の発生もな
く、安定して紡糸ができた。一方、第2図に示す
従来タイプの口金を用いたNo.2ではニーリングが
発生し、紡出糸が口金面に付着し、紡糸ができな
かつた。 No.3〜6はサイド・バイ・サイドの低〔η〕f
側の〔η〕fについて検討したものであり、No.3
のようにこの〔η〕fが0.30と低くなると紡糸が
出来ない。又、この〔η〕fが0.50の様に高くな
り過ぎるとNo.6の様に十分な延伸も出来なく、
又、熱処理効果も低い為TCが低いものしか出来
ないし、“ひけ”、斑も共にあまり良くなかつた。 No.7〜12はサイド・バイ・サイド成分間の△
〔η〕fの検討であるが、No.7は△〔η〕fが
0.18と低い為、TCが低く風合が悪い。 No.8〜11で△〔η〕fが0.23〜0.30のものは
TCが高く、風合も良好で特にNo.9〜11は衣料用
の捲縮加工糸として充分満足のいくものである。 又、No.12のように△〔η〕fが0.32と大きくな
ると糸切れが多発した。 No.13〜16は延伸後の糸伸度の検討であるが、伸
度が10%と低いNo.13では延伸加工工程での毛羽・
ラツプが多発し、その加工糸は多数の毛羽を含ん
だものとなる。 又、伸度が23%をこすとNo.16の如くTCが低く
なり、“ひけ”染もあまり良くなかつた。 No.17〜21は紡糸速度についての検討であるが、
紡糸速度が500m/mm未満では、TCがやや低下す
るが、加工速度が低く、高速加工のメリツトが出
ない。一方、1500m/mmと高いNo.21では強度も低
いばかりか、TCも低くなり、風合が悪い。 以上の実施例で明らかな如く、本発明の分離型
複合紡糸口金を用いて、低〔η〕fが0.33〜
0.45,紡糸速度500〜1300m/mm、延伸後伸度13〜
23%の条件を満足すれば、衣料用途に適する高性
能の捲縮加工糸を紡糸直結で、かつ高速度で連続
加工することが可能である。
[Table] In Table 1, Nos. 1 and 2 are studies of the spinneret structure, and No. 1 is an example using the separate type composite spinneret shown in Fig. 1, which does not cause any kneeling phenomenon. Stable spinning was possible. On the other hand, in No. 2 using the conventional type nozzle shown in FIG. 2, knealing occurred, the spun yarn adhered to the nozzle surface, and spinning could not be performed. No. 3 to 6 are side-by-side low [η] f
This is a study of [η] f on the side, and No. 3
If this [η] f is as low as 0.30, spinning cannot be performed. Also, if this [η] f is too high, such as 0.50, sufficient stretching cannot be achieved as in No. 6,
Also, since the heat treatment effect was low, only products with low TC could be produced, and the "sink" and spots were not very good either. No. 7 to 12 are △ between side-by-side components
Considering [η]f, No. 7 shows that △[η]f
Since it is low at 0.18, the TC is low and the texture is poor. No.8 to 11 with △[η]f of 0.23 to 0.30
The TC is high and the texture is good, and Nos. 9 to 11 are particularly satisfactory as crimped yarns for clothing. Furthermore, when Δ[η]f was as large as 0.32, as in No. 12, thread breakage occurred frequently. Nos. 13 to 16 are studies of yarn elongation after drawing, but in No. 13, which has a low elongation of 10%, fluff and
Wraps occur frequently, and the processed yarn contains a large amount of fuzz. Also, when the elongation exceeded 23%, the TC became low as in No. 16, and the "sink" dyeing was not very good. Nos. 17 to 21 are studies on spinning speed,
If the spinning speed is less than 500 m/mm, the TC will decrease slightly, but the processing speed will be low and the benefits of high-speed processing will not be realized. On the other hand, No. 21, which is high at 1500m/mm, not only has low strength but also low TC and poor texture. As is clear from the above examples, when the separable composite spinneret of the present invention is used, the low [η] f is 0.33 to
0.45, spinning speed 500~1300m/mm, elongation after stretching 13~
If the 23% condition is satisfied, it is possible to continuously process high-performance crimped yarn suitable for clothing applications directly and at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にて用いる分離型複合紡糸口
金、第2図は従来の複合紡糸口金を示す縦断側面
図である。 A…高粘度ポリマー成分、B…低粘度ポリマー
成分、1…口金本体、2,3…導入孔、4,5…
吐出孔、6…口金面。
FIG. 1 is a longitudinal sectional side view showing a separate type composite spinneret used in the present invention, and FIG. 2 is a longitudinal sectional side view showing a conventional composite spinneret. A... High viscosity polymer component, B... Low viscosity polymer component, 1... Mouthpiece body, 2, 3... Introduction hole, 4, 5...
Discharge hole, 6... mouthpiece surface.

Claims (1)

【特許請求の範囲】 1 成分間に固有粘度〔η〕f差のあるサイド・
バイ・サイド型複合ポリエステル系捲縮繊維を紡
糸直結連続加工により製造する際に前述した固有
粘度〔η〕fの異なるポリエチレンテレフタレー
ト系ポリマーを各々独立して吐出し、口金面直後
の1点において接合し、サイド・バイ・サイド型
の複合繊維を形成する分離型複合紡糸口金を用い
て低〔η〕fが0.33〜0.45、成分間の固有粘度の
差△〔η〕fが0.20〜0.30であるサイド・バイ・
サイド型複合繊維を紡糸速度500〜1300m/mmで溶
融紡糸し、直結して延伸、熱処理して糸伸度を13
〜23%の範囲に調節し、引続き加熱流体押込ノズ
ルにより捲縮発現加工することを特徴とする、ノ
ントルク捲縮加工糸の製造法。
[Claims] 1. A side film with a difference in intrinsic viscosity [η]f between the components.
When manufacturing by-side type composite polyester crimped fibers by direct spinning continuous processing, the aforementioned polyethylene terephthalate polymers with different intrinsic viscosities [η]f are individually discharged and joined at one point immediately behind the spinneret surface. However, using a separate type composite spinneret that forms side-by-side type composite fibers, the low [η] f is 0.33 to 0.45, and the difference in intrinsic viscosity △ [η] f between the components is 0.20 to 0.30. side by
Side-type composite fibers are melt-spun at a spinning speed of 500 to 1300 m/mm, directly connected, drawn, and heat-treated to achieve a yarn elongation of 13
A method for producing a non-torque crimped yarn, which comprises adjusting the yarn to a range of ~23%, and subsequently crimping it using a heated fluid pushing nozzle.
JP10881281A 1981-07-14 1981-07-14 Production of nontorque crimped yarn Granted JPS5813721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10881281A JPS5813721A (en) 1981-07-14 1981-07-14 Production of nontorque crimped yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10881281A JPS5813721A (en) 1981-07-14 1981-07-14 Production of nontorque crimped yarn

Publications (2)

Publication Number Publication Date
JPS5813721A JPS5813721A (en) 1983-01-26
JPS6115169B2 true JPS6115169B2 (en) 1986-04-23

Family

ID=14494117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10881281A Granted JPS5813721A (en) 1981-07-14 1981-07-14 Production of nontorque crimped yarn

Country Status (1)

Country Link
JP (1) JPS5813721A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041578B (en) * 2019-12-24 2022-03-18 江苏恒力化纤股份有限公司 PET (polyethylene terephthalate) double-component elastic yarn with different viscosities and preparation method thereof

Also Published As

Publication number Publication date
JPS5813721A (en) 1983-01-26

Similar Documents

Publication Publication Date Title
US3577873A (en) Novel core yarns and methods for their manufacture
US3967441A (en) Yarns and process for production thereof
JPS5920007B2 (en) Method for manufacturing partially fused yarn
TW202240037A (en) Crimped polyamide yarn, false twisted yarn and fabric
JPS6115169B2 (en)
JPS6115168B2 (en)
JP4505960B2 (en) High stretch durability polyester composite fiber and manufacturing method
JPH0335412B2 (en)
JP3244150B2 (en) Manufacturing method of polyester heather-like thick and thin yarn
JPS6332892B2 (en)
JPS6330421B2 (en)
JP2591715B2 (en) Method for producing different shrinkage blended polyester yarn
JPS63182430A (en) Production of composite processed yarn
JP2783603B2 (en) Manufacturing method of special bulked yarn
JP2862020B2 (en) Spun-like core-sheath structure yarn with improved dyeability
JPS6149415B2 (en)
JPS63105134A (en) Spun like composite structural yarn
JPH0323642B2 (en)
JPS5953716A (en) Drawing of polyester fiber
JPS6131210B2 (en)
JPS6346172B2 (en)
JPS61160446A (en) Tire cord
JPH11172524A (en) Production of polyester fiber
JPH09316744A (en) Composite polyester combined filament yarn having low shrinkage and its production
JP2001271239A (en) Combined filament yarn with difference in shrinkage and method for producing the same