JPS61150643A - Core for magnetic pole for rotary electric machine - Google Patents

Core for magnetic pole for rotary electric machine

Info

Publication number
JPS61150643A
JPS61150643A JP27122184A JP27122184A JPS61150643A JP S61150643 A JPS61150643 A JP S61150643A JP 27122184 A JP27122184 A JP 27122184A JP 27122184 A JP27122184 A JP 27122184A JP S61150643 A JPS61150643 A JP S61150643A
Authority
JP
Japan
Prior art keywords
magnetic pole
pole piece
core
armature
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27122184A
Other languages
Japanese (ja)
Inventor
Fumito Komatsu
文人 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27122184A priority Critical patent/JPS61150643A/en
Priority to US06/726,257 priority patent/US4656381A/en
Priority to EP85302916A priority patent/EP0160522B1/en
Priority to DE8585302916T priority patent/DE3579355D1/en
Priority to CN85104341.0A priority patent/CN1004741B/en
Publication of JPS61150643A publication Critical patent/JPS61150643A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/145Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/227Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/14Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with speed sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Abstract

PURPOSE:To increase starting torque enough for starting, by providing the third pole piece section between the first pole piece section and the second pole piece section bending-provided from the both end faces of a coil to the peripheral face. CONSTITUTION:A plurality of magnetic poles 3... are bending-provided on the peripheral face 2b through the both end faces 2a, 2a of a coil wound up concentrically to the axial center. Some or all of the magnetic poles 3... are divided into two formed to be the first pole piece sections 3a and the second pole piece sections 3b. Each pole piece section 3a, 3b is positioned so that an armature 5 and a field magnet 6 may relatively stop on non-electric conduction and so that an intermediate point Q1 in the peripheral direction of magnet poles S, N... or an intermediate point Q2 in the peripheral direction between magnet poles S, N..., and the pole center P of the armature 5 may relatively get out of position. The third pole piece sections 3c are formed in a continuous shape between the pole piece sections 3a, 3b.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は直流及び交流モータ、或いは回動型プランジャ
等、一般的には回転電機に用いて好適な磁極用コアに関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic pole core suitable for use in general rotating electric machines such as DC and AC motors or rotary plungers.

(背景技術) 第9図(モータの平面図)に示すように、軸心に対して
同心巻きしたコイル81の両端面から周面に亘って折曲
して設け、周面に位置する二分を゛磁極82に・・・に
形成したモータ等の電機子用コア80は知られている。
(Background Art) As shown in FIG. 9 (plan view of the motor), a coil 81 wound concentrically around the shaft center is bent from both end faces to the circumferential surface, and the two halves located on the circumferential surface are bent. A core 80 for an armature of a motor or the like formed on a magnetic pole 82 is known.

このような電機子用コア80において、第1O図(コア
の展開側面図)のように磁極82・・・の全部又はその
一部を周方向へ二分して第1磁極片82aと第2磁極片
82bを形成し、さらに非通電時における電機子83と
界磁マグネット84の相対的停止位置にあるマグネット
極S、N・・・の周方向中央点Ql又はマグネット極S
、N・・・の極間における周方向中点Q2と、起動通電
時における電機子83の磁極中心Pが相対的にずれた位
置になるように、第1磁極片82aと第2磁極片82b
の形状を磁気的に非対称に形成し、これにより、始動時
における起動死点の回避と、必要最低限度の回転ムラに
押えつつモータ効率を向上させたモータ等の電機子用コ
アは既に本出願人が提案した(特願昭59−23217
0号等)。
In such an armature core 80, as shown in Fig. 1O (developed side view of the core), all or part of the magnetic poles 82... are divided into two in the circumferential direction to form a first magnetic pole piece 82a and a second magnetic pole piece. The circumferential center point Ql or the magnet pole S of the magnet poles S, N, .
The first magnetic pole piece 82a and the second magnetic pole piece 82b are arranged such that the circumferential midpoint Q2 between the poles of , N, . . .
The core for armatures of motors, etc., which has a magnetically asymmetrical shape, thereby improving motor efficiency while avoiding starting dead center during startup and suppressing uneven rotation to the minimum necessary level, has already been disclosed in this application. proposed by a person (patent application 1986-23217)
0 etc.).

(発明が解決しようとする問題点) しかし、斯かる電機子用コアはモータ等に応用した場合
、次の点において改良すべき問題が残されている。つま
り、負荷が比較的大きい場合、或いは印加電圧が比較的
低い場合には起動しにくい、又は起動しなくなる不具合
がある。このことは第3図(モータのトルク特性図)か
らさらに明らかになる。同図において、非通電時の吸引
トルク特性を実線Sで、又通電時の起動トルク特性を点
線DOで示す。ここで非通電時の自然停止位置はR1又
はR3点となるが、この場合起動トルク特性り。
(Problems to be Solved by the Invention) However, when this armature core is applied to a motor etc., the following problems remain to be improved. In other words, when the load is relatively large or when the applied voltage is relatively low, there is a problem in that it is difficult to start or does not start. This becomes clearer from FIG. 3 (motor torque characteristic diagram). In the figure, the attraction torque characteristic when not energized is shown by a solid line S, and the starting torque characteristic when energized is shown by a dotted line DO. Here, the natural stop position when de-energized is point R1 or R3, but in this case, the starting torque characteristics.

は回動角度60°の範囲において双峰特性を示し、当該
R1点は双峰特性の谷部近くに位置する。このため始動
時においては十分な起動トルクが得に((なる。
shows a bimodal characteristic in the rotation angle range of 60°, and the R1 point is located near the valley of the bimodal characteristic. For this reason, sufficient starting torque is obtained at the time of starting.

(問題点を解決するための手段) 本発明は斯かる問題点を解決したモータ等の回転電機の
磁極用コアに関する。
(Means for Solving the Problems) The present invention relates to a magnetic pole core for a rotating electric machine such as a motor that solves the above problems.

本発明は特に第1図及び第2図に示すように軸心に対し
て同心巻きしたコイル2の両端面2a。
The present invention particularly relates to both end surfaces 2a of a coil 2 wound concentrically around the axis as shown in FIGS. 1 and 2.

2aから周面2bに亘って複数の磁極3・・・を折曲し
て設けるとともに当該磁極3・・・の全部又は一部を周
方向前後に二分して第1磁極片部3aと第2磁極片部3
bを形成し、非通電時における電機子5と界磁マグネッ
ト6の相対的停止位置にあってマグネット極S、N・・
・の周方向中央点Ql又はマグネ・ノド極S、N・・・
の極間における周方向中点Q2と、起動通電時における
電機子5の磁極中心Pが相対的にずれた位置となるよう
に前記各磁極片部3a−,3bの形状又は位置を選定し
てなる回転電機Mの磁極用コア1に適用したもので、そ
の主要構成とするところは前記第1磁極片部3aと第2
磁極片部3bの間に第3磁極片部3cを例えば第1磁極
片部3aと第2磁極片部3bに連続形状で形成したこと
を特徴とする。
A plurality of magnetic poles 3 are provided by bending them from 2a to the circumferential surface 2b, and all or a part of the magnetic poles 3 are divided into two in the circumferential direction to form a first magnetic pole piece 3a and a second magnetic pole piece 3a. Magnetic pole piece 3
b, and the armature 5 and the field magnet 6 are at a relative stop position when not energized, and the magnet poles S, N...
・Circumferential center point Ql or magnetic throat pole S, N...
The shape or position of each of the magnetic pole pieces 3a-, 3b is selected so that the circumferential midpoint Q2 between the poles is located at a position that is relatively shifted from the magnetic pole center P of the armature 5 at the time of starting energization. This is applied to a magnetic pole core 1 of a rotating electrical machine M, and its main components are the first magnetic pole piece 3a and the second magnetic pole piece 3a.
It is characterized in that the third magnetic pole piece 3c is formed between the magnetic pole pieces 3b in a continuous shape between the first magnetic pole piece 3a and the second magnetic pole piece 3b, for example.

(作用) 次に、本発明の詳細な説明する。第3図において、通電
時の起動トルク特性DOは回転角度60”範囲において
、双峰特性を示す。第3磁極片部3cが無い場合には点
線で示す特性DOのようにその谷部は比較的低((小さ
く)なる。ところが、第3磁極片部3cを付加すること
により当該谷部は鎖線で示す特性DI、D2  ・・・
のように高く(大きく)なり、これは第3磁極片部3c
の面積、位置、形状等に対応して変化する。つまり、第
3磁極片部3cを付加することにより通電時の起動トル
クを他の諸特性を特に劣化させることなく改善(大きく
)できる。
(Function) Next, the present invention will be explained in detail. In Fig. 3, the starting torque characteristic DO when energized shows a bimodal characteristic in the rotation angle range of 60''.If the third magnetic pole piece 3c is not provided, the trough of the characteristic DO shown by the dotted line is compared. However, by adding the third magnetic pole piece 3c, the valley has the characteristics DI, D2 shown by the chain line.
becomes higher (larger) as shown in FIG.
It changes depending on the area, position, shape, etc. That is, by adding the third magnetic pole piece 3c, the starting torque during energization can be improved (increased) without any particular deterioration of other characteristics.

(実施例) 以下、本発明の好適な実施例をモータに適用した場合を
例示し、添付図面に基づいて詳細に説明する。
(Example) Hereinafter, a case where a preferred example of the present invention is applied to a motor will be illustrated and explained in detail based on the accompanying drawings.

6極、インナーロータ方式のモータMの平面図である第
2図において、 界磁マグネフト6は6極に着磁された永久磁石リング1
2である。
In FIG. 2, which is a plan view of a 6-pole, inner rotor type motor M, a field magnet 6 is a permanent magnet ring 1 magnetized to 6 poles.
It is 2.

13はシャフトであり、このシャフト13の回りにコイ
ル2が巻回されている。
13 is a shaft, and the coil 2 is wound around this shaft 13.

10はコイル2の偏平端面の一方からコイル2を包む本
発明に係るコアであり、11はコイル2の他方の偏平端
面からコイル2を包む同様のコアであり、それぞれシャ
フト13に固定し、電機子5を構成する。
10 is a core according to the present invention that wraps the coil 2 from one of the flat end surfaces of the coil 2, and 11 is a similar core that wraps the coil 2 from the other flat end surface of the coil 2. Configure child 5.

このコア10.11は界磁マグネット6に向がって、放
射状に分岐するとともに、コイル2の外周面展開図であ
る第1図に示すように、分岐された先端がコイル2の外
周面2bに沿って直角に曲折されており、コア1oから
第1磁極片部10aと第2磁極片部10bが、又コア1
1がら第1磁極片部11aと第2磁極片部11bがそれ
ぞれ延設される。また第1磁極片部10a、41aと第
2磁極片部10b、llbの間には夫々第3磁極片部1
0c、llcを連続形状で形成する。各磁極片、例えば
10aと10’bは所定の間隙をおいて離間配置されて
おり、また、第1磁極片10a。
This core 10.11 branches radially toward the field magnet 6, and as shown in FIG. The first magnetic pole piece part 10a and the second magnetic pole piece part 10b are bent from the core 1o at right angles along the core 1o.
1, a first magnetic pole piece portion 11a and a second magnetic pole piece portion 11b are respectively extended. Also, between the first magnetic pole piece parts 10a, 41a and the second magnetic pole piece parts 10b, llb, there are third magnetic pole piece parts 1, respectively.
0c and llc are formed in a continuous shape. Each pole piece, for example 10a and 10'b, is spaced apart with a predetermined gap, and the first pole piece 10a.

11aと第2磁極片tab、itbとが形成する起動通
電時の磁極中心は、第2図のP点となる。
The center of the magnetic pole formed by 11a and the second magnetic pole pieces tab and itb at the time of start-up energization is point P in FIG.

しかして、電機子5は第2図において例えば直流モータ
の場合には時計方向に回転するものであり、コイル2の
電流方向は、第2図に示すQ点にP点が合致した付近の
位置で切換手段(図示せず)によって回転が持続するよ
うに切り換えられる。
Therefore, in FIG. 2, the armature 5 rotates clockwise in the case of a DC motor, and the current direction of the coil 2 is at a position near where point P coincides with point Q shown in FIG. The rotation is then switched to continue by a switching means (not shown).

このように電機子5の磁極を、第1磁極片部10a、l
laと第2磁極片部10b、llbとに分けて形成する
ことにより、電機子5の非通電時であって無負荷時にお
ける回転トルク(界磁と電機子との吸引トルク)は、第
3図に特性曲線Sで示すように、電機子5が吸引トルク
によって右方向へ回転する場合の回転トルクを十とし、
電機子5全左方向へ回転する場合の回転トルクを−とす
れば、電機子5は十の回転トルクによって右回転して無
負荷時における安定な自然停止位置R3で停止する。さ
らに電機子5を右に回転していくと電機子5は−の回転
トルクの発生する周角度二分を通過しさらに安定R1部
をこえ、やがて非安定な停止位置R2に至り、この停止
位置R2を越えると、電機子5は回転前方の自然停止位
置R3へ向かって右回転をすることとなる。
In this way, the magnetic poles of the armature 5 are
By separately forming the magnetic pole pieces la and the second magnetic pole pieces 10b and llb, the rotational torque (attractive torque between the field and the armature) when the armature 5 is not energized and under no load is the same as that of the third magnetic pole piece. As shown by the characteristic curve S in the figure, when the armature 5 rotates to the right due to the suction torque, the rotational torque is assumed to be 10,
If the rotational torque when the armature 5 rotates completely to the left is -, then the armature 5 rotates clockwise by a rotational torque of 10 and stops at a stable natural stop position R3 under no load. As the armature 5 further rotates to the right, the armature 5 passes through a circumferential angle of 2 halves where negative rotational torque is generated, further crosses a stable R1 section, and eventually reaches an unstable stop position R2. When the armature 5 exceeds this point, the armature 5 rotates clockwise toward the natural stop position R3 at the front of the rotation.

そして、第1磁極片部10a、llaと第2磁極片部i
ob、itbとの相対的な形状およびラジアル方向位置
を変えることにより、電機子5が第2図の位置にあると
き、すなわち電機子5と界磁マグネット6とがそれぞれ
の磁極中心を対向させて電機子電流の切換位置にあると
きの前記回転トルクをピーク付近にするとともに、この
回転トルクを必要な起動時の負荷トルクより若干大きく
設定することが可能となる。
The first magnetic pole pieces 10a, lla and the second magnetic pole pieces i
By changing the relative shape and radial position with ob and itb, when the armature 5 is in the position shown in Fig. 2, the armature 5 and the field magnet 6 can have their magnetic pole centers facing each other. It is possible to make the rotational torque near the peak when the armature current is at the switching position, and to set this rotational torque to be slightly larger than the required load torque at startup.

しかして、電機子5は負荷時において第2図に示すP点
と01点が合致する位置で停止することはなく、したが
って、起動死点は必ず回避されるとともに、電機子5の
回転トルクは起動時の負荷トルクより若干大きな必要最
小限のものとなっているので電機子5の回転ムラも最小
のものとなる。
Therefore, the armature 5 will not stop at the position where point P and point 01 shown in FIG. Since the required minimum torque is slightly larger than the load torque at startup, rotational irregularities of the armature 5 are also minimized.

また、第3図に示すように、非通電時の吸引トルク特性
Sにおいて、自然停止位置はR1とR3点となり、特に
このR1点は起動トルク特性DOの谷部付近に位置する
が第3磁極片部3cの作用によって始動時の起動トルク
はDI又はD2のように大きくなる。この起動トルクの
設定は前述のように第3磁極片部3cの面積等によって
可変せしめることができる。     ゛ 以上の第1磁極片部3a、第2磁極片部3b、第3磁極
片部3cは第4図〜第6図(磁気コアの側面図)又は第
7図(磁気コアの平面図)に示すように任意の形状等を
選定することができる。特に、第7図のように第1磁極
片部3aと第2磁極片部3bのラジアル方向における相
対的位置を相異ならせることもできる。また、第3磁極
片部3cはいずれも第1及び第2磁極片部3a及び3b
に連続形状となるように形成したが、勿論不連続状の独
立した磁極片として形成してもよい。
In addition, as shown in Fig. 3, in the attraction torque characteristic S during de-energization, the natural stop positions are points R1 and R3, and in particular, this point R1 is located near the valley of the starting torque characteristic DO, but the third magnetic pole Due to the action of the piece 3c, the starting torque at the time of starting increases as DI or D2. The setting of this starting torque can be varied depending on the area of the third magnetic pole piece 3c, etc., as described above. The above first magnetic pole piece 3a, second magnetic pole piece 3b, and third magnetic pole piece 3c are shown in FIGS. 4 to 6 (side view of the magnetic core) or FIG. 7 (plan view of the magnetic core). As shown, any shape etc. can be selected. In particular, as shown in FIG. 7, the relative positions of the first magnetic pole piece 3a and the second magnetic pole piece 3b in the radial direction can be made different. Further, the third magnetic pole piece 3c is the first and second magnetic pole piece 3a and 3b.
Although the pole piece is formed in a continuous shape, it is of course possible to form it as a discontinuous independent pole piece.

なお、第1及び第2磁極片部3a及び3bは夫々相対的
形状等を相異ならせることにより磁気的に非対称にする
必要があり、これにより、非通電時における電機子と界
磁マグネットの相対的停止位置にあってマグネット極の
周方向中央点Q1又はマグネット極の極間における周方
向中点Q2と、起動通電時における電機子の磁極中心P
が相対的にずれる。また、このような各磁極片部の形成
は電機子磁極の全部でなくてもその一部であってもよい
。さらにまた、界磁回転型あるいはアウタロータ型、イ
ンナーロータ吻のいずれの場合も同様に構成されるし、
さらに交流モータとして用いることもできる。
Note that the first and second magnetic pole pieces 3a and 3b need to be made magnetically asymmetric by having different relative shapes, etc., so that the relative relationship between the armature and the field magnet when not energized is The circumferential center point Q1 of the magnet poles at the target stop position or the circumferential center point Q2 between the magnet poles, and the center P of the armature magnetic poles at the time of start-up energization.
is relatively shifted. Further, each magnetic pole piece portion may be formed not only on all but a part of the armature magnetic pole. Furthermore, the configuration is the same for any of the field rotating type, outer rotor type, and inner rotor type,
Furthermore, it can also be used as an AC motor.

次に、このような磁極用コアを備える直流モータの具体
的な実施例を説明する。
Next, a specific example of a DC motor including such a magnetic pole core will be described.

まず、組立が容易であって実用性に勝れた直流モータ2
0を示す第8図において、 21は固定子たる永久磁石リングであり、N。
First, the DC motor 2 is easy to assemble and highly practical.
In FIG. 8 showing 0, 21 is a permanent magnet ring serving as a stator, and N is a permanent magnet ring.

S極が交互となるようにして内周面に6極着磁されてい
る。なお、磁極数を2 (2m+1)極(mは1以上の
自然数)とすることにより、対向する磁極は常に異極と
なる。
Six poles are magnetized on the inner peripheral surface so that the S poles are alternate. Note that by setting the number of magnetic poles to 2 (2m+1) poles (m is a natural number of 1 or more), opposing magnetic poles are always different.

22はコイルであり、中心にシャフト挿通孔が穿設され
た円形ポビン22a内に電線22bを巻回して形成され
る。
22 is a coil, which is formed by winding an electric wire 22b inside a circular pobbin 22a having a shaft insertion hole in the center.

23は本発明に従って形成した下コアであり、コイル2
2の下端面に同心に配設される円板部23aと、円板部
23aの周縁から120度ずつの偏角で3本に分岐延出
され、コイル22の外周面に沿って直角に曲折された第
1磁極片部23b、第2磁極片部23c、それに第3磁
極片部23dとから成り、鉄板等の磁性材料をプレスし
て形成される。
23 is a lower core formed according to the present invention, and coil 2
A disc part 23a is arranged concentrically on the lower end surface of the coil 22, and three parts are branched and extended from the circumference of the disc part 23a at an angle of 120 degrees each, and are bent at right angles along the outer peripheral surface of the coil 22. It consists of a first magnetic pole piece part 23b, a second magnetic pole piece part 23c, and a third magnetic pole piece part 23d, and is formed by pressing a magnetic material such as an iron plate.

24は同じく本発明に従って形成したコイル22の上端
面に同心に配設される上コアであり、下コア23と同様
に円板部24a、第1磁極片部24b、第2磁橿片部2
4c、第3磁極片部24dとから成る。
24 is an upper core disposed concentrically on the upper end surface of the coil 22 also formed according to the present invention, and like the lower core 23, it includes a disk portion 24a, a first magnetic pole piece portion 24b, and a second magnetic pole piece portion 2.
4c, and a third magnetic pole piece portion 24d.

この下コア23と上コア24とを第1磁極片部23b、
第2磁極片部23cが第1磁極片部24bと第2磁極片
部24cとの間に位置するようにして、コイル22の両
端面に配設する。
The lower core 23 and the upper core 24 are connected to the first magnetic pole piece 23b,
The second magnetic pole piece 23c is disposed on both end surfaces of the coil 22 so as to be located between the first magnetic pole piece 24b and the second magnetic pole piece 24c.

25はコミュテータであり、絶縁材料で形成され中心に
シャフト挿通孔が穿設される円板25aと、この円板2
5aの片面上に中心から放射状に貼設される6個の整流
子片25bとから成る。この整流子片25bは一つ置き
に電気的に接続され二つの整流子群が形成され、各整流
子群に前記コイル22が接続される。
25 is a commutator, which includes a disc 25a made of an insulating material and having a shaft insertion hole in the center;
It consists of six commutator pieces 25b attached radially from the center on one side of the commutator 5a. Every other commutator segment 25b is electrically connected to form two commutator groups, and the coil 22 is connected to each commutator group.

26はシャフトであり、長さ方向のほぼ中央にフランジ
26aが形成され、下端に段差部26bと段差部26c
が形成され、上端側周面には伝達機構への係合部が形成
される。
26 is a shaft, which has a flange 26a formed approximately at the center in the length direction, and a stepped portion 26b and a stepped portion 26c at the lower end.
is formed, and an engagement portion for the transmission mechanism is formed on the upper end side circumferential surface.

このシャフト26に前記コミュテータ25、上コア24
、コイル22、下コア23が挿入され、下コア23が段
差部26bでかしめられて固定される。
The commutator 25 and the upper core 24 are connected to this shaft 26.
, the coil 22, and the lower core 23 are inserted, and the lower core 23 is caulked and fixed at the stepped portion 26b.

27はブラシであり、りん青銅の矩形板を、その一方の
長辺の中央に前記フランジ26aの逃がし部たる円弧状
の切欠部27aを形成し、この長辺側に位置する両コー
ナーに後述するケースに係合する孔27bが穿設され、
他方の長辺側に位置する両コーナーに電源供給用のリー
ド線28が接続される孔27cが穿設され、面の中央に
コミュテータ25への摺接部27dが切起して形成され
て成る。なお、摺接部27dは2本形成されておりコミ
ュテータ25への接触を確実なものとしている。
Reference numeral 27 denotes a brush, and a rectangular plate made of phosphor bronze is formed with an arc-shaped notch 27a, which serves as a relief part for the flange 26a, in the center of one long side, and at both corners located on this long side, as will be described later. A hole 27b that engages with the case is bored,
A hole 27c to which a lead wire 28 for power supply is connected is formed at both corners located on the other long side, and a sliding contact portion 27d for connecting to the commutator 25 is cut and raised in the center of the surface. . Note that two sliding contact portions 27d are formed to ensure contact with the commutator 25.

そして2個のブラシ27をシャフト26の周面を挾んで
点対称の位置に配設して、各摺接部27dはコミュテー
タ25の整流子群にそれぞれ接するものとなる。
The two brushes 27 are disposed at point-symmetrical positions across the peripheral surface of the shaft 26, and each sliding contact portion 27d comes into contact with the commutator group of the commutator 25, respectively.

29はプラスチック材料で成形されるケースであり、そ
の上面に前記永久磁石リング21が挿入される凹部29
aが形成され、この凹部29aの底面中心にシャフト2
6がその段差部26cで支承される軸受孔29bが穿設
される。また、凹部29a形成面たる上面には前記ブラ
シ27の孔27bに対応位置して保合突起29cが4個
穿設され、上面の各コーナにブラシ27の孔27cに対
応位置してリード線28を挿通保持する孔29dが穿設
される。
Reference numeral 29 denotes a case molded from a plastic material, and the upper surface thereof has a recess 29 into which the permanent magnet ring 21 is inserted.
a is formed, and the shaft 2 is located at the center of the bottom surface of this recess 29a.
A bearing hole 29b is formed in which the bearing 6 is supported by the stepped portion 26c. Further, four retaining protrusions 29c are formed on the upper surface, which is the surface where the recess 29a is formed, at positions corresponding to the holes 27b of the brush 27, and at each corner of the upper surface, at positions corresponding to the holes 27c of the brush 27, lead wires 28 are formed. A hole 29d for inserting and holding is bored.

30はケース29の上面に取り付けられるプラスチック
板のカバーであり、前記係合突起29cに対応位置して
係合穴30aが穿設され、各コーナは前記リード線28
のブラシ27への接続を容易にすべく切欠かれている。
Reference numeral 30 denotes a plastic plate cover attached to the upper surface of the case 29, in which an engagement hole 30a is bored at a position corresponding to the engagement protrusion 29c, and each corner is provided with the lead wire 28.
A notch is provided to facilitate connection to the brush 27.

また、面の中心にシャフト26を挿通するとともに支承
する軸受孔30bが穿設される。
Further, a bearing hole 30b for inserting and supporting the shaft 26 is bored in the center of the surface.

そして前記各構成部品は、図中一点鎖線で示すように、
永久磁石リング21を凹部29a内に配設し、コイル2
2.下コア23.上コア24.コミュテータ25.シャ
フト26から成る電機子を、シャフト26の段差部26
cを軸受孔29bに挿通して永久磁石リング21の中心
に配設し、2個のブラシ27をその孔27bを係合突起
29cに挿通して位置決めし、カバー30をその係合穴
30aを係合突起29cに合わせるとともにシャフト2
6を軸受孔30bに挿通してケース29に係合させ、係
合突起29cをカバー30に熱溶着等により固定し、リ
ード線28を孔29dに通してブラシ27の孔27cに
挿通し半田付けして、組立が行われる。
Each of the above-mentioned components is, as shown by the dashed line in the figure,
The permanent magnet ring 21 is arranged in the recess 29a, and the coil 2
2. Lower core 23. Upper core 24. Commutator 25. The armature consisting of the shaft 26 is connected to the stepped portion 26 of the shaft 26.
c is inserted into the bearing hole 29b and arranged at the center of the permanent magnet ring 21, the two brushes 27 are positioned by inserting the hole 27b into the engagement protrusion 29c, and the cover 30 is inserted into the engagement hole 30a. While aligning with the engagement protrusion 29c, the shaft 2
6 is inserted into the bearing hole 30b and engaged with the case 29, the engaging protrusion 29c is fixed to the cover 30 by heat welding or the like, and the lead wire 28 is passed through the hole 29d and inserted into the hole 27c of the brush 27 and soldered. Then, assembly is performed.

このようにした直流モータは、電機子コイルをシャフト
の回りに同心巻きとして巻線が容易であり、コミュテー
タ、ブラシを板状としたことと相俟って、偏平かつ小型
化を図ることができ、ブラシはケースとカバーとの間に
挾まれて位置決め固定されるので組立が極めて容易とな
り、また極数を2 (2m+1)極としたので、対向す
るブラシは同じものを回転軸に対して点対称位置とする
ことができ、さらに、モータが偏平となり、しかも多極
化が容易なため低回転にすることが出来ることによりモ
ータの回転伝達機構に効率の悪いウオームとウオーム歯
車を用いずに平歯車で良いこととなる。
This type of DC motor has an armature coil that is concentrically wound around the shaft, making it easy to wind the motor, and together with the fact that the commutator and brushes are plate-shaped, it can be made flat and compact. Since the brushes are sandwiched between the case and the cover and fixed in position, assembly is extremely easy.Also, since the number of poles is 2 (2m+1), the opposing brushes are the same and are connected to the rotating shaft. The motor can be placed in a symmetrical position, and since the motor is flat and can be easily multipolarized, it can be rotated at low speeds. It will be a good thing.

なお、本発明に係る電機子用コアは交流モータにも勿論
使用することができる。
Note that the armature core according to the present invention can of course be used for AC motors as well.

交流モータの場合には例えば第8図に示した直流モータ
に於いてコミュテータ25二分を省略し、永久磁石をロ
ータとして回転させる構造にしてコイル22へ単相交流
を直接供給すれば交流同期モータ(例えば小型タイマ、
電機時計用等)として作動させることができる。なお、
回転方向は従来の交流モータと同様に外部の伝達機構に
一方向にのみ回転するための公知の逆回転阻止用ストッ
パ又は一方向回転クラッチ等を設けることにより回転方
向を選択することができる。また、形状等によっても回
転方向を選択することもできる(この原理について、必
要ならば特願昭59−232171号を参照されたい。
In the case of an AC motor, for example, in the DC motor shown in FIG. 8, if the commutator 25 is omitted and the permanent magnet is configured to rotate as a rotor, and single-phase AC is directly supplied to the coil 22, an AC synchronous motor ( For example, a small timer,
It can be operated as an electric watch (for example, for electric watches). In addition,
As with conventional AC motors, the rotation direction can be selected by providing a known reverse rotation prevention stopper or one-way rotation clutch in the external transmission mechanism for rotation in only one direction. Further, the rotation direction can also be selected depending on the shape, etc. (For this principle, please refer to Japanese Patent Application No. 59-232171 if necessary.

) なお、本発明に係る回転電機の磁極用コアはその適用を
実施例のモータに限定されるものではなく、同原理に基
づくステッピングモータや回動型プランジャ等、一般的
には回転電機に広く利用できることは勿論である。この
場合、ステッピングモータではコミュテータを省略する
とともに、永久磁石をロータとして回転させる構造にし
、供給する電力の正負の極性を交互に反転させることに
より一定角度ごとに回転させることができる。なお、こ
の際脱調しないよう回転ごとに完全に停止させる休止時
間を設けても良い。また、回動型プランジャに於いても
コミュテータを省略するとともに、永久磁石を回動可能
な構造とし、所定の回動角範囲で回転するように回転規
制用ストッパ等を外的に設けることにより実施できる。
) The application of the magnetic pole core of a rotating electric machine according to the present invention is not limited to the motors of the embodiments, but can be widely applied to rotating electric machines in general, such as stepping motors and rotary plungers based on the same principle. Of course you can use it. In this case, the stepping motor does not require a commutator, has a structure in which a permanent magnet is rotated as a rotor, and can be rotated at fixed angle intervals by alternately reversing the positive and negative polarities of the supplied electric power. At this time, a pause time may be provided to completely stop each rotation to prevent synchronization. In addition, the commutator is omitted in the case of a rotary plunger, and the permanent magnet is structured to be rotatable, and a stopper for regulating rotation is provided externally so that the permanent magnet rotates within a predetermined rotation angle range. can.

このように本発明に係る磁極用コアによれば、磁気的に
非対称となる第1磁極片部と第2磁極片部による始動時
における起動死点の確実回避、及びモータ等の効率が低
下することなく回転ムラを必要最小限度に押さえるとい
う基本的効果に加え、第3磁極片部を付加することによ
り始動時の起動トルクを最適値に設定することができ、
起動性能を格段と向上させることができる。
As described above, according to the magnetic pole core according to the present invention, the first magnetic pole piece part and the second magnetic pole piece part are magnetically asymmetric, thereby reliably avoiding a starting dead center at the time of starting, and reducing the efficiency of the motor, etc. In addition to the basic effect of suppressing rotational unevenness to the minimum necessary level without any problems, by adding a third magnetic pole piece, the starting torque at the time of starting can be set to the optimum value.
Starting performance can be significantly improved.

以上本発明につき好適な実施例を挙げて種々説明したが
、本発明はこの実施例に限定されるものではなく、発明
の精神を逸脱しない範囲内で多くの改変を施し得るのは
もちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る回転電機の磁極用コアを明示する
一部展開側面図、第2図は同コアを適用したモータの平
面図、第3図は同モータのトルク”特性図、第4図〜第
6図は他の実施例を示す磁極用コアを明示する一部側面
図、第7図は他の実施例を示す磁極用コアを明示する一
部平面図、第8図は本発明に係る磁極用コアを適用した
直流モータの分解斜視図、第9図は本発明の前提となる
磁極用コアを適用したモータの平面図、第10図は同コ
アを明示する一部展開側面図。 尚図面中、1・・・磁極用コア、  2・・・コイル、
   2a、2a・・・端面、   2b・・・周面、
  3・・・磁極+   3a・・・第1磁極片部。 3b・・・第2磁極片部、   3c・・・第3磁極片
部、  5・・・電機子、  6・・・界磁マグネット
  S、N・・−マグネット極、   Ql  ・・・
マグネット極の周方向中央点、  Q2 ・・・マグネ
ット極の極間における周方向中点、  P・・・電機子
の磁極中心位置。
Fig. 1 is a partially exploded side view showing the magnetic pole core of a rotating electric machine according to the present invention, Fig. 2 is a plan view of a motor to which the core is applied, Fig. 3 is a torque characteristic diagram of the motor, 4 to 6 are partial side views showing a magnetic pole core showing another embodiment, FIG. 7 is a partial plan view showing a magnetic pole core showing another embodiment, and FIG. 8 is a partial side view showing a magnetic pole core showing another embodiment. An exploded perspective view of a DC motor to which the magnetic pole core according to the invention is applied, FIG. 9 is a plan view of the motor to which the magnetic pole core is applied, which is the premise of the present invention, and FIG. 10 is a partially exploded side view clearly showing the core. Figure. In the drawing, 1... magnetic pole core, 2... coil,
2a, 2a... end surface, 2b... peripheral surface,
3... Magnetic pole + 3a... First magnetic pole piece part. 3b... Second magnetic pole piece part, 3c... Third magnetic pole piece part, 5... Armature, 6... Field magnet S, N...-magnet pole, Ql...
Circumferential center point of magnet poles, Q2... Circumferential center point between magnet poles, P... Armature magnetic pole center position.

Claims (1)

【特許請求の範囲】 1、軸心に対して同心巻きしたコイルの両端面から周面
に亘って複数の磁極を折曲して設けるとともに当該磁極
の全部又は一部を周方向前後に二分して第1磁極片部と
第2磁極片部を形成し、非通電時における電機子と界磁
マグネットの相対的停止位置にあってマグネット極の周
方向中央点又はマグネット極の極間における周方向中点
と、起動通電時における電機子の磁極中心が相対的にず
れるように各磁極片部の形状又は位置を選定してなる回
転電機の磁極用コアにおいて、前記第1磁極片部と第2
磁極片部の間に第3磁極片部を設けてなることを特徴と
する回転電機の磁極用コア。 2、前記第3磁極片部は第1磁極片部及び第2磁極片部
と連続形状に形成したことを特徴とする特許請求の範囲
第1項記載の回転電機の磁極用コア。
[Claims] 1. A plurality of magnetic poles are bent and provided from both end faces of a coil concentrically wound around the axis to the circumferential surface, and all or part of the magnetic poles are divided into two in the circumferential direction. to form a first magnetic pole piece part and a second magnetic pole piece part, and at a relative stop position of the armature and field magnet when energized, the circumferential center point of the magnet poles or the circumferential direction between the magnetic poles. In a core for a magnetic pole of a rotating electrical machine, the shape or position of each magnetic pole piece is selected so that the midpoint and the center of the magnetic pole of the armature at the time of start-up energization are relatively shifted.
A core for a magnetic pole of a rotating electrical machine, characterized in that a third magnetic pole piece is provided between the magnetic pole pieces. 2. The core for a magnetic pole of a rotating electric machine according to claim 1, wherein the third magnetic pole piece is formed in a continuous shape with the first magnetic pole piece and the second magnetic pole piece.
JP27122184A 1984-04-25 1984-12-21 Core for magnetic pole for rotary electric machine Pending JPS61150643A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP27122184A JPS61150643A (en) 1984-12-21 1984-12-21 Core for magnetic pole for rotary electric machine
US06/726,257 US4656381A (en) 1984-04-25 1985-04-23 Magnetic pole structure having aternate poles extending from a point of bases, for a rotary electric machine
EP85302916A EP0160522B1 (en) 1984-04-25 1985-04-25 Magnetic-pole cores for electrorotary machines
DE8585302916T DE3579355D1 (en) 1984-04-25 1985-04-25 MAGNETIC POLES FOR ROTATING ELECTRIC MACHINES.
CN85104341.0A CN1004741B (en) 1984-11-02 1985-06-07 Magnetic-pole core for an electrorotary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27122184A JPS61150643A (en) 1984-12-21 1984-12-21 Core for magnetic pole for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS61150643A true JPS61150643A (en) 1986-07-09

Family

ID=17497034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27122184A Pending JPS61150643A (en) 1984-04-25 1984-12-21 Core for magnetic pole for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS61150643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345001U (en) * 1989-09-11 1991-04-25

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426683A (en) * 1977-07-30 1979-02-28 Morita Mfg Panoramic xxray device automatic density control system
JPS5456111A (en) * 1977-10-14 1979-05-04 Hitachi Ltd Synchronous motor
JPS5517293A (en) * 1978-07-17 1980-02-06 Singer Co Multiple speed permanent magnet motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426683A (en) * 1977-07-30 1979-02-28 Morita Mfg Panoramic xxray device automatic density control system
JPS5456111A (en) * 1977-10-14 1979-05-04 Hitachi Ltd Synchronous motor
JPS5517293A (en) * 1978-07-17 1980-02-06 Singer Co Multiple speed permanent magnet motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345001U (en) * 1989-09-11 1991-04-25

Similar Documents

Publication Publication Date Title
US4656381A (en) Magnetic pole structure having aternate poles extending from a point of bases, for a rotary electric machine
US5659217A (en) Permanent magnet d.c. motor having a radially-disposed working flux gap
US4804873A (en) Unidirectional brushless motor
US4327304A (en) Winding for small rotary electric double air gap motor
JPS61150643A (en) Core for magnetic pole for rotary electric machine
JP2717601B2 (en) Suction / repulsion motor
JP3736407B2 (en) DC motor
JPH059177U (en) Rotating electric machine
JPH05146121A (en) Motor
JPS61167366A (en) Core for pole of rotary electric machine
CN211404958U (en) Brush motor and brush structure thereof
JPS61154456A (en) Pole core of rotary electric machine
JPH0545099Y2 (en)
JPH0393443A (en) Mold commutator and commutator motor
JPH0328898B2 (en)
KR100458558B1 (en) Single phase disk type brushless vibration motor
JPS60229659A (en) Multipolar dc motor
JPS614454A (en) Multipolar dc motor
JPS61207157A (en) Stator of motor
KR900001109B1 (en) Magnetic-pole cores for electro rotary machines
JPH06303750A (en) Brushless dc motor and its rotation driving method
JPS6130458Y2 (en)
JPS6146155A (en) Multipolar dc motor
JPH0837770A (en) Two-phase motor
JPS6316305Y2 (en)