JPS61150191A - Optical memory cell's driving system - Google Patents

Optical memory cell's driving system

Info

Publication number
JPS61150191A
JPS61150191A JP59272427A JP27242784A JPS61150191A JP S61150191 A JPS61150191 A JP S61150191A JP 59272427 A JP59272427 A JP 59272427A JP 27242784 A JP27242784 A JP 27242784A JP S61150191 A JPS61150191 A JP S61150191A
Authority
JP
Japan
Prior art keywords
optical
memory cell
optical memory
transistor
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59272427A
Other languages
Japanese (ja)
Inventor
Hidenori Nomura
野村 秀徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59272427A priority Critical patent/JPS61150191A/en
Publication of JPS61150191A publication Critical patent/JPS61150191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To reduce the small consumption of electric power of an optical memory cell by lowering the effective resistance value of a circuit inserted between the optical memory cell and a driving power source during the access of the memory. CONSTITUTION:During the input of pulse wise optical input Pin, a transistor 11 is turned on, the effective resistance value of a circuit inserted between an light stabilizing bielement 10 and a driving power source terminal 13 is rapidly reduced, the operating point of an element 10 in accordance with a load line (b) moves to B and the writing of an optical memory cell is completed. When a control pulse and the optical input Pin impressed to an input terminal 11a are removed, the transistor is turned off, the operating point moves from B to C on a load line (a), while the ON condition of the element 10 is maintained as it is, keeping a low operating current. In such a manner, the maintaining current of the optical memory can be lowered without deteriorating a memory characteristic, which is a large advantage for the integration of the optical memory.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光コンビエータ、光交換等の基本要素として用
いられる光メモリセルの駆動方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a driving method for an optical memory cell used as a basic element of an optical combinator, optical exchange, etc.

(従来技術とその問題点) 光メモリとしては半導体の過飽和吸収特性を利用した双
安定半導体レーザや、pnP”サイリスタ形構造のター
ンオン特性を利用した双安定発光素子などが用いられて
いる。従来、サイリスタ形双安定発光素子を使用した光
メモリでは、第2図に示すような電流対電圧特性に対し
て、単に光メモリセルと抵抗を直列接続して駆動電源に
つないでいた(応用物理第53巻、第5号427頁〜4
31頁)。例えば第2図及び第3図に示す特性の光メモ
リセルな用い、駆動電源電圧を5.5vとした場合に2
0Ωの抵抗を挿入して使用すれば、この光メモリセルは
約20μWの光入力によって情報の書き込みが行なわれ
、その後、光入力が除去されたとしても約25 mAの
電流が保持され、約290μWの光出力状態を保持する
。しかしながらこの保持電流は光メモリの集積化のため
Kは可能な限シ小さいことが望まれる。このためには従
来例においては挿入抵抗値を大きくするといった対策が
とられていた。例えば、前述の例で抵抗値を20Ωから
200Ωに増大させれば保持電流値は25 mAから9
mA程度に低減することができる。
(Prior art and its problems) Bistable semiconductor lasers that utilize the supersaturation absorption characteristics of semiconductors and bistable light emitting devices that utilize the turn-on characteristics of pnP (thyristor) structures are used as optical memories. Conventionally, thyristor In an optical memory using a bistable light emitting device, the current vs. voltage characteristic shown in Figure 2 was obtained by simply connecting an optical memory cell and a resistor in series and connecting it to a driving power source (Applied Physics Vol. 53, Vol. No. 5, pages 427-4
page 31). For example, when using an optical memory cell with the characteristics shown in FIGS. 2 and 3, when the drive power supply voltage is 5.5V,
When used with a 0Ω resistor inserted, this optical memory cell can write information with an optical input of approximately 20 μW, and then retains a current of approximately 25 mA even when the optical input is removed, and writes approximately 290 μW of current. Maintains optical output status. However, it is desired that K of this holding current be as small as possible for the purpose of integrating optical memories. To this end, in conventional examples, measures have been taken such as increasing the insertion resistance value. For example, in the above example, if the resistance value is increased from 20Ω to 200Ω, the holding current value will change from 25 mA to 9
It can be reduced to about mA.

ところがこのような従来技術においては、第2図からも
仰られるように保持電流の低減が、書き込み感度の低下
と読み出し光出力の低下とをもたらすという欠点を有し
そいた。
However, as shown in FIG. 2, this conventional technique has the disadvantage that the reduction in holding current leads to a decrease in writing sensitivity and a decrease in readout light output.

(発明の目的) 本発明の目的は上述の欠点を除去し、光メモリセ化の小
電力化を可能とし集積化しやすくする光 ゛メモリセル
の駆動方式を提供することにある。
(Object of the Invention) An object of the present invention is to provide a driving method for an optical memory cell that eliminates the above-mentioned drawbacks, enables reduction in power consumption for optical memory cells, and facilitates integration.

(発明の構成) 本発明によれば、サイリスタ形の電流対電圧ヒステリシ
ス特性を有する光双安定素子を基本メモリセルとする光
メモリセルの駆動方式において、該光メモリセルと駆動
電源との間に挿入される回路の実効抵抗値をメモリアク
セス時に低下させることを特徴とする光メモリセルの駆
動方式が得られる。
(Structure of the Invention) According to the present invention, in a driving method of an optical memory cell in which a basic memory cell is an optical bistable element having a thyristor type current-to-voltage hysteresis characteristic, an optical bistable element having a thyristor-type current-to-voltage hysteresis characteristic is inserted between the optical memory cell and a driving power source. A method for driving an optical memory cell is obtained, which is characterized in that the effective resistance value of the circuit is lowered during memory access.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明に基づく第1の実施例の構成を表わす図
である。本実施例は第2図及び第3図に示されるサイリ
スタ形の電流対電圧特性及び光出力対電流特性を有する
光双安定素子!0とそのp側電極6に接続されたIKΩ
の抵抗12及びトラレジスタ11の回路で構成されてい
る。光双安定素子10のn側電極7は接地され、トラン
ジスタ11のコレクタ側の駆動電源端子13には5.5
vが印加されている。メモリ書き込み用の光入力Pin
はn個電極7に設けられた受光窓7Wから入力され、メ
モリ読み出し時の光出力Poutはp側電極8に設けら
れた発光窓6Wから出力される。光メモリの入出力光波
長は13μmである。使用した光双安定素子10は最も
基本的構成のものでn−InPから成る基板1′の上に
エピタキシャル成長された    ′p −InGaA
sP (吸収端波長1.35.am )から成る受光層
2、n−InPから成る閉じ込め層3、n −InGa
A思P(発光波長1.3μm)から成る発光層4p−I
nPから成る閉じ込め層5の構成である。
FIG. 1 is a diagram showing the configuration of a first embodiment based on the present invention. This example is an optical bistable element having the thyristor-type current vs. voltage characteristics and optical output vs. current characteristics shown in FIGS. 2 and 3! IKΩ connected to 0 and its p-side electrode 6
The circuit is composed of a resistor 12 and a resistor 11. The n-side electrode 7 of the optical bistable element 10 is grounded, and the drive power terminal 13 on the collector side of the transistor 11 has a voltage of 5.5
v is applied. Optical input pin for memory writing
is inputted from the light receiving window 7W provided on the n electrodes 7, and the optical output Pout at the time of memory reading is outputted from the light emitting window 6W provided on the p side electrode 8. The input/output light wavelength of the optical memory is 13 μm. The optical bistable device 10 used has the most basic configuration and is made of 'p-InGaA' epitaxially grown on a substrate 1' made of n-InP.
A light-receiving layer 2 made of sP (absorption edge wavelength 1.35 am), a confinement layer 3 made of n-InP, and n-InGa.
Light-emitting layer 4p-I consisting of A-P (emission wavelength 1.3 μm)
This is the structure of the confinement layer 5 made of nP.

本実施例では、次の手順で光メモリセルの書き込みと読
み出しを行なう。書き込みを行なう場合は、まずpiI
ll電極6を接地するかもしくは駆動電源端子13を一
時的に零電位にするかによって光メモリセルのリセット
を行なう。次いで20μW以上の光入力Pinをパルス
的に与えると同時にトランジスタ110ペース側の入力
端子11’aに5v以上の制御パルス信号を与える。こ
の時、トランジスタ11がオン状態となって光双安定素
子10と駆動電源端子13間に挿入された回路の実効抵
抗値は急激に減少し、第2図に示す負荷線すに従って光
双安定素子10の動作点はBK移シ、光メモリセルの書
き込みが終了する。入力端子11−aへ印加する制御パ
ルス信号及び光入力P1nを除去するとトランジスタ1
1はオフ状態となシ、動作点はBから負荷線a上のCに
移るが、光双安定素子100オン状態は低い動作電流な
がらそのtま維持されている。なお、書き込み時の光入
力Pinが零の場合は光双安定素子10の動作点が第2
図のA点からA′点へ一時的に移動するが、制御パルス
信号の除去と同時にA点に戻ジオン状態が維持され、即
ち「0」が書き込まれたこととなる。
In this embodiment, writing and reading of the optical memory cell are performed in the following steps. When writing, first piI
The optical memory cell is reset by grounding the ll electrode 6 or temporarily setting the drive power supply terminal 13 to zero potential. Next, an optical input Pin of 20 μW or more is applied in a pulsed manner, and at the same time, a control pulse signal of 5 V or more is applied to the input terminal 11'a on the pace side of the transistor 110. At this time, the transistor 11 is turned on, and the effective resistance value of the circuit inserted between the optical bistable element 10 and the drive power supply terminal 13 rapidly decreases, and the optical bistable element is turned on according to the load line shown in FIG. At the operating point No. 10, BK transition occurs and writing of the optical memory cell is completed. When the control pulse signal applied to the input terminal 11-a and the optical input P1n are removed, the transistor 1
1 is in the OFF state, and the operating point shifts from B to C on the load line a, but the ON state of the optical bistable element 100 is maintained until t even though the operating current is low. Note that when the optical input Pin during writing is zero, the operating point of the optical bistable element 10 is the second
Although it temporarily moves from point A to point A' in the figure, it returns to point A at the same time as the control pulse signal is removed, and the Zion state is maintained, that is, "0" is written.

読み出しを行なうには、入力端子14mへ5v以上の制
御パルス信号を与えるのみで良い。光双安定素子10が
オン状態、即ち「1」が書き込まれている場合には、制
御パルス信号によって第2図に示すCの動作点からBの
動作点に移九290ttW程度の光パルス信号を出力す
る。一方光双安定素子lOがオフ状態、即ち「O」が書
き込まれている場合には、制御パルス信号によって動作
点がAからA′へ移るが、電流は低レベルのままで゛あ
って光出力はほとんど生じない。
To read, it is sufficient to simply apply a control pulse signal of 5V or more to the input terminal 14m. When the optical bistable element 10 is in the on state, that is, when "1" is written, the control pulse signal moves the optical bistable element 10 from the operating point C to the operating point B shown in FIG. Output. On the other hand, when the optical bistable element lO is in the off state, that is, when "O" is written, the operating point moves from A to A' by the control pulse signal, but the current remains at a low level and the optical output is rarely occurs.

第4図は第2の実施例の構成を表わす回路図である。本
実施例では光メモリセルである光双安定素子10と駆動
電源との間に挿入される回路が光双安定素子10の接地
側に設けられておシ、その挿入回路はスイッチング用の
トランジスタ11と抵抗12m、12bから構成されて
いる。抵抗12mは電流制限用として働き抵抗値は50
Ω、抵抗12bはメモリ保持電流バイアス用で抵抗値は
IKΩである。本実施例ではアクセス時に入力端子11
mへ正のパルスを与え、トランジスタ11を導通させる
FIG. 4 is a circuit diagram showing the configuration of the second embodiment. In this embodiment, a circuit inserted between the optical bistable element 10, which is an optical memory cell, and the drive power source is provided on the ground side of the optical bistable element 10, and the inserted circuit is connected to the switching transistor 11. It consists of resistors 12m and 12b. The 12m resistor works as a current limiter and the resistance value is 50m.
Ω, and the resistor 12b is for memory holding current bias and has a resistance value of IKΩ. In this embodiment, when accessing, the input terminal 11
Apply a positive pulse to m to make transistor 11 conductive.

第5図は第3の実施例の構成を表わす回路図である。本
実施例における抵抗12m、12bも第2の実施例と同
様な機能を果している。それぞれ50Ω及びIKΩであ
る。入力端子11&はアクセス信号用、入力端子11b
はリセット信号用である。
FIG. 5 is a circuit diagram showing the configuration of the third embodiment. The resistors 12m and 12b in this embodiment also perform the same function as in the second embodiment. They are 50Ω and IKΩ, respectively. Input terminal 11& is for access signal, input terminal 11b
is for the reset signal.

トランジスタ11.14によって光双安定素子10に接
続される抵抗の切シ替えを行なう。本実施例ではアクセ
ス時にトランジスタ11を導通、保持状態ではトランジ
スタ14を導通状態とする。またトランジスタ11.1
4の両者を遮断状態とすることによって元メモリセルを
リセットすることができる。即ち入力端子11a、ll
bに印加する電圧を零とすることによって光双安定素子
10はリセットされる。
The resistors connected to the optical bistable element 10 are switched by transistors 11 and 14. In this embodiment, the transistor 11 is turned on during access, and the transistor 14 is turned on in the hold state. Also transistor 11.1
The original memory cell can be reset by turning off both of 4 and 4. That is, the input terminals 11a, ll
The optical bistable element 10 is reset by setting the voltage applied to b to zero.

第6図は第4の実施例の構成を表わす回路図である。本
実施例では挿入される回路には可変抵抗特性を有する電
界効果トランジスタ15が用いられている。メモリアク
セス時には入力端子11mに正のパルス信号を与えて電
界効果トランジスタ15を低抵抗の導通状態とし、保持
状態では所要の保持電流が得られる程度にバイアスする
。リセットは入力端子11mの電圧が電界効果トランジ
スター5のピンチオフ電圧以下となるようなパルス入力
を与えることによって行なうことができる。
FIG. 6 is a circuit diagram showing the configuration of the fourth embodiment. In this embodiment, a field effect transistor 15 having variable resistance characteristics is used in the inserted circuit. At the time of memory access, a positive pulse signal is applied to the input terminal 11m to bring the field effect transistor 15 into a low resistance conduction state, and in the holding state, it is biased to such an extent that a required holding current can be obtained. Resetting can be performed by applying a pulse input such that the voltage at the input terminal 11m becomes equal to or lower than the pinch-off voltage of the field effect transistor 5.

さて、上述の実施例ではいずれも光メモリセルがpnp
n構造から成る光双安定素子であるとしたが、第2図に
示すようなサイリスタ形の電流対電圧ヒステリシス特性
を有するものであれば、これに限定するものではない。
Now, in all of the above embodiments, the optical memory cell is pnp.
Although the optical bistable element is described as having an n-structure, the present invention is not limited to this as long as it has a thyristor-type current-voltage hysteresis characteristic as shown in FIG.

(発明の効果) 本発明によって得られる効果を要約すれば、光メモリの
保持電流をメモリ特性の劣化なく低減することが可能と
なシ、光メモリの集積化にとって大きな利点となること
である。ま九付言すれば、光メモリからの不必要な発光
を抑制する効果も有し、集積化で問題となるビット間干
渉の低減に寄与する。
(Effects of the Invention) To summarize the effects obtained by the present invention, it is possible to reduce the holding current of an optical memory without deteriorating the memory characteristics, which is a great advantage for the integration of optical memories. Additionally, it also has the effect of suppressing unnecessary light emission from the optical memory, and contributes to reducing bit-to-bit interference, which is a problem with integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく第1の実施例の構成図、固 第?笈び第3図は光双安定素子の特性図、第4臀施例の
構成図である。 図中、IOは光双安定素子、13は駆動電源端子である
。 オ 1 図 □ 1 光入力 オ 2 図 電圧間 電流(mA) 74図         ″:A−5図71−図面
FIG. 1 is a block diagram of a first embodiment based on the present invention. 3 is a characteristic diagram of an optical bistable element and a configuration diagram of a fourth embodiment. In the figure, IO is an optical bistable element, and 13 is a drive power supply terminal. E 1 Figure □ 1 Optical input O 2 Figure Current between voltages (mA) Figure 74 ″:A-5 Figure 71-Drawing

Claims (1)

【特許請求の範囲】[Claims] サイリスタ形の電流対電圧ヒステリシス特性を有する光
双安定素子を基本メモリセルとする光メモリセルの駆動
方式において、該光メモリセルと駆動電源との間に挿入
される回路の実効抵抗値をメモリアクセス時に低下させ
ることを特徴とする光メモリセルの駆動方式。
In a drive method for an optical memory cell whose basic memory cell is an optical bistable element having thyristor-type current-to-voltage hysteresis characteristics, the effective resistance value of the circuit inserted between the optical memory cell and the drive power source is reduced during memory access. A driving method for an optical memory cell, which is characterized by:
JP59272427A 1984-12-24 1984-12-24 Optical memory cell's driving system Pending JPS61150191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59272427A JPS61150191A (en) 1984-12-24 1984-12-24 Optical memory cell's driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59272427A JPS61150191A (en) 1984-12-24 1984-12-24 Optical memory cell's driving system

Publications (1)

Publication Number Publication Date
JPS61150191A true JPS61150191A (en) 1986-07-08

Family

ID=17513757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59272427A Pending JPS61150191A (en) 1984-12-24 1984-12-24 Optical memory cell's driving system

Country Status (1)

Country Link
JP (1) JPS61150191A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078216A (en) * 1973-11-09 1975-06-26
JPS5277537A (en) * 1975-12-19 1977-06-30 Ibm Electroluminescent memory element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078216A (en) * 1973-11-09 1975-06-26
JPS5277537A (en) * 1975-12-19 1977-06-30 Ibm Electroluminescent memory element

Similar Documents

Publication Publication Date Title
US4399372A (en) Integrated circuit having spare parts activated by a high-to-low adjustable resistance device
KR910002032B1 (en) Reference voltage generating circuit
JP4603437B2 (en) Complementary output type resistive memory cell
GB1485499A (en) Memory circuit
US5015873A (en) Semiconductor driver for producing switching and offset signals
US3955182A (en) Transistorised memory cell and an integrated memory using such a cell
JPS61150191A (en) Optical memory cell's driving system
Taylor et al. Optoelectronic dynamic random access memory cell utilizing a three‐terminal N‐channel self‐aligned double‐heterostructure optoelectronic switch
JPS61150192A (en) Driving system of optical memory cell
EP0136840B1 (en) Opto-electric logic element
US5315105A (en) Optical operational memory device
US4122545A (en) Memory array of inversion controlled switches
US5574683A (en) Memory device and a method for writing information in the memory device
US5262688A (en) Operational amplifier circuit
EP0352814B1 (en) Optical memory circuit
JP3083639B2 (en) Light emitting element drive circuit
SU381098A1 (en) SYMMETRIC THYRISTOR ELEMENT OF NAME
JPH0147807B2 (en)
JPH026678Y2 (en)
SU1064318A1 (en) Storage element for random-access memory
JPH0530184Y2 (en)
JPH04240766A (en) Photoelectronic memory device
JPS6142706A (en) Writing and reading circuit of magnetic storage device
JPH0439837B2 (en)
JPS60233796A (en) Light emitting diode driving circuit