JPS61150374A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS61150374A JPS61150374A JP27210784A JP27210784A JPS61150374A JP S61150374 A JPS61150374 A JP S61150374A JP 27210784 A JP27210784 A JP 27210784A JP 27210784 A JP27210784 A JP 27210784A JP S61150374 A JPS61150374 A JP S61150374A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- glass
- type
- channel stopper
- base layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 239000010410 layer Substances 0.000 claims description 67
- 102000004129 N-Type Calcium Channels Human genes 0.000 claims description 7
- 108090000699 N-Type Calcium Channels Proteins 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 claims description 4
- 239000011241 protective layer Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 30
- 239000012535 impurity Substances 0.000 abstract description 8
- 238000001259 photo etching Methods 0.000 abstract description 2
- 230000035939 shock Effects 0.000 abstract 1
- 108091006146 Channels Proteins 0.000 description 16
- 230000001681 protective effect Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0638—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thyristors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、プレーナー構造を有するサイリスタ(SCR
ともいう)及びトライアック等の半導体装置に関するも
ので、特にチャネルストッパー層とパッシベーション膜
との配置構造に使用される。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a thyristor (SCR) having a planar structure.
It relates to semiconductor devices such as triacs and triacs, and is particularly used in the arrangement structure of a channel stopper layer and a passivation film.
[発明の技術的背景]
SCR及びトライアック(3極双方向サイリスタ)等は
各種電気機器の電力制御用素子等に利用されている。
第3図は従来のプレーナー型SCRの断面図である。
SCRは、091479層1、n型ベース層2、p型ベ
ースB3、及びn型エミッタ層4のpnpn 4H構造
の半導体装置である。[Technical Background of the Invention] SCRs, triacs (three-pole bidirectional thyristors), and the like are used as power control elements for various electrical devices.
FIG. 3 is a sectional view of a conventional planar type SCR.
The SCR is a semiconductor device having a pnpn 4H structure including a 091479 layer 1, an n-type base layer 2, a p-type base B3, and an n-type emitter layer 4.
6は第1主電極(アノード)、7は第2主電極(カソー
ド)、8は制御電極(ゲート)である。6 is a first main electrode (anode), 7 is a second main electrode (cathode), and 8 is a control electrode (gate).
順電圧を加えても電流の流れない順阻止状態では順電圧
の大部分はn型ベース層とn型ベース層との接合部に印
加されこの接合を逆バイアスする。In a forward blocking state in which no current flows even when a forward voltage is applied, most of the forward voltage is applied to the junction between the n-type base layers and reverse biases this junction.
この逆バイアス電圧による空乏図は比較的不純物密度の
小さいn型ベース層中に拡がり、電界を形成する。 電
気力線はn型ベース層内部に比較して表面近傍に多く集
まり電界強度が強くなる。The depletion diagram caused by this reverse bias voltage spreads into the n-type base layer, which has a relatively low impurity density, and forms an electric field. More electric lines of force gather near the surface than inside the n-type base layer, and the electric field strength becomes stronger.
順阻止電圧を改善するためこの部分、即ち、n型ベース
層とそれに接する2つのpn接合を含む基板面にガラス
層5を形成し、電界強度の緩和をはかっている。 しか
し、ガラス層中の電荷はガラスの生成時には不安定であ
り、電界の集中やチャネルの形成を起こし易い。 それ
は主にガラス生成時の温度や雰囲気により影響される。In order to improve the forward blocking voltage, a glass layer 5 is formed on this portion, that is, on the substrate surface including the n-type base layer and the two pn junctions in contact with it, in order to reduce the electric field strength. However, the charge in the glass layer is unstable during glass formation and is prone to electric field concentration and channel formation. It is mainly influenced by the temperature and atmosphere during glass formation.
特にチャネルの形成は高温時において起きやす<SC
Rの特性が不安定となる。 n型ベース層表面のチャネ
ル電流を阻止するため通常n型ベース層の主面側に不純
物濃度がn型エミッタ層とほぼ同一の濃度の高いn型チ
ャネルストッパー層9が設けられる。 第4図に示すS
CRは、ガラス層5を被着する基板面にあらかじめ溝を
形成し、そこにガラス層を埋め込んだもので、その他に
ついては第3図に示すSCRと同じである。 ガラス層
を埋める溝のためチャネルストッパー層の深さが浅い点
が異なる。Channel formation is particularly likely to occur at high temperatures <SC
The characteristics of R become unstable. In order to block channel current on the surface of the n-type base layer, an n-type channel stopper layer 9 having a high impurity concentration almost the same as that of the n-type emitter layer is usually provided on the main surface side of the n-type base layer. S shown in Figure 4
The CR is the same as the SCR shown in FIG. 3, except that a groove is formed in advance on the substrate surface on which the glass layer 5 is to be adhered, and a glass layer is embedded therein. The difference is that the depth of the channel stopper layer is shallow because it is a groove filled in the glass layer.
[背景技術の問題点]
前記従来技術のうち第3図に示す構造では、ガラス層5
がlli主面上に盛り上がるように形成されている。
電極形成等のその後のホトエツチング工程(以下PEP
I程と略称する)におけるパターン形成に際しマスクと
基板表面との距離が大となり、パターンの精度、解像度
が光の回折により悪くなり、所望のパターン形状が得ら
れなくなる。 またガラス層5が盛り上がっているため
神々の工程を通す上でガラスに対する衝撃がかかること
も多く、ガラス割れが起こりやすくなる。[Problems with the background art] In the structure shown in FIG. 3 of the prior art, the glass layer 5
is formed so as to bulge on the lli main surface.
Subsequent photoetching processes such as electrode formation (hereinafter referred to as PEP)
When forming a pattern (abbreviated as I), the distance between the mask and the substrate surface becomes large, and the accuracy and resolution of the pattern deteriorate due to light diffraction, making it impossible to obtain a desired pattern shape. Furthermore, since the glass layer 5 is raised, impact is often applied to the glass during the divine process, making the glass more likely to break.
第4図の構造では、チャネルストッパー層も同時にエツ
チングされる。 不純物濃度は基板面から内部に向かっ
て指数関数的に減少するのでエツチングによって不純物
濃度の高い部分が削られ、チャネルストッパー層表面の
濃度が低下する。In the structure of FIG. 4, the channel stopper layer is also etched at the same time. Since the impurity concentration decreases exponentially from the substrate surface toward the inside, etching removes the portions with high impurity concentration, reducing the concentration at the surface of the channel stopper layer.
特にヂVネルストッパ一層は不純物濃度が高いので他の
部分よりエツチングレートが大きく濃度が下がりやすい
。 この濃度低下を一定値にするエツチング量の制御も
難しくなる。 1度が低下した場合、チャネルストッパ
ーとしての効果が弱まり電気的特性、特に高温時におけ
る特性の不安定さが生じる。In particular, since the impurity concentration in the single layer of the Dennel stopper is high, the etching rate is higher than in other parts and the concentration tends to decrease. It also becomes difficult to control the amount of etching to keep this concentration decrease to a constant value. If the temperature decreases by 1 degree, the effect as a channel stopper will be weakened, resulting in unstable electrical properties, especially properties at high temperatures.
[発明の目的]
本発明の目的は、前記問題点を解決し、チャネルストッ
パー層の不純物密度を当初の高濃度に保ち、且つガラス
材等で形成される保護絶縁層の割れ及び保護絶縁層の盛
り上がりにょるPEP工程の不安定さのない構造の半導
体装置を提供することである。[Object of the Invention] An object of the present invention is to solve the above-mentioned problems, maintain the impurity density of the channel stopper layer at its original high concentration, and prevent cracks in the protective insulating layer formed of a glass material or the like. It is an object of the present invention to provide a semiconductor device having a structure free from instability in the PEP process due to swelling.
[発明の概要]
この発明は、プレーナー構造のSCR等でチャネルスト
ッパー層を有する半導体装置において、チャネルストッ
パー層の 1つの側面に隣接して第1主面に沿ってn型
ベース層とp型エミッタ層との接合面を含むその近傍に
わたる環状溝と、n型チャネルストッパー層の他の側面
に隣接して第1主面に沿ってn型ベース層とn型ベース
層との接合面を含むその近傍にわたる環状溝との二重の
メサ溝を形成し、それぞれの溝にガラス等の保護絶縁材
を充填してなることを特徴とする半導体装置である。
保護絶縁材としてはガラスの他、電気的熱的に安定した
ものならよい。 保護絶縁層の厚さは、ガラスにおいて
は工程マージンを考慮して一定値以上の厚さを必要とす
る。 形成するメサ溝の深さはほぼこの値とする。[Summary of the Invention] The present invention provides a semiconductor device having a channel stopper layer such as a planar structure SCR, in which an n-type base layer and a p-type emitter are formed along a first main surface adjacent to one side of the channel stopper layer. an annular groove extending in the vicinity of the n-type channel stopper layer, including the bonding surface with the n-type base layer; This semiconductor device is characterized by forming a double mesa groove with an annular groove extending nearby, and filling each groove with a protective insulating material such as glass.
As the protective insulating material, other than glass, any electrically and thermally stable material may be used. In the case of glass, the thickness of the protective insulating layer needs to be greater than a certain value in consideration of process margins. The depth of the mesa groove to be formed is approximately this value.
本発明の構造によりチャネルストッパー層を当初のへm
度に保ち、電気的に安定な量のガラス等を充填しても基
板面からの盛り上りをほとんど無くすることができる。The structure of the present invention allows the channel stopper layer to be removed from the original position.
Even if an electrically stable amount of glass or the like is filled at a certain temperature, there will be almost no swelling from the substrate surface.
また本発明の構造は、環状溝を形成する際、チャネル
ストッパー層が残るようにマスクパターンを変えるだけ
で容易に実現できる。Furthermore, the structure of the present invention can be easily realized by simply changing the mask pattern so that the channel stopper layer remains when forming the annular groove.
[発明の実施例]
プレーナー型のpnpn 4層構造でチャネルストッパ
ーを有するSCRを本発明の実施例にあげ以下説明する
。 なお以後の図面において同一符号は同一部分を表す
。 第1図(a )は本発明のSCRの断面図である。[Embodiments of the Invention] An SCR having a planar pnpn four-layer structure and a channel stopper will be described below as an embodiment of the present invention. Note that the same reference numerals represent the same parts in the subsequent drawings. FIG. 1(a) is a sectional view of the SCR of the present invention.
第1図(1))は第1図(a )の発明の要部の詳細
拡大断面図である。 n型チャネルストッパー層9を挾
んで2つの環状溝5a。FIG. 1(1)) is a detailed enlarged sectional view of the main part of the invention shown in FIG. 1(a). Two annular grooves 5a sandwich the n-type channel stopper layer 9.
51aが刻まれそれぞれにガラス(保護絶縁材)を充填
してガラス層5.5’ を形成している。51a are carved and each is filled with glass (protective insulating material) to form a glass layer 5.5'.
環状ifM5a及び5’aはそれぞれチャネルストッパ
ー層9の外側面及び内側面に隣接しており、第1主面に
沿って延在され、それぞれのpn接合面を含むその近傍
にわたっている。 環状溝5a及び5’aの深さは、電
気的及び工程マージンを考慮 。The annular ifM5a and 5'a are adjacent to the outer and inner surfaces of the channel stopper layer 9, respectively, and extend along the first main surface to cover the vicinity including the respective pn junction surfaces. The depths of the annular grooves 5a and 5'a are determined considering electrical and process margins.
した厚さのガラス層を形成する必要がある。 例えば1
0数μmとする。 環状溝は酸化膜10をマスクとして
形成され、ガラスを充填した後CVD膜11を被着する
。It is necessary to form a glass layer with a certain thickness. For example 1
It is assumed to be several micrometers. The annular groove is formed using the oxide film 10 as a mask, and after being filled with glass, a CVD film 11 is deposited.
第2図は本発明の他の実施例であって、プレーナー構造
のトライアックの断面図である。 第1主電極6、第2
主電極7及び制御電極8はそれぞれn型半導体層とn型
半導体層との2層に接触して形成されている。 トライ
アックは2つのサイリスタを逆並列に構成した双方向サ
イリスタであって本発明を適用づることかできる。FIG. 2 is a sectional view of a planar triac according to another embodiment of the present invention. The first main electrode 6, the second
The main electrode 7 and the control electrode 8 are formed in contact with two layers, an n-type semiconductor layer and an n-type semiconductor layer, respectively. A TRIAC is a bidirectional thyristor configured with two thyristors arranged in antiparallel, and the present invention can be applied thereto.
[発明の効果]
本発明の構造によればガラス層(保護絶縁膜)の盛り上
がりを無くすることができPEP作業の不安定性は改善
され良好なパターン精度と解像度が得られ、また衝撃に
よるガラス層の割れも皆無となった。 チャネルストッ
パー層の不純物密度を当初の高濃度に保ち且つ電気的安
定に必要な充分の厚さのガラス保護膜を形成することが
可能でこれにより高温高電圧印加時の装置の安定性が著
しく向上した。 以上のごとく本発明により品質が良く
、製造も容易な装置を供給することができる。[Effects of the Invention] According to the structure of the present invention, it is possible to eliminate the swelling of the glass layer (protective insulating film), improve the instability of PEP work, and obtain good pattern accuracy and resolution. There were no more cracks. It is possible to maintain the impurity density of the channel stopper layer at the original high concentration and form a glass protective film with sufficient thickness necessary for electrical stability, which significantly improves the stability of the device when high temperature and high voltage are applied. did. As described above, according to the present invention, a device of good quality and easy to manufacture can be provided.
第1図(a >は本発明の実施例のSCRの断面図、第
1図(b)は同図(a )の一部拡大断面図、第2図は
本発明の他の実施例であるトライアックの断面図、第3
図及び第4図はそれぞれ従来のSCRの断面図である。
1・・・n型エミッタ層、 2・・・n型ベース層、3
・・・p型ベース層、 4・・・n型エミッタ層、 5
゜5′・・・保護絶縁層(ガラス層)、 5a 、 5
’ a・・・環状溝、 9・・・n型チャネルストッパ
ー層。FIG. 1(a) is a sectional view of an SCR according to an embodiment of the present invention, FIG. 1(b) is a partially enlarged sectional view of FIG. 1(a), and FIG. 2 is another embodiment of the present invention. Triac cross section, 3rd
4 and 4 are cross-sectional views of conventional SCRs, respectively. 1... N-type emitter layer, 2... N-type base layer, 3
...p-type base layer, 4...n-type emitter layer, 5
゜5'...Protective insulating layer (glass layer), 5a, 5
' a... Annular groove, 9... N-type channel stopper layer.
Claims (1)
ス層と、n型ベース層の外面に隣接し選択的に形成され
たp型エミッタ層と、前記n型ベース層内に選択的に形
成されたp型ベース層と、p型ベース層内に選択的に形
成されたn型エミッタ層と、前記p型エミッタ層と前記
p型ベース層との間の第1主面側に選択的に形成された
n型チャネルストッパー層とを具備するプレーナー構造
の半導体装置において、n型チャネルストッパー層の1
つの側面に隣接し第1主面に沿ってn型ベース層とp型
エミッタ層との接合面を含むその近傍に亙る環状溝と、
n型チャネルストッパー層の他の側面に隣接し第1主面
に沿ってn型ベース層とp型ベース層との接合面を含む
その近傍に亙る環状溝とを形成し、それぞれの溝に保護
絶縁材を充填してなることを特徴とする半導体装置。1. An n-type base layer formed on the first main surface side of the n-type semiconductor substrate, a p-type emitter layer selectively formed adjacent to the outer surface of the n-type base layer, and a p-type emitter layer selectively formed in the n-type base layer. a p-type base layer selectively formed in the p-type base layer, an n-type emitter layer selectively formed in the p-type base layer, and a first main surface side between the p-type emitter layer and the p-type base layer. In a semiconductor device having a planar structure including a selectively formed n-type channel stopper layer, one of the n-type channel stopper layers
an annular groove adjacent to one side surface and extending along the first main surface including the junction surface between the n-type base layer and the p-type emitter layer and the vicinity thereof;
An annular groove is formed adjacent to the other side surface of the n-type channel stopper layer and extends along the first principal surface including the junction surface between the n-type base layer and the p-type base layer, and a protective layer is formed in each groove. A semiconductor device characterized by being filled with an insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27210784A JPS61150374A (en) | 1984-12-25 | 1984-12-25 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27210784A JPS61150374A (en) | 1984-12-25 | 1984-12-25 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61150374A true JPS61150374A (en) | 1986-07-09 |
Family
ID=17509176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27210784A Pending JPS61150374A (en) | 1984-12-25 | 1984-12-25 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61150374A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63205955A (en) * | 1987-02-21 | 1988-08-25 | Nec Corp | Planar type high breakdown-voltage thyristor |
-
1984
- 1984-12-25 JP JP27210784A patent/JPS61150374A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63205955A (en) * | 1987-02-21 | 1988-08-25 | Nec Corp | Planar type high breakdown-voltage thyristor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3751976B2 (en) | Silicon carbide thyristor | |
US4298881A (en) | Semiconductor device with double moat and double channel stoppers | |
JPS61287266A (en) | Semiconductor device | |
US5156981A (en) | Method of making a semiconductor device of a high withstand voltage | |
EP0077004B1 (en) | Semiconductor rectifier diode | |
US4542400A (en) | Semiconductor device with multi-layered structure | |
US3994011A (en) | High withstand voltage-semiconductor device with shallow grooves between semiconductor region and field limiting rings | |
US3652905A (en) | Schottky barrier power rectifier | |
US5223442A (en) | Method of making a semiconductor device of a high withstand voltage | |
US4929563A (en) | Method of manufacturing semiconductor device with overvoltage self-protection | |
CA1148270A (en) | Mesa type semiconductor device with guard ring | |
US4825266A (en) | Semiconductor diode | |
JP3718223B2 (en) | Semiconductor device for high voltage with vertical groove | |
JP2019169563A (en) | Method for manufacturing semiconductor device and semiconductor device | |
JPH0846221A (en) | Semiconductor device and manufacture thereof | |
JPS61150374A (en) | Semiconductor device | |
JP2004303927A (en) | Semiconductor device | |
US4586070A (en) | Thyristor with abrupt anode emitter junction | |
JP3149483B2 (en) | Planar type semiconductor rectifier | |
JPH02142184A (en) | Semiconductor device and manufacture thereof | |
JPS6016105B2 (en) | Semiconductor controlled rectifier | |
KR100298573B1 (en) | Triac device of planar type | |
JP2603083B2 (en) | High voltage semiconductor device | |
JPS61182259A (en) | Gate turn-off thyristor | |
JP2521745Y2 (en) | Photo thyristor |