JPS6115093A - Heat transfer tube for use in heat exchanger - Google Patents

Heat transfer tube for use in heat exchanger

Info

Publication number
JPS6115093A
JPS6115093A JP13464584A JP13464584A JPS6115093A JP S6115093 A JPS6115093 A JP S6115093A JP 13464584 A JP13464584 A JP 13464584A JP 13464584 A JP13464584 A JP 13464584A JP S6115093 A JPS6115093 A JP S6115093A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
copper
tubular body
copper tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13464584A
Other languages
Japanese (ja)
Other versions
JPH0531078B2 (en
Inventor
Shoichi Yoshiki
吉木 尚一
Junichiro Yamashita
山下 順一郎
Junya Oe
大江 潤也
Kazuo Toda
戸田 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13464584A priority Critical patent/JPS6115093A/en
Publication of JPS6115093A publication Critical patent/JPS6115093A/en
Publication of JPH0531078B2 publication Critical patent/JPH0531078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To provide a heat transfer tube of a high heat efficiency which is easy to manufacture by closely fixing a thin tubular body made of copper or a copper alloy, having a diameter dimension substantially equal to the inner diameter of the tubular body, to the inner surface of the tubular body having a smooth inner surface or a grooved tubular body. CONSTITUTION:A copper tube 2 provided with a large number of through holes 2a is defatted washing with trifluoroethylene, and inserted into a copper tube 1. Thereafter, idle elongation is carried out and cold drawing is also carried out and a copper tube 1 attempted to be integrally formed with the porous copper tube 2, and metal cores are inserted into double tubes 1 and 2 to thin the thickness of the copper tube 1 thereby to carry out metal core extraction. As a result, the through hole 2a is elongated in the direction of the extraction axis, and is deformed in an oval hole, and its closely holding force is extremely increased. Further, as a result, the heat transfer area becomes large, and nucleate boiling, capillary tube phenomenon and turbulent flow are easy to occur, and thus the heat transfer efficiency is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空調用冷凍es等′に、1史用される熱交換
器用伝熱fK関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat transfer fK for a heat exchanger, which has been used for a long time in refrigeration ES for air conditioning, etc.

〔従来の技術〕[Conventional technology]

従来実用に供されている熱交換器伝熱管は、伝熱効率を
高めるために銅または銅合金から構成されており、その
内面が平f#なもの(平滑’f)と、ざらに熱効率を上
げるために内面にらせんtie f:形成したもの(+
4付管)とがある。
Conventional heat exchanger heat transfer tubes used in practical use are made of copper or copper alloy to increase heat transfer efficiency, and those with a flat inner surface (smooth 'F) improve thermal efficiency roughly. For the inside helical tie f: formed (+
There is a pipe with 4).

〔発明が解決しようとする間頭点〕[The problem that the invention is trying to solve]

ところで、周知のように伝熱1.!; においてその伝
熱効率を高めるKは、 (イ)伝熱白檀を大きくする。
By the way, as is well known, heat transfer 1. ! K increases the heat transfer efficiency in (a) increases the size of the heat transfer sandalwood.

(ロ)核S騰を起しゃ丁くする。(b) Prevent nuclear explosion.

Pl  毛細管現象をおこしやすくする。Pl Facilitates capillary action.

に)fAJ流が生じ9丁くする。2) fAJ flow occurs and it becomes 9th.

ことが有効とされている。It is said that this is effective.

これに対し、上記従来の伝熱管、44tC平滑管におい
ては、上記項目を充分に満足させるまでには至っておら
ず、そのため、より熱効率の毘い伝熱・冴が要求されて
いるのが現状である。さらに、上記伝熱管のうち溝付管
においては、この溝付管が主に転遣方式罠より製造され
ており、この方法では加工M!、度が遅<、シかも転m
技術上らせんで19の条数、ねじれ角度などに制限があ
る等の欠点があり、そのため製造効率を犠牲にする割に
け°性能の向上が得られないでいる。
On the other hand, the conventional heat transfer tubes mentioned above, 44tC smooth tubes, have not yet reached the point where they fully satisfy the above requirements, and as a result, there is currently a demand for better heat transfer and better thermal efficiency. be. Furthermore, among the above-mentioned heat transfer tubes, grooved tubes are mainly manufactured by the transfer method, and this method can process M! , the degree is slow <, it may turn m
Technically speaking, there are drawbacks such as limitations on the number of spiral threads (19), twist angle, etc., and as a result, performance cannot be improved at the cost of sacrificing manufacturing efficiency.

この発明は上記事?1fに鑑みてなされたもので、熱効
率が高(、容易に製置することのできる伝熱管を梅供す
ることを目的とするものである。
Is this invention mentioned above? This was done in consideration of the above, and the purpose is to provide heat exchanger tubes that have high thermal efficiency and can be easily manufactured.

〔問題点を解決するための手段〕[Means for solving problems]

この・発明に係る伝熱管は、鋼または銅合金製の内面平
滑または内面溝付の管体の内面にこの管体の内径寸法と
ほぼ同寸法の外径で、多数の貫通孔が穿設されてなる鋼
または銅合金製の薄肉管体を密着固定したものである。
The heat exchanger tube according to the present invention has a large number of through holes formed in the inner surface of the tube body made of steel or copper alloy and having a smooth or grooved inner surface and having an outer diameter that is approximately the same as the inner diameter of the tube body. This is a thin-walled tube made of steel or copper alloy that is tightly fixed.

〔作用〕[Effect]

上記碑成によれば1管体内面の表面積がこの内面に密着
固¥されている多孔性管体の貫通孔によって大幅に増大
され、同管体内の部体の槻れも同*31M孔によって乱
売となり、また同貫通孔によって核沸騰がおこりやすく
なり、その結果、伝熱効率が大幅に向上される。さらに
1管体内面への多孔性管体の密着固定はロウ付、めっき
等の而易な接合方法、さらに管体内に多孔性管体分挿入
した後、同管体(引抜き加工を厖こしたり、ロール圧縮
加工を施こしたり等のl!i拳な機械的方法など釦より
行なうことができるので、製造が容易となる。
According to the above structure, the surface area of the inner surface of one tube is greatly increased by the through holes of the porous tube that are tightly fixed to the inner surface, and the holes of the parts inside the tube are also increased by the same *31M holes. This leads to overselling, and the through holes make it easier for nucleate boiling to occur, resulting in a significant improvement in heat transfer efficiency. In addition, a porous tube can be tightly fixed to the inner surface of a tube using easy joining methods such as brazing or plating.Furthermore, after inserting the porous tube into the tube, Manufacturing is easy because it can be carried out using sophisticated mechanical methods such as roll compression processing and the like.

以下、この発明を図面を参照して説明する。Hereinafter, the present invention will be explained with reference to the drawings.

〔実施例〕〔Example〕

外4 / 、2 amφ、肉厚a(1m、長さ20θθ
鴬の燐脱酸鋼管C管体)1 (第1図)を用い、これに
トリクロルエチレンによる洗浄をSこない、管内面1a
の脱脂2行なった。
Outside 4/, 2 amφ, wall thickness a (1 m, length 20θθ
Using the phosphorus deoxidizing steel pipe (C pipe body) 1 (Fig. 1) of Tsumugi, it was not cleaned with trichlorethylene, and the inner surface of the pipe 1a was
Two steps of degreasing were performed.

一方、外径が/Qmmφ、肉厚Q、 II騙、長さ20
00Bmの隣脱酸鋼管に外面から軸方向に21ピンチで
、かつ円周方向93度ばにドリルにより多数の貫通孔2
a5:連続的に明けた。これら貫通孔2a・・・が明け
られた鋼管(多孔性管体)2をトリクロルエチレン洗浄
にて脱脂し、上記鋼管1内に挿入した後、外径が/ 0
. g uφまで空引抽伸ごおこなつtoその結果、鋼
管lKr1約30%冷間引抜き加工がなされ、約/、 
09倍の長さに′#、伸された。従って、外側のl:1
mφの銅・冴1は内挿した1014φの多孔性鋼管2に
対して約q1%の良さで良いことになる。上記のよう圧
して内部の多孔性mff2と密着一体化を図った銅管1
は、外径が1013φ、肉厚がag avrの囃管に相
当することになる。その後、さらに肉厚を薄(するため
上記2重管の内面にに02#Isφの芯金を入れ、外径
9、 、!t 3騙φのダイスを用いて芯金抽伸をおこ
ない、第1図に示すような外径9. j 3 gφ、肉
厚a9り闘の2重管(伝@管)な作製した。この場合の
冷間加工率は約/ 7. g%で、伸び率は1.22倍
であった。この結果、貫通孔2aVi引抜軸方向に伸ば
され、長径約/、2コ闘の惰円の孔に変形した。この場
合の短径は約ag鵡であった。
On the other hand, the outer diameter is /Qmmφ, the wall thickness is Q, the length is 20
A large number of through holes 2 were drilled into the adjacent 00Bm deoxidized steel pipe from the outside with 21 pinches in the axial direction and at 93 degrees in the circumferential direction.
a5: It dawned continuously. After degreasing the steel pipe (porous pipe body) 2 with these through holes 2a by washing with trichlorethylene and inserting it into the steel pipe 1, the outer diameter becomes /0.
.. As a result, the steel pipe lKr1 has been cold drawn by about 30%, and is approximately /,
It has been stretched to 09 times its length. Therefore, the outer l:1
This means that the copper-sae 1 of mφ should be about q1% better than the inserted porous steel pipe 2 of 1014φ. Copper tube 1 which is pressed and integrated with the internal porous mff2 as described above
corresponds to a music pipe with an outer diameter of 1013φ and a wall thickness of ag avr. After that, in order to further reduce the wall thickness, a core metal of 02#Isφ was inserted into the inner surface of the double tube, and a core metal was drawn using a die with an outer diameter of 9, !t and 3mmφ. A double pipe (transfer pipe) with an outer diameter of 9.j3 gφ and a wall thickness of a9 as shown in the figure was fabricated.The cold working rate in this case was approximately /7.g%, and the elongation rate was As a result, the through hole 2aVi was elongated in the direction of the drawing axis and transformed into a circular hole with a major axis of approximately 1.22 times.The minor axis in this case was approximately ag.

上記のようにして製作された伝熱管は全長が2tItI
OIuIとなり、密着保持力は極めて高かった。
The total length of the heat exchanger tube manufactured as described above is 2tItI.
The result was OIuI, and the adhesion retention was extremely high.

次に上記伝熱管を第2図に示す伝熱特性試験装置で試験
した。この装置中、Tは′tM度センサ、Pけ圧力計、
PDtri差圧計、30V′iポンプ、31はバルブ、
32け流置計、33Vi膨張弁、34Viフンプレツサ
535tI′iサブコンブンサ、36はサブエバボイラ
、37vil1g温水槽であり、38が供試管としての
伝熱管である。そして、蒸発および凝縮試験は、3mの
直管(伝熱りを使用し、冷媒f422にて次の試験条件
(て実極した。
Next, the heat transfer tube was tested using a heat transfer characteristic testing apparatus shown in FIG. In this device, T is a degree sensor, P is a pressure gauge,
PDtri differential pressure gauge, 30V'i pump, 31 is valve,
32 flow meter, 33Vi expansion valve, 34Vi humppressor 535tI'i sub-combiner, 36 is sub-evaporator boiler, 37vil1g hot water tank, and 38 is heat exchanger tube as test tube. The evaporation and condensation tests were conducted using a 3 m straight pipe (heat transfer tube) and using refrigerant F422 under the following test conditions.

蒸発試験   凝縮試験 冷媒流社(’+9/H)  40,60,80  40
,60.80蒸発温度(’C)      5    
  5付近過熱度(’C)      5±0.5  
 5付近凝縮温2(’C)      45     
 45過冷却度(“C)10±0.55±0.5水@ 
(l7分)    9.0      9.0水W  
(”C)     15〜2525〜35この場合、そ
れぞれの冷媒fiEJit (kg/H) iσに冷媒
糸が安定するように水濡f:制御し、この恒温水は供試
管38に流入する冷媒に対し商売となるようパルプ操作
した。第2図中矢印A、A’は、それぞれ蒸発試験の場
合の冷媒および水の流れる方向ご示し、矢14113.
B’はそれぞれ凝縮試験の場合の冷媒および水の流れる
方向を示している。
Evaporation test Condensation test refrigerant flow company ('+9/H) 40, 60, 80 40
,60.80 Evaporation temperature ('C) 5
Superheat degree near 5 ('C) 5±0.5
Condensing temperature around 5 2 ('C) 45
45 Degree of supercooling (“C”) 10±0.55±0.5 Water @
(17 minutes) 9.0 9.0 water W
(''C) 15~2525~35 In this case, the water wetting f: is controlled so that the refrigerant threads are stabilized at each refrigerant fiEJit (kg/H) iσ, and this constant temperature water is applied to the refrigerant flowing into the test tube 38. The pulp was manipulated to be commercially viable.Arrows A and A' in Figure 2 indicate the flow directions of refrigerant and water, respectively, in the case of the evaporation test, and arrow 14113.
B' indicates the flow direction of the refrigerant and water, respectively, in the case of the condensation test.

この試験の結果、本発明の方法によって得られた伝熱管
CVi、第3図に示すよう72覆れた伝熱特性を有する
ことがわかった。なお、比較βりは平滑鋼管および溝付
’23mの場合の結果である。
As a result of this test, it was found that the heat transfer tube CVi obtained by the method of the present invention had a heat transfer characteristic of 72 as shown in FIG. Note that the comparison β is the result for a smooth steel pipe and a grooved pipe of 23 m.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実圃例を示すもので、この発明に
係る伝熱管の一部切欠いて示した斜視図、M2図はこの
発明に係る伝熱管の伝熱特性を測定するに好適な試験装
置の構成図、第3図は前記試験袋fVCよって測定した
この発明の伝熱管の伝熱特性値を示すグラフである。 1・・・・・・憐脱酸鋼管cW体)、1a・・・・・・
内面、2・・・・・・多孔1!):鋼管(多孔性・a体
)、2a・・・・・・貫通孔。 第1図
FIG. 1 shows an example of a field in which the present invention is applied, and FIG. FIG. 3 is a graph showing the heat transfer characteristic values of the heat transfer tube of the present invention measured by the test bag fVC. 1... deoxidized steel pipe cW body), 1a...
Inner surface, 2... porous 1! ): Steel pipe (porous/A body), 2a...through hole. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 銅または銅合金製の内面平滑または内面溝付の管体の内
面にこの管体の内径寸法とほぼ同寸法の外径の多孔性管
体が密着固定されてなる熱交換器用伝熱管。
A heat exchanger tube for a heat exchanger, which has a porous tube having an outer diameter approximately the same as the inner diameter of the tube, which is tightly fixed to the inner surface of a tube made of copper or copper alloy with a smooth or grooved inner surface.
JP13464584A 1984-06-29 1984-06-29 Heat transfer tube for use in heat exchanger Granted JPS6115093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13464584A JPS6115093A (en) 1984-06-29 1984-06-29 Heat transfer tube for use in heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13464584A JPS6115093A (en) 1984-06-29 1984-06-29 Heat transfer tube for use in heat exchanger

Publications (2)

Publication Number Publication Date
JPS6115093A true JPS6115093A (en) 1986-01-23
JPH0531078B2 JPH0531078B2 (en) 1993-05-11

Family

ID=15133205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13464584A Granted JPS6115093A (en) 1984-06-29 1984-06-29 Heat transfer tube for use in heat exchanger

Country Status (1)

Country Link
JP (1) JPS6115093A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168790A (en) * 1982-01-29 1982-10-18 Hitachi Ltd Manufacture of boiling heat transfer wall
JPS589919A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of high tensile hot rolled steel strip of superior low temperature toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589919A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of high tensile hot rolled steel strip of superior low temperature toughness
JPS57168790A (en) * 1982-01-29 1982-10-18 Hitachi Ltd Manufacture of boiling heat transfer wall

Also Published As

Publication number Publication date
JPH0531078B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
JP5944009B2 (en) Double tube heat exchanger and refrigeration cycle equipment
CZ189692A3 (en) Process for producing heat exchange apparatus with tubular conduits
JP2002228370A (en) Heat exchanger
CN110425768A (en) Taper throttling refrigerator
JPS6115093A (en) Heat transfer tube for use in heat exchanger
JPS6114032A (en) Manufacture of heat transfer tube for heat exchanger
JPS6115092A (en) Heat transfer tube for use in heat exchanger
JPS6115094A (en) Heat transfer tube for use in heat exchanger
JPS6115091A (en) Heat transfer tube for heat exchanger
JPS5818086A (en) Double tube type heat exchanger
CN211953842U (en) Heat exchange tube and air conditioner
JPS5883189A (en) Heat-transmitting pipe
JP2010112565A (en) Heat exchanger
JP6497093B2 (en) Titanium tube design method
JPH11221615A (en) Tube and its production
JPS63259395A (en) Finned-tube type heat exchanger
CN212618824U (en) Air conditioning system and air conditioner with same
JPS62206383A (en) Heat transfer body
US3807492A (en) Heat exchanger attachment
JPS6361895A (en) Heat transfer pipe
JPH028666A (en) Coolant distributor
JPH1082501A (en) Double tube for fast breeder reactor and manufacture thereof
JPS63180090A (en) Heat transfer tube
JPH02140596A (en) Heat transfer pipe for heat exchanger
JPS5947233B2 (en) Heat exchanger using flat tubes with U vents