JPS6115142B2 - - Google Patents

Info

Publication number
JPS6115142B2
JPS6115142B2 JP7821177A JP7821177A JPS6115142B2 JP S6115142 B2 JPS6115142 B2 JP S6115142B2 JP 7821177 A JP7821177 A JP 7821177A JP 7821177 A JP7821177 A JP 7821177A JP S6115142 B2 JPS6115142 B2 JP S6115142B2
Authority
JP
Japan
Prior art keywords
steel
nitrogen
speed
speed steel
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7821177A
Other languages
Japanese (ja)
Other versions
JPS5411815A (en
Inventor
Katsumi Tsuji
Katsuhiko Pponma
Minoru Hirano
Tsuneo Tateno
Hirofumi Fujimoto
Hiroshi Takigawa
Masaru Ishii
Nobuyasu Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7821177A priority Critical patent/JPS5411815A/en
Publication of JPS5411815A publication Critical patent/JPS5411815A/en
Publication of JPS6115142B2 publication Critical patent/JPS6115142B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉末冶金法により製造される含窒素高
速度鋼に関し、鋼中のCおよびNの含有量を特定
することにより、高速度鋼としての特性、就中熱
処理に伴う熱歪み、靭性等機械的性質の悪化を伴
うことなく、切削性能を著しく改善したものであ
る。 一般に、Cr、W、Vなどの合金元素を含む高
速度鋼に窒素を含有させることにより、高速度鋼
としての諸性能を向上させることは知られてい
る。このことは、窒化処理によつて、MX或いは
M6X型窒化物(Mは合金元素、Xは炭素或いは窒
素を表わす。)が形成され、これがMC、M6C型
炭化物より安定であり、適正焼入温度幅が広く、
熱処理管理が容易なこと、二次硬化能が大きいこ
と、また、微細なオーステナイト結晶組織が得ら
れ、機械的性質が向上すること、さらに切削性能
が改善されること等の効果によるものである。 このような含窒素高速度鋼は従来は主として溶
解法によつて製造されている。しかし、この溶解
法による場合、窒化処理のために溶鋼を高圧窒素
雰囲気下で溶製するか或いは溶鋼に窒化物を投入
するなどの煩雑な工程を必要とし、また、鋼中に
富化する窒素量は少なく、しかも炭窒化物を鋼中
に微細、均一に形成分布させることが困難のため
所望の性能をそれ程大きく改善することができな
い。このような溶解法に伴なう制約を回避する手
段として、最近に至り粉末冶金或いは粉末鍛造法
を用いた含窒素高速度鋼の開発が試みられてきて
いる。これは粉末の比表面積が大きいこと、粉末
焼結体が多孔質であることを利用し、例えば原料
粉末に予め窒素を添加しておくか、或いは焼結時
に加熱温度、加熱時間、雰囲気中窒素分圧の調節
など比較的操作の容易な手段で任意の窒素量を鋼
中に富化させようとするもので、この方法によれ
ば微細、、均一に分散する窒化物の形成が期待で
きるものである。 しかしながら、従来、粉末冶金法により製造さ
れる含窒素高速度鋼については、その切削性能は
必ずしも期待される程改善されず、むしろ劣つて
いる、或いはかかる高速度鋼の価値について疑問
があるという考え方も少なくなく、また、二、三
実用化された粉末冶金法により製造される含窒素
高速度鋼についても被削性と耐摩耗性とを兼ね備
えることの理由が不明であること、就中、優れた
切削性能を付与するための合金元素と窒素富化量
との関係が明らかにされていないこと等が一因と
なつて、これまで開発されている粉末、冶金法に
より製造される含窒素高速度鋼は特定の成分組成
を有する鋼種に限られている。例えば、神戸製鋼
所技報Vol.24、No.3、P10には粉末冶金法により
製造されるMo系高速度鋼(JIS SKH9、および
JIS SKH55改良型)に0.4〜0.5%の窒素を添加す
ることにより切削性能が著しく向上したと報告さ
れている。しかしながら、このように既に合金成
分が規格化された高速度鋼に多量の窒素を添加す
ることは耐摩耗性、耐熱性の改善には効果的であ
るが、その反面高速度鋼の化学量論的な合金成分
のバランスをくずすことになり、焼入時の残留オ
ーステナイト量を増加させ、焼戻し回数を増加さ
せる必要があること、熱処理歪が大きくなるこ
と、さらに靭性が低下し切削工具としての適用範
囲が限定されるなどの問題を生じる。 本発明の目的は、上述の如き熱処理上の問題、
靭性等の機械的性質への悪影響を伴うことなく、
切削性能のすぐれた高速度鋼を提供せんとするも
のである。 ところで、高速度鋼の主要合金元素のうち、C
はW、V、Mo、Cr等の炭化物形成元素と密接な
関係を有し、高速度鋼の諸性質に大きな影響を与
えることから、その添加量については、これら元
素の配合量との関連下に規定され、たとえば、
「鉄と鋼」(第45巻、第5号、P.511〜516)にはC
%=0.19+0.017(W%+2Mo%)+0.22V%の関
係式が示されるなど、他の合金元素と比べて厳し
く規制されている。 一方、Nに関しては、一般的にCと類似した性
質を有しており、両者の原子量はそれぞれ12およ
び14と小さく、鋼に対しては侵入型の原子であつ
て、安定な合金化合物を生成し易い性質を有して
いる。そのため、多量のNを含有する高速度鋼に
ついて切削性能や機械的性質等の改善を企図する
場合、単にN含有量を単独で調整するよりも、C
量との関連下になされるべきであると考えられ
る。 本発明者等は、粉末冶金法が前述の如く、任意
の窒素量を富化し、微細均一な炭窒化物を形成す
るに有利な手段であることを利用し、従来の
SKH52(AISI M3−1)の溶製材の成分組成に
相当する高速度鋼の諸性能、特に切削性能の改善
を図るべく、CおよびNについての上記見解に基
づき種々研究を重ねた結果、これら高速度鋼組成
につき、C量およびC+N量を一定の範囲に特定
することにより、上記目的を達成し得ることを見
出し、本発明を完成するに到つた。 すなわち、本発明の要旨は、Cr3.8〜4.5%、
Mo4.8〜6.2%、W5.5〜6.7%、V2.8〜3.3%、Co0
〜20%を含有し、かつC0.9%以下、C+N1.0〜
1.4%としたことにより、熱処理歪みを少くし、
靭性等の機械的性質を高度に維持しつつ、高速度
鋼の切削性能を大幅に改善したものである。 以下、本発明の含窒素粉末冶金高速度鋼につい
て説明する。 本発明の含窒素粉末冶金高速度鋼の基本成分は
CおよびNを除きSKH52種(AISI M3−1)で
規格化された組成に相当するもの、すなわち、
Cr3.8〜4.5%、Mo4.8〜6.2%、W5.5〜6.7%、
V2.8〜3.3%、Si0.4%以下、Mn0.4%以下、P0.03
%以下、S0.03%以下に規定される鋼種または前
記成分にCoを20%以下の範囲で添加してなる組
成のものに適用される。 上記各鋼種相当の成分組成に対し、更にCを
0.9%以下とし、かつC+Nの量を1.0〜1.4%とす
ることにより後記実施例にも示すように切削性能
の大幅な改善効果がもたらされる。 本発明に係る含窒素粉末冶金高速度鋼を製造す
るには、Cr、Mo、W、V、Co等の合金元素を、
所望の相当鋼種に応じて含有し、C量の異なる鋼
粉末(たとえば、ガスアトマイズ鋼粉末)を、C
量が0.9%以下となるように配合して軟鋼製のカ
プセルに充填し、脱気した後、C+Nの量が1.0
〜1.4%となるように窒化処理し、ついで熱間ア
イソスタテイツクプレスにより圧縮成形すること
により鋼塊となし、これを成分組成に応じた適当
な熱処理に付すればよい。 本発明は、前述の如く、SKH52に相当する合
金元素を含む高速度鋼または、これにCoを添加
してなる組成の鋼種に適用される。これら鋼種
は、それぞれCo量に差異があつても、CoはCお
よびNに対する親和性が弱く、炭窒化物の形成に
は殆んど寄与しないので、Co量とは直接関係な
く、前述の如きCおよびC+N量の規定により、
各鋼種とも同等の効果が得られる。従つて、Co
量はW、Mo、V等と併用し、高温かたさの改善
を図る等の目的で約20%以下の範囲内で適宜加え
られる。 次に実施例を挙げて本発明に係る含窒素粉末冶
金高速度鋼の切削性能について具体的に説明す
る、 実施例 JIS SKH52相当、およびこれにCo20%以下の
範囲で加えた高速度鋼について、C量の異なる鋼
粉末(80メツシユ以下)をガスアトマイズ法で製
造し、各粉末を適宜の割合で配合して軟鋼製のカ
プセルに充填し、脱気した後、窒化処理し、つい
で熱間アイソスタテイツクプレスで圧縮成形して
鋼塊とし、これを熱処理に付して製品を得た。 その製造条件および製品の切削性能を以下に示
す。なお、比較材として、規格どおりの溶製材を
製し、これを熱処理して得られた製品の切削性能
を測定し比較した。 (1) 製造条件 (a) 原料粉末の化学成分:SKH52種相当およ
びこれにCoを加えてなる原料鋼粉末の化学
成分を第1表および第2表に示す。
The present invention relates to nitrogen-containing high-speed steel produced by powder metallurgy, and by specifying the content of C and N in the steel, it is possible to improve the mechanical properties of high-speed steel, including thermal distortion caused by heat treatment, toughness, etc. The cutting performance has been significantly improved without deteriorating the mechanical properties. It is generally known that by adding nitrogen to high-speed steel containing alloying elements such as Cr, W, and V, various performances of the high-speed steel can be improved. This can be confirmed by nitriding treatment.
M6 _
This is due to the effects of easy heat treatment management, high secondary hardening ability, fine austenite crystal structure, improved mechanical properties, and improved cutting performance. Conventionally, such nitrogen-containing high-speed steels have been mainly produced by a melting method. However, this melting method requires complicated processes such as melting the molten steel in a high-pressure nitrogen atmosphere for nitriding treatment or adding nitrides to the molten steel. Since the amount is small and it is difficult to form and distribute carbonitrides finely and uniformly in steel, the desired performance cannot be significantly improved. As a means to avoid the limitations associated with such melting methods, attempts have recently been made to develop nitrogen-containing high-speed steels using powder metallurgy or powder forging methods. This takes advantage of the large specific surface area of the powder and the porous nature of the powder sintered body. For example, by adding nitrogen to the raw material powder in advance, or by changing the heating temperature, heating time, and nitrogen atmosphere during sintering This method attempts to enrich the steel with a desired amount of nitrogen using relatively easy-to-operate means such as adjusting partial pressure, and this method can be expected to form fine, uniformly dispersed nitrides. It is. However, the cutting performance of nitrogen-containing high-speed steels conventionally produced by powder metallurgy is not necessarily improved as much as expected, but is rather inferior, or there are doubts about the value of such high-speed steels. In addition, the reason why nitrogen-containing high-speed steel produced by powder metallurgy, which has been put into practical use for a few years, has both machinability and wear resistance is unknown. This is partly due to the fact that the relationship between alloying elements and nitrogen enrichment, which imparts high cutting performance, has not been clarified. Speed steels are limited to steel types with specific compositions. For example, Kobe Steel Technical Report Vol. 24, No. 3, P10 describes Mo-based high-speed steel (JIS SKH9 and
It has been reported that cutting performance was significantly improved by adding 0.4 to 0.5% nitrogen to JIS SKH55 (improved type). However, although adding a large amount of nitrogen to high-speed steel whose alloy components have already been standardized is effective in improving wear resistance and heat resistance, on the other hand, the stoichiometry of high-speed steel This results in an imbalance of the alloy components, which increases the amount of retained austenite during quenching, requires an increase in the number of tempering cycles, increases heat treatment distortion, and reduces toughness, making it difficult to use as a cutting tool. This causes problems such as a limited range. The purpose of the present invention is to solve the above-mentioned heat treatment problems,
without adversely affecting mechanical properties such as toughness.
The objective is to provide high-speed steel with excellent cutting performance. By the way, among the main alloying elements of high-speed steel, C
has a close relationship with carbide-forming elements such as W, V, Mo, and Cr, and has a great influence on the properties of high-speed steel. For example,
"Iron and Steel" (Volume 45, No. 5, P.511-516) has C.
% = 0.19 + 0.017 (W% + 2Mo%) + 0.22V%, and it is more strictly regulated than other alloying elements. On the other hand, N generally has properties similar to C, and both have small atomic weights of 12 and 14, respectively, and are interstitial atoms in steel, forming stable alloy compounds. It has the property of being easy to use. Therefore, when attempting to improve the cutting performance or mechanical properties of high-speed steel containing a large amount of N, it is necessary to
It is considered that this should be done in relation to the quantity. The present inventors took advantage of the fact that the powder metallurgy method is an advantageous means for enriching any amount of nitrogen and forming fine and uniform carbonitrides, as described above.
In order to improve the performance of high-speed steel, in particular the cutting performance, which corresponds to the chemical composition of SKH52 (AISI M3-1) melted material, we have conducted various studies based on the above opinion regarding C and N, and as a result, we have developed these high-speed steels. The present inventors have discovered that the above object can be achieved by specifying the C content and C+N content within a certain range for the speed steel composition, and have completed the present invention. That is, the gist of the present invention is that Cr3.8 to 4.5%,
Mo4.8~6.2%, W5.5~6.7%, V2.8~3.3%, Co0
Contains ~20% and C0.9% or less, C+N1.0~
By setting it to 1.4%, heat treatment distortion is reduced,
It significantly improves the cutting performance of high-speed steel while maintaining a high level of mechanical properties such as toughness. Hereinafter, the nitrogen-containing powder metallurgy high speed steel of the present invention will be explained. The basic components of the nitrogen-containing powder metallurgy high-speed steel of the present invention, excluding C and N, correspond to the composition standardized by SKH52 type (AISI M3-1), that is,
Cr3.8~4.5%, Mo4.8~6.2%, W5.5~6.7%,
V2.8~3.3%, Si0.4% or less, Mn0.4% or less, P0.03
% or less, S0.03% or less, or steel types with a composition in which Co is added in a range of 20% or less to the above components. In addition, C is added to the chemical composition equivalent to each steel type above.
By setting the C+N content to 0.9% or less and setting the amount of C+N to 1.0 to 1.4%, a significant improvement in cutting performance can be brought about, as will be shown in Examples below. In order to produce the nitrogen-containing powder metallurgy high speed steel according to the present invention, alloying elements such as Cr, Mo, W, V, Co, etc.
Steel powder containing different amounts of C (for example, gas atomized steel powder) depending on the desired equivalent steel type,
After blending so that the amount of C+N is 0.9% or less and filling it into a mild steel capsule and degassing, the amount of C + N is 1.0.
The steel may be nitrided to a concentration of ~1.4%, then compressed using a hot isostatic press to form a steel ingot, and then subjected to an appropriate heat treatment depending on the component composition. As described above, the present invention is applied to high-speed steel containing an alloying element corresponding to SKH52 or a steel type having a composition obtained by adding Co to the same. Even if these steel types have different amounts of Co, Co has a weak affinity for C and N and hardly contributes to the formation of carbonitrides. According to the regulations on the amount of C and C+N,
Equivalent effects can be obtained with each steel type. Therefore, Co
It is used in combination with W, Mo, V, etc., and is appropriately added within a range of about 20% or less for the purpose of improving high-temperature hardness. Next, the cutting performance of the nitrogen-containing powder metallurgy high speed steel according to the present invention will be specifically explained by giving examples. Steel powders with different amounts of C (80 mesh or less) are produced by gas atomization, each powder is mixed in an appropriate ratio, filled into a mild steel capsule, degassed, nitrided, and then hot isostated. A steel ingot was formed by compression molding using an ice press, and this was subjected to heat treatment to obtain a product. The manufacturing conditions and cutting performance of the product are shown below. As a comparison material, a melt-sawn material according to the specifications was produced, and the cutting performance of the product obtained by heat treatment was measured and compared. (1) Manufacturing conditions (a) Chemical composition of raw material powder: Tables 1 and 2 show the chemical composition of raw material steel powder equivalent to SKH52 and Co added thereto.

【表】【table】

【表】 (b) 窒化処理 窒素雰囲気中、1000〜1150℃で2時間加熱
して窒化した。但し、製品の含素含有量の調
節は、雰囲気圧力および温度を適宜制御する
ことにより行つた。 (c) 熱処理 焼入れ:1200〜1300℃×3分間・油冷。 焼もどし:560℃×1.5Hr(2〜4回くり
返し)。 (2) 切削性能 上記の条件下に得られたCおよびN量の異な
る粉末冶金高速度鋼並びに溶製材について次の
条件で断続切削試験を行つた。 切削速度:25m/分、切込み:1.5mm、送
り:0.2mm/rev、切削油:使用せず、工具形
状:0゜、15゜、6°、6゜、15゜、15゜、
0.4R、被削材:SNCM8(HB300〜320)、4ロ
ツト。 上記断続切削試験による切削寿命時間(逃げ面
摩耗幅VB=0.6mmに達するまでの切削時間)を第
1図に示す。図中、A,B,C,D,Eは、これ
ぞれ第1表および第2表に示す鋼粉末により得ら
れたもの、M1およびM2は溶製材を示す。 同図から明らかなように、C0.9%以下、C+
N約1.0〜1.4%の範囲で、従来の溶製材に比し、
約2ないし2.5倍に達する切削寿命が保証される
ことが認められる。 また、別途行つた測定結果により、熱処理歪み
および抗折力についても問題のないことが確認さ
れた。
[Table] (b) Nitriding treatment Nitriding was performed by heating at 1000 to 1150°C for 2 hours in a nitrogen atmosphere. However, the content of the product was adjusted by appropriately controlling the atmospheric pressure and temperature. (c) Heat treatment Quenching: 1200-1300℃ x 3 minutes, oil cooling. Tempering: 560℃ x 1.5Hr (repeat 2 to 4 times). (2) Cutting performance Interrupted cutting tests were conducted on powder metallurgy high-speed steels and ingots with different amounts of C and N obtained under the above conditions under the following conditions. Cutting speed: 25m/min, depth of cut: 1.5mm, feed: 0.2mm/rev, cutting oil: not used, tool shape: 0°, 15°, 6°, 6°, 15°, 15°,
0.4 R , work material: SNCM8 ( HB 300-320), 4 lots. Fig. 1 shows the cutting life time (cutting time until flank wear width V B =0.6 mm) obtained in the above-mentioned interrupted cutting test. In the figure, A, B, C, D, and E indicate those obtained using the steel powders shown in Tables 1 and 2, respectively, and M 1 and M 2 indicate ingot materials. As is clear from the figure, C0.9% or less, C+
In the range of approximately 1.0 to 1.4% N, compared to conventional melted lumber,
It is recognized that a cutting life of about 2 to 2.5 times is guaranteed. Furthermore, the results of measurements conducted separately confirmed that there were no problems with respect to heat treatment distortion and transverse rupture strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、C量をパラメータとし、切削性能と
C+N量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between cutting performance and C+N amount using C amount as a parameter.

Claims (1)

【特許請求の範囲】 1 Cr3.8〜4.5%、Mo4.8〜6.2%、W5.5〜6.7
%、V2.8〜3.3%を含有し、かつC0.9%以下、C
+N1.0〜1.4%であることを特徴とする粉末冶金
法により製造される含窒素高速度鋼。 2 Cr3.8〜4.5%、Mo4.8〜6.2%、W5.5〜6.7
%、V2.8〜3.3%、Co20%以下を含有し、かつ
C0.9%以下、C+N1.0〜1.4%であることを特徴
とする粉末冶金法により製造される含窒素高速度
鋼。
[Claims] 1 Cr3.8~4.5%, Mo4.8~6.2%, W5.5~6.7
%, V2.8~3.3%, and C0.9% or less, C
Nitrogen-containing high-speed steel manufactured by a powder metallurgy method characterized by +N1.0 to 1.4%. 2 Cr3.8~4.5%, Mo4.8~6.2%, W5.5~6.7
%, V2.8~3.3%, Co20% or less, and
A nitrogen-containing high-speed steel manufactured by a powder metallurgy method characterized by a C+N content of 0.9% or less and a C+N content of 1.0 to 1.4%.
JP7821177A 1977-06-29 1977-06-29 High speed steel made of nitrogen-containing powder Granted JPS5411815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7821177A JPS5411815A (en) 1977-06-29 1977-06-29 High speed steel made of nitrogen-containing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7821177A JPS5411815A (en) 1977-06-29 1977-06-29 High speed steel made of nitrogen-containing powder

Publications (2)

Publication Number Publication Date
JPS5411815A JPS5411815A (en) 1979-01-29
JPS6115142B2 true JPS6115142B2 (en) 1986-04-22

Family

ID=13655703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7821177A Granted JPS5411815A (en) 1977-06-29 1977-06-29 High speed steel made of nitrogen-containing powder

Country Status (1)

Country Link
JP (1) JPS5411815A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222554A (en) * 1983-05-30 1984-12-14 Kobe Steel Ltd Powdered high-speed steel containing nitrogen

Also Published As

Publication number Publication date
JPS5411815A (en) 1979-01-29

Similar Documents

Publication Publication Date Title
US5856625A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
US5308702A (en) Iron-based powder composition for use in powder metallurgy, process for its production and process for producing iron-base sintered material
GB2237029A (en) Sintered alloy body
PL362787A1 (en) Sintered ferrous material containing copper
US4123265A (en) Method of producing ferrous sintered alloy of improved wear resistance
KR100258376B1 (en) Manganese containing iron-based powder having high tensile strength
EP0779847A1 (en) Iron-based powder containing chromium, molybdenum and manganese
JPS6115144B2 (en)
JPS6115142B2 (en)
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
KR20200081813A (en) Iron-based powder for powder metallurgy and method for producing same
JPS6117901B2 (en)
JPS6115143B2 (en)
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
JPS6115141B2 (en)
JPS6115140B2 (en)
JPS6115139B2 (en)
JPS6117902B2 (en)
JPH04157109A (en) Material for metallic mold
JPS6115145B2 (en)
JP2006241533A (en) Iron based mixed powder for high strength sintered component
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
JPS5819722B2 (en) koumitsudoshiyouketsukou no seizouhouhou
US11590571B2 (en) Method for producing a sintered component
JPH0114985B2 (en)