JPS61151016A - Production of fluorosilane - Google Patents

Production of fluorosilane

Info

Publication number
JPS61151016A
JPS61151016A JP27074484A JP27074484A JPS61151016A JP S61151016 A JPS61151016 A JP S61151016A JP 27074484 A JP27074484 A JP 27074484A JP 27074484 A JP27074484 A JP 27074484A JP S61151016 A JPS61151016 A JP S61151016A
Authority
JP
Japan
Prior art keywords
fluorosilane
reaction
fluorinating agent
chlorosilane
anisole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27074484A
Other languages
Japanese (ja)
Other versions
JPH0328370B2 (en
Inventor
Hiroyuki Momotake
宏之 百武
Yukihiro Yoda
與田 幸廣
Nobuhiko Koto
信彦 古藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP27074484A priority Critical patent/JPS61151016A/en
Publication of JPS61151016A publication Critical patent/JPS61151016A/en
Publication of JPH0328370B2 publication Critical patent/JPH0328370B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a high-purity fluorosilane in improved reaction yield, by suspending a fluorinating agent in anisole, and reacting a chlorosilane with the suspension. CONSTITUTION:An anhydrous fluorinating agent such as SbF3, AsF3, TiF4, ZrF2, etc. which is heat-treated at about 200 deg.C for about 4hr and completely dehydrated is suspended in anisole to give slurry having 5-50wt% concentration of the fluorinating agent, the system is sufficiently replaced with N2, the temperature is controlled to -30-70 deg.C, a chlorosilane in a gaseous state, corresponding to an obtained fluorosilane, is passed through the slurry and halogen exchange reaction is carried out, to give a fluorosilane shown by the formula (n>=1, 0<=m<=2n+1).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フルオロシランの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fluorosilane.

さらに詳しくはハロゲン交換法によるフルオロシランの
製造方法の改良に関する。
More specifically, the present invention relates to an improvement in a method for producing fluorosilane using a halogen exchange method.

(従来技術及びその問題点) フルオロシランは、フッ素化アモルファスシリコン薄膜
を形成させる場合に用いられる化合物である。
(Prior Art and its Problems) Fluorosilane is a compound used when forming a fluorinated amorphous silicon thin film.

そして、ここに云うフルオロシランとはS i 2 F
aの如き全フッ化物は勿論81□H2F、の如き部分フ
ッ化物も含むものである。
And the fluorosilane mentioned here is S i 2 F
It includes not only full fluorides such as a but also partial fluorides such as 81□H2F.

フルオロシランの製造方法としては、対応するクロロシ
ランをフッ素化剤でフン素化する。いわゆるハロゲン交
換法が知られている。
As a method for producing fluorosilane, a corresponding chlorosilane is fluorinated with a fluorinating agent. A so-called halogen exchange method is known.

その際使用されるフッ素化剤としてはSbF3、As 
F!、 T i F4 、 Sn F4、ZnF2など
がある。これら固体状のフッ化物と気体もしくは液体の
クロロシランを反応させる方法としては、フッ化物充填
層にクロロシランをガス状で通過させる方法、あるいは
フッ化物層に液状のクロロシランを滴下する方法などが
一般的である。
Fluorinating agents used at that time include SbF3, As
F! , T i F4, Sn F4, ZnF2, etc. Common methods for reacting these solid fluorides with gaseous or liquid chlorosilane include passing chlorosilane in gaseous form through a fluoride packed bed, or dropping liquid chlorosilane dropwise into a fluoride layer. be.

しかしながらこ、れらの方法では、反応収率が満足でき
るほどに高いものではなく、しかも副反応生成物がかな
り生成し易いという欠点をもっている。
However, these methods have the disadvantage that the reaction yield is not satisfactorily high and that side reaction products are quite likely to be produced.

また、溶媒としてエーテル、ペンタンなどを用い、フッ
化物をこれらの溶媒に懸濁してクロロシランと反応させ
る方法も知られている。
Also known is a method in which ether, pentane, etc. are used as a solvent, and a fluoride is suspended in these solvents and reacted with chlorosilane.

しかしながらこの方法では、反応収率はかなり改善され
るものの、未だ塩素が完全にフッ紫に置換しえなかった
中間体が一部残存して、これらが蒸留などの操作によっ
ても分離困難なものが多く、製品の純度を低下させると
いう大きな問題をもっている。又反応溶媒の蒸気圧がか
なり高いため反応溶媒が製品中に混入する問題もある。
However, although this method improves the reaction yield considerably, there still remains some intermediates in which chlorine could not be completely replaced by fluorine, and these are difficult to separate even by operations such as distillation. Many have the major problem of reducing the purity of the product. Furthermore, since the vapor pressure of the reaction solvent is quite high, there is also the problem that the reaction solvent mixes into the product.

(問題点を解決するための手段) 本発明者らは上記問題点に鑑み1反応収率が高くかつ純
度の高いフルオロシランを得る方法について鋭意検討し
た結果、アニソールに7ノ素化剤を懸濁させてクロロシ
ランと反応させることにより目的が達成させられること
を発見し、本発明を完成するに至った。
(Means for Solving the Problems) In view of the above-mentioned problems, the present inventors have conducted intensive studies on a method for obtaining fluorosilane with a high reaction yield and high purity. It was discovered that the object could be achieved by making it cloudy and reacting it with chlorosilane, leading to the completion of the present invention.

すなわち本発明は一般式S In H2mF2n+2−
m (nはn2〉1の整数1mは0≦m、≦2n+1の
整数)で表わされるフルオロシランを、対応スるクロロ
シランからフッ素化剤とのハロゲン交換法によって製造
する方法において、7ノ素化剤をアニソールに懸濁して
反応を行なうことを特徴とするフルオロシランの製造方
法である。
That is, the present invention has the general formula S In H2mF2n+2-
m (n is an integer where n2>1 and 1m is an integer where 0≦m and ≦2n+1) is produced from the corresponding chlorosilane by a halogen exchange method with a fluorinating agent. This method for producing fluorosilane is characterized by carrying out the reaction by suspending the agent in anisole.

本発明で使用するフッ素化剤としては、従来公知のSb
F3.AsF3. TiF4.5nF4. ZnF2な
どすべてに適用できる。クロロシランあるいはフルオロ
シランは、水が存在すれば容易に加水分触する性質をも
っている為1反応に使用する反応原料。
As the fluorinating agent used in the present invention, conventionally known Sb
F3. AsF3. TiF4.5nF4. It can be applied to all materials such as ZnF2. Chlorosilane or fluorosilane is a reaction raw material used in one reaction because it has the property of being easily hydrolyzed in the presence of water.

フッ素化剤、溶媒や器“具は水を十分除いておく必要が
ある。例えばフッ素化剤は使用直前に200℃、4時間
加熱処理するなどの方法によって完全に脱水してお(。
It is necessary to sufficiently remove water from the fluorinating agent, solvent, and equipment.For example, the fluorinating agent must be completely dehydrated by heat treatment at 200°C for 4 hours immediately before use.

本発明において溶媒として特にアニソールを用いる効果
は、詳細は明らかではないが反応によって生成する金属
塩化物を溶解が溶解しフッ素化側表面を常に更新し活性
に保つことと、反応によって発生する熱を分散させて1
反応部度の上昇を防止する点にあると考えられるが、そ
の点からするとアニソール中に懸濁するフッ素化剤のス
ラリー濃度についてはJある程度低い方が好ましく実用
上5重量%(以下単に%と示す)程度、高(でも50%
である。
The effect of using anisole as a solvent in the present invention is that, although the details are not clear, it dissolves the metal chloride produced by the reaction, constantly renewing the fluorinated surface and keeping it active, and reducing the heat generated by the reaction. Distribute 1
It is thought that the purpose is to prevent an increase in the reaction rate, but from this point of view, it is preferable for the slurry concentration of the fluorinating agent suspended in anisole to be as low as 5% by weight (hereinafter simply referred to as %). ) degree, high (but 50%
It is.

反応温度は、)・ロゲン交換の反応性あるいは生成する
フルオロシランの熱安定性を考慮して決められるが、−
30℃〜70℃好ましくは一10℃〜40℃で行なう。
The reaction temperature is determined by taking into account the reactivity of rogane exchange or the thermal stability of the fluorosilane produced, but -
The temperature is 30°C to 70°C, preferably -10°C to 40°C.

反応温度が高すぎると副反応生成物を生じ易(なり、し
たがって製品の純度が低下し、また逆に反応温度が低す
ぎるとハロゲン交換反応の反応率が低下する。
If the reaction temperature is too high, side reaction products are likely to be produced, thus reducing the purity of the product, and conversely, if the reaction temperature is too low, the reaction rate of the halogen exchange reaction will decrease.

(実施例及び比較例) 以下実施例及び比較例によって本発明を更に詳細に説明
する。
(Examples and Comparative Examples) The present invention will be explained in more detail below using Examples and Comparative Examples.

実施例1 200℃で4時間脱水処理をしたフッ化亜鉛7200f
をII!の攪拌機つきガラス製フラスコ忙入れ、400
rnlのアニソールに懸濁させた。
Example 1 Zinc fluoride 7200f dehydrated at 200°C for 4 hours
II! glass flask with stirrer, 400
rnl was suspended in anisole.

系内をN2で充分に置換させたのち、攪拌しながら5i
HC1!3を0.5f/minの速度で10ofをフラ
スコにフィードした。尚反応中フラスコは氷水に浸漬し
反応温度を一定に維持するとともに、リフラックスコン
デンサーをとりつげてアニソールの蒸発を防止した。
After sufficiently replacing the inside of the system with N2, 5i was added while stirring.
10 of HC1!3 was fed into the flask at a speed of 0.5 f/min. During the reaction, the flask was immersed in ice water to maintain a constant reaction temperature, and a reflux condenser was installed to prevent evaporation of anisole.

フラスコから発生した反応ガスは、ドライアイスアセト
ントランプで不純物を除去したのち、液体窒素トラップ
中に回収した。回収量は53y(収率84%)で、この
ものはIR吸収特性値からSiHF3と同定された。ま
た生成ガスをHF水溶液に吸収させて生成ガス中の塩素
濃度を測定したところ、僅か70 ppmに過ぎず製品
の純度は非常に高いものであった。
The reaction gas generated from the flask was collected in a liquid nitrogen trap after removing impurities using a dry ice acetone lamp. The amount recovered was 53y (yield: 84%), and this was identified as SiHF3 from the IR absorption characteristics. Furthermore, when the produced gas was absorbed into an HF aqueous solution and the chlorine concentration in the produced gas was measured, it was only 70 ppm, indicating that the purity of the product was extremely high.

を用い、実施例1と同様な方法で反応を行なったところ
SiHF3の収率は70%であった。
When the reaction was carried out in the same manner as in Example 1, the yield of SiHF3 was 70%.

実施例3 実施例1と同様な方法で5IH2CI!2のフッ素化を
行なったところ収率87%でSiH2F2が得られた。
Example 3 5IH2CI! in the same manner as Example 1! When 2 was fluorinated, SiH2F2 was obtained with a yield of 87%.

生成ガス中の塩素濃度は50 pI)m に過ぎなかっ
た。
The chlorine concentration in the product gas was only 50 pI)m.

比較例1 懸濁溶媒として無水エーテルを用い実施例1と同様な方
法で反応を行なったところ、収率は53%に過ぎず、生
成ガス中の塩素濃度は1.73%もあった。
Comparative Example 1 When a reaction was carried out in the same manner as in Example 1 using anhydrous ether as a suspending solvent, the yield was only 53%, and the chlorine concentration in the produced gas was as high as 1.73%.

比較例2 懸濁溶媒を使用せずにフン化亜鉛と5IHC1!3とを
混合する方法で反応を行なったところ、収率は42%で
、生成ガス中の塩素濃度は2.73%もあった。
Comparative Example 2 When a reaction was carried out by mixing zinc fluoride and 5IHC1!3 without using a suspending solvent, the yield was 42% and the chlorine concentration in the produced gas was as high as 2.73%. Ta.

Claims (1)

【特許請求の範囲】[Claims] (1)アニソールに懸濁したフッ素化剤をクロロシラン
に接触させることを特徴とするフルオロシランの製造方
法。
(1) A method for producing fluorosilane, which comprises bringing a fluorinating agent suspended in anisole into contact with chlorosilane.
JP27074484A 1984-12-24 1984-12-24 Production of fluorosilane Granted JPS61151016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27074484A JPS61151016A (en) 1984-12-24 1984-12-24 Production of fluorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27074484A JPS61151016A (en) 1984-12-24 1984-12-24 Production of fluorosilane

Publications (2)

Publication Number Publication Date
JPS61151016A true JPS61151016A (en) 1986-07-09
JPH0328370B2 JPH0328370B2 (en) 1991-04-18

Family

ID=17490368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27074484A Granted JPS61151016A (en) 1984-12-24 1984-12-24 Production of fluorosilane

Country Status (1)

Country Link
JP (1) JPS61151016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232215A (en) * 1985-04-09 1986-10-16 Central Glass Co Ltd Production of partially fluorinated silane
FR2594110A1 (en) * 1986-02-13 1987-08-14 Central Glass Co Ltd PROCESS FOR THE PREPARATION OF PERFLUOROSILANES FROM PERCHLOROSILANES AND PERFLUOROSILANES OBTAINED
EP0599278A1 (en) * 1992-11-27 1994-06-01 MITSUI TOATSU CHEMICALS, Inc. Process for the preparation of partially-substituted fluorosilane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232215A (en) * 1985-04-09 1986-10-16 Central Glass Co Ltd Production of partially fluorinated silane
FR2594110A1 (en) * 1986-02-13 1987-08-14 Central Glass Co Ltd PROCESS FOR THE PREPARATION OF PERFLUOROSILANES FROM PERCHLOROSILANES AND PERFLUOROSILANES OBTAINED
EP0599278A1 (en) * 1992-11-27 1994-06-01 MITSUI TOATSU CHEMICALS, Inc. Process for the preparation of partially-substituted fluorosilane

Also Published As

Publication number Publication date
JPH0328370B2 (en) 1991-04-18

Similar Documents

Publication Publication Date Title
EP2157078B1 (en) Fluorine compound and fluorinating agent comprising the compound
JPS61151016A (en) Production of fluorosilane
JP3046896B2 (en) Method for producing 5- (trifluoromethyl) -uracil, and novel compounds 2,4-dichloro-5-trichloromethyl-pyrimidine and 2,4-difluoro-5-trifluoromethyl-pyrimidine
EP0450584B1 (en) Bromination method
US4382897A (en) Process for the preparation of trifluoracetic acid derivatives
JPH06263715A (en) Production of high-purity methanesulfonyl chloride
JP3123698B2 (en) Manufacturing method of fluorinated silane
JPS61151015A (en) Production of partially substituted fluorosilane
SU971785A1 (en) Process for producing sulphur tetrachloride
JPS63201013A (en) Production of partially fluorinated silane
JPH0678270B2 (en) Method for purifying fluorocarbon compound
JP2961457B2 (en) Method for producing fluorinated organic quaternary ammonium salts
JPS5941998B2 (en) Method for producing tri-substituted halogenosilane
JP3107677B2 (en) Synthesis method of difluorosilane
JPS6328903B2 (en)
JPS6127322B2 (en)
JP2794436B2 (en) Nitrosyl fluoride manufacturing method
JP3041379B2 (en) Method for producing high purity sulfur monochloride
JP3057146B2 (en) Method for producing 2-halogeno-4,5-difluorobenzoyl fluorides
JPH049790B2 (en)
JPS63195108A (en) Production of disilicon hexafluoride
JPS58223604A (en) Purification of hydrochloric acid
JPS6293253A (en) Production of oxalyl fluoride
JPH0514700B2 (en)
JPS6125647B2 (en)