JPS61149503A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPS61149503A
JPS61149503A JP27230884A JP27230884A JPS61149503A JP S61149503 A JPS61149503 A JP S61149503A JP 27230884 A JP27230884 A JP 27230884A JP 27230884 A JP27230884 A JP 27230884A JP S61149503 A JPS61149503 A JP S61149503A
Authority
JP
Japan
Prior art keywords
cooling
cooling air
blade
liquid
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27230884A
Other languages
Japanese (ja)
Inventor
Hideo Iwasaki
秀夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27230884A priority Critical patent/JPS61149503A/en
Publication of JPS61149503A publication Critical patent/JPS61149503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To enhance the cooling efficiency of a turbine blade, by jetting a cooling agent, etc. from a cylinder fitted into a blade body and having a plurality of holes, into a cooling fluid passage formed between the blade body and the cylinder, and by forming the inner wall surface of the blade body as a liquid drop trapping member. CONSTITUTION:A liquid cooling agent fed from a liquid cooling inlet port 24 into a liquid cooling agent passage 22a is jetted through a plurality of holes 26a, 26b formed in the side wall and top wall of an inner cylinder, into a cooling air passage 23. At this time a part of the cooling agent flushes and it turned into steam while the remaining part of the cooling agent is turned into liquid drops and is stuck on a wick structure 28 or small protrusions. Meanwhile, cooling air flows into a cooling air inlet port 25, and after flowing through the cooling air passage 23, flows out from a blow-out port 27 in the trailing edge section of the turbine blade 21. Further, when cooling air flows through a cooling air passage 23, the above-mentioned liquid drops are evaporated. Accordingly, a large cooling effect may be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービン翼に係り、特に高温にさらされるガス
タービン第1段に使用するのに適したり′−ビン翼に関
する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to turbine blades, and more particularly to turbine blades suitable for use in gas turbine first stages exposed to high temperatures.

(発明の技術的背景とその問題点) ガスタービンの熱効率を上昇させるには、タービン入口
における燃焼ガス温度を上昇させるのが最も有効である
(Technical background of the invention and its problems) The most effective way to increase the thermal efficiency of a gas turbine is to increase the combustion gas temperature at the turbine inlet.

しかしながら、現用の耐熱合金では高温のタービン運転
状態において発生する熱応力、高温酸化、ホットコロ−
ジョン等に耐える能力が十分でなく、入口ガス温度を高
めるにも限度がある。そのため、入口ガス温度をできる
だけ上昇させる手段として、種々のタービン冷却翼が提
案されている。
However, current heat-resistant alloys suffer from thermal stress, high-temperature oxidation, and hot colloids that occur during high-temperature turbine operation.
It does not have sufficient ability to withstand high temperatures, and there is a limit to the ability to increase the inlet gas temperature. Therefore, various turbine cooling blades have been proposed as means for increasing the inlet gas temperature as much as possible.

第7図および第8図は、代表的な空気冷却タービン翼を
示すもので、タービン翼1の内部は、隔壁2によって前
縁側と後縁側とに区切られている。
7 and 8 show typical air-cooled turbine blades. The interior of the turbine blade 1 is divided by a partition wall 2 into a leading edge side and a trailing edge side.

前縁側の翼内部には多数のフィン3、バッフル4および
空気吹出し用孔5が儲けられている。後縁部にはスリッ
ト6が設けてあり、翼壁体の内面間はビンフィン7で連
結されている。冷却空気は翼根部の間口8から供給され
、孔5から吹出して空気のフィルムを形成して冷却する
。翼後縁部ではスリット6か翼後方下流へ吹出した空気
が対流冷却を行う。リターン70一部9では、翼の後縁
から前縁へ向って3列のリターンフローが行われ、対流
冷却がされると同時に、翼腹部に設けた孔から吹出した
空気が形成するフィルムによる冷却も行われる。
A large number of fins 3, baffles 4, and air blowing holes 5 are provided inside the blade on the leading edge side. A slit 6 is provided at the trailing edge, and the inner surfaces of the wing walls are connected by bin fins 7. Cooling air is supplied from the frontage 8 of the blade root and blows out from the hole 5 to form a film of air for cooling. At the trailing edge of the blade, air blown out downstream from the rear of the blade through the slit 6 performs convection cooling. In the return 70 part 9, three rows of return flow are performed from the trailing edge of the blade to the leading edge, and at the same time, convection cooling is performed, and at the same time, cooling is performed by a film formed by the air blown out from the hole provided in the blade abdomen. will also be held.

しかしながら、このような構成のタービン翼において、
翼腹部側は翼背側よりも圧力が高く、燃焼ガス中の灰分
や不純物の付着を生じ易く、空気吹出し孔が閉塞される
おそれがある。また、タービン翼外面の圧力分布は一様
でないので、合孔の空気の吹出量が異なり、翼面上の温
度分布が不均一になりがちである。さらに、リターンフ
ロー型冷却貿では、冷却空気が第7図で矢印に沿って流
れる間に、温度が上昇し、また空気吹出しを行うため空
気流量が次第に減少する。したがって、冷却性能が徐々
に低下し、翼面温度が不均一になる。
However, in a turbine blade with such a configuration,
The pressure on the blade vent side is higher than that on the blade dorsal side, and ash and impurities in the combustion gas are likely to adhere to the blade, and there is a risk that the air blowing holes may be blocked. Further, since the pressure distribution on the outer surface of the turbine blade is not uniform, the amount of air blown out from the joint holes is different, and the temperature distribution on the blade surface tends to be uneven. Furthermore, in the return flow type cooling system, while the cooling air flows along the arrow in FIG. 7, the temperature rises and the air flow rate gradually decreases because air is blown out. Therefore, the cooling performance gradually decreases and the blade surface temperature becomes uneven.

このように、空気冷却のみではガスタービン入口温度の
高温化を図るには限界があり、蒸気冷却・水冷却等の提
案がなされている。
As described above, there is a limit to increasing the gas turbine inlet temperature using only air cooling, and proposals have been made for methods such as steam cooling and water cooling.

第9図および第10図は、空気冷却と水冷却とを併用し
たタービン冷却翼の例を示すものである。
FIGS. 9 and 10 show examples of turbine-cooled blades that use both air cooling and water cooling.

翼腹側に多数の細孔10が翼根部端面から壁面に沿って
翼頂部方向に穿設され、翼頂部側で講中空部すなわち冷
却空気流路11に連通している。冷却水は細孔10を通
り、空気流路11と連通する点でフラッシュして蒸気と
なり、空気吹出し口12から冷却空気とともに園外へ流
出する。
A large number of pores 10 are bored on the blade vent side from the blade root end face along the wall surface toward the blade top, and communicate with the hollow part, that is, the cooling air flow path 11 on the blade top side. The cooling water passes through the pores 10, flashes into steam at the point where it communicates with the air flow path 11, and flows out of the garden together with the cooling air from the air outlet 12.

一般に、水を用いる冷却翼では、冷却水の流れる孔を翼
表面付近に多数配置する形式のものが多い。しかしなが
ら、このような形式の水冷間では、肉厚の薄い翼後縁側
に細孔を設けることが困難である。また、3次元的に大
きくねじれている翼でも、このような冷却水の通る細孔
を設けることは加工がむずかしいという問題がある。
In general, many cooling blades that use water have a large number of holes near the blade surface through which cooling water flows. However, in this type of water cooling, it is difficult to provide pores on the thin trailing edge side of the blade. Further, even in blades that are highly twisted three-dimensionally, there is a problem in that it is difficult to fabricate such pores through which cooling water passes.

〔発明の目的〕[Purpose of the invention]

本発明は上述した従来の冷却翼の問題点を解消するもの
で、翼腹部に空気吹出し用の孔を有せず翼全面にわたり
良好な冷部効果が得られ、しかも加工が容易なタービン
翼を提供することを目的としている。
The present invention solves the above-mentioned problems of conventional cooling blades, and provides a turbine blade that does not have air blowing holes in the blade abdomen, provides a good cooling effect over the entire blade surface, and is easy to process. is intended to provide.

(発明の概要) 上記目的を達成するため、本発明は、中空のタービン翼
体内に内筒を設け、翼体と内筒との間に冷却空気流路を
形成し、かつ翼体内面をウィック構造体または小突起の
突設面とするとともに内筒壁面の孔から液体冷却剤また
は気液2相冷却剤を冷却空気流路に吹出しフラッシュさ
せ、またウィック構造体または突起に付着した残留液滴
を蒸発させるようにしたことを特徴とするものである。
(Summary of the Invention) In order to achieve the above object, the present invention provides an inner cylinder in a hollow turbine blade body, forms a cooling air flow path between the blade body and the inner cylinder, and wicks the inner surface of the blade body. The projecting surface of the structure or small protrusions is used to flash the liquid coolant or gas-liquid two-phase coolant from the holes in the inner cylinder wall into the cooling air flow path, and the remaining droplets attached to the wick structure or protrusions are It is characterized in that it evaporates.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明によるタービン翼の実施例を図面を参照し
て説明する。
Hereinafter, embodiments of a turbine blade according to the present invention will be described with reference to the drawings.

第1図ないし第3図において、中空のタービン翼体21
の内部には、この翼体と外形がほぼ相似で寸法が小さい
内筒22が保持され、■体21と内筒22との間に冷却
空気の流路23が形成されている。翼体21の翼根部の
内側に内筒22の基部が開口し液体冷却剤の流入口24
となり、翼体21の翼根部内面と内筒22の基部外面と
の間が冷却空気流入口25となっている。内筒22の側
壁には多数の孔26aが全面にわたってほぼ同一ピッチ
で斜方向に穿設され、内筒22の頂壁にも同様の孔26
bが全面にわたりそれぞれ上下方向に穿設されている。
In FIGS. 1 to 3, a hollow turbine blade body 21
An inner cylinder 22 having a substantially similar outer shape and small size to the blade body is held inside the blade body, and a cooling air flow path 23 is formed between the body 21 and the inner cylinder 22. The base of the inner cylinder 22 opens inside the blade root of the blade body 21 and forms an inlet 24 for liquid coolant.
The space between the inner surface of the blade root portion of the blade body 21 and the outer surface of the base portion of the inner cylinder 22 serves as a cooling air inlet 25. A large number of holes 26a are diagonally formed in the side wall of the inner cylinder 22 at substantially the same pitch over the entire surface, and similar holes 26a are formed in the top wall of the inner cylinder 22.
b are perforated in the vertical direction over the entire surface.

そして、翼体後縁部21bには、上述の冷却空気を園外
へ吹出すための吹出し口27が設けられている。また、
翼体21の内壁面および天ぶた21aの内壁面には液滴
を保持するためのウィック構造体2Bが設けられている
The trailing edge portion 21b of the wing body is provided with an outlet 27 for blowing out the above-mentioned cooling air to the outside of the garden. Also,
A wick structure 2B for holding droplets is provided on the inner wall surface of the wing body 21 and the inner wall surface of the top lid 21a.

これらの内壁面はウィック構造体の他、液滴を壁面に保
持できるもの例えば小突起を壁面に多数突設して凹凸状
の壁面に構成してもよく、また壁面に多数の舌片を設け
ていもよい。
In addition to the wick structure, these inner wall surfaces may have a structure that can hold droplets on the wall surface, for example, a large number of small protrusions protruding from the wall surface to form an uneven wall surface, or a large number of tongue pieces may be provided on the wall surface. It's fine.

本発明はこのように構成されているから、液体冷却剤流
入口24から液体冷却剤流路22aへ送られだ液体冷却
剤は、内筒側壁および頂壁に穿設された多数の孔26a
、26bからそれぞれ冷却空気流路23へ吹出される。
Since the present invention is configured in this way, the liquid coolant sent from the liquid coolant inlet 24 to the liquid coolant flow path 22a flows through the numerous holes 26a bored in the inner cylinder side wall and top wall.
, 26b to the cooling air flow path 23, respectively.

このとき、液体冷却剤の一部はフラッシュして蒸気とな
り、残部は液滴となって第4図に示すように液滴29が
ウィック構造体28または小突起に付着する。一方、冷
却空気は、冷却空気流入口25から流入し、冷却空気流
路23を流れ。翼後縁部の吹出し口27がら翼体へ流出
する。この冷却空気温度は、高温ガスタービンで一般に
数百度あるので、冷却空気が冷却空気流路23を流れる
際、ウィック構造体28または小突起に付着した液滴2
9を蒸発させる。翼体内壁がウィック構造体であれば、
内筒の孔から噴出してウィック構造体に付着した液滴は
、毛細管現象により翼体内壁に均一に分布するので、内
壁から均一に蒸発する。このウィック構造体は、本実施
例ではコード方向に延びる構造となっているが、翼スパ
ン方向に延びる構造であってもよく、また両者を組合せ
た構造としてもよい。また、内筒より噴出させる冷却剤
は、液体のみでなく適度の液滴を含んだ気液2相冷却剤
であってもよい。
At this time, part of the liquid coolant flashes and becomes vapor, and the remaining part becomes liquid droplets 29 that adhere to the wick structure 28 or the small protrusions as shown in FIG. On the other hand, cooling air flows in from the cooling air inlet 25 and flows through the cooling air flow path 23 . The air flows out from the air outlet 27 at the trailing edge of the blade to the blade body. The temperature of this cooling air is generally several hundred degrees in high-temperature gas turbines, so when the cooling air flows through the cooling air flow path 23, droplets 2 adhere to the wick structure 28 or the small protrusions.
Evaporate 9. If the airfoil inner wall is a wick structure,
The droplets ejected from the holes in the inner cylinder and attached to the wick structure are uniformly distributed on the inner wall of the blade body due to capillary action, so that they evaporate uniformly from the inner wall. Although this wick structure has a structure extending in the chord direction in this embodiment, it may have a structure extending in the blade span direction, or may have a structure that is a combination of both. Moreover, the coolant spouted from the inner cylinder may be not only a liquid but also a gas-liquid two-phase coolant containing an appropriate amount of droplets.

第5図および第6図は、他の実施例を示すもので、この
実施例では内筒が前縁部・中央部・後縁部の3個の内筒
30,31.32から構成され、それぞれ内部に冷却剤
流路30a、31a、32aを、側壁と頂壁とに冷却剤
吹出し用孔を備えている。これらの内筒30,31.3
2は、支持板33により連結され、翼体34内に支持さ
れている。また、中央部内筒31と翼体34内壁との間
の冷却空気流路は第6図に示すように少くとも1個以上
の孔35を設けた仕切板36で前縁側37と後縁側38
とに仕切られている。本実施例では、この仕切板36を
設けたので、冷却空気を前縁側の冷却空気流路37に供
給すれば、冷却空気は、仕切板36に設けた孔35を通
過し後縁側の冷却空気流路38に至り、冷却孔39がら
翼体へ流出する。この例で内筒と翼体内壁により一種の
冷却空気ダクトを形成し、より少量の冷却空気で大きな
冷却作用を行うことができる。なお、ウィック構造体4
0を翼体内壁に設けであるのは前述の実X11!i例と
同様である。
5 and 6 show another embodiment, in which the inner cylinder is composed of three inner cylinders 30, 31, 32 at the front edge, center, and rear edge, Coolant channels 30a, 31a, and 32a are provided inside each, and coolant blowing holes are provided in the side wall and the top wall. These inner cylinders 30, 31.3
2 are connected by a support plate 33 and supported within a wing body 34. Further, the cooling air flow path between the central inner cylinder 31 and the inner wall of the blade body 34 is defined by a partition plate 36 provided with at least one hole 35 on the leading edge side 37 and the trailing edge side 38, as shown in FIG.
It is divided into two parts. In this embodiment, since this partition plate 36 is provided, if cooling air is supplied to the cooling air passage 37 on the leading edge side, the cooling air passes through the hole 35 provided in the partition plate 36, and the cooling air on the trailing edge side It reaches the flow path 38 and flows out to the blade body through the cooling hole 39. In this example, a kind of cooling air duct is formed by the inner cylinder and the blade body wall, and a large cooling effect can be performed with a smaller amount of cooling air. In addition, the wick structure 4
The above-mentioned real X11 has 0 on the inner wall of the airfoil! This is the same as example i.

〔発明の効果〕〔Effect of the invention〕

上述の説、明から明らかなように、本発明によれば、冷
却空気流路にウィック構造体または突起体を設(プ、こ
の冷却空気流路へ液体冷却剤または気液2相冷却剤を吹
出すようにしkから、冷却空気が冷却空気流路を流れる
際に、ウィック構造体または突起体に付着した液滴を蒸
発させるので、大きな冷却効果を得ることができる。ま
た、翼体内壁をウィック構造体にすれば液滴は毛m管現
象により翼内壁に均一に分布するので、翼面全体にわた
り、より均一に冷却することができる。しかも、加工が
容易である。さらに、冷却空気流路内に仕切板を設けれ
ば、より少量の空気で大きな冷却効果を得ることができ
る。したがって、タービン入口ガス温度を上昇させるこ
とができ、熱効率の向上を図ることとができる。
As is clear from the above explanation, according to the present invention, a wick structure or a protrusion is provided in the cooling air flow path, and a liquid coolant or a gas-liquid two-phase coolant is introduced into the cooling air flow path. As the cooling air flows through the cooling air flow path, droplets attached to the wick structure or protrusions are evaporated, resulting in a large cooling effect. With a wick structure, the droplets are evenly distributed on the inner wall of the blade due to capillary action, allowing for more uniform cooling over the entire blade surface.Moreover, it is easy to process.In addition, the cooling air flow If a partition plate is provided in the passage, a large cooling effect can be obtained with a smaller amount of air.Therefore, the turbine inlet gas temperature can be increased, and thermal efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるタービン翼の一実施例を示す横断
面図、第2図は第1図の■−■線の沿う縦断面図、第3
図は内筒の斜視図、第4図は第1図のrV−rV線に沿
う部分拡大縦断面図、第5図は本発明の他の実施例を示
す横断面図、第6図は第5図のVl−Vl線に沿う部分
拡大IIi断面図、第7図は従来の空冷翼の例を示す縦
断面図、第8図は第7図の■−■線に沿う横断面図、第
9図は従来の空気および水を併用した冷却翼の例を示す
横断面図、第10図は第9図のX−X線に沿う縦断面図
である。 21.34・・・タービン翼、22.30.31゜32
・・・内筒、23,37.38・・・冷却空気流路、2
2a、30a、31a、32a・・・液体冷却剤流路、
26a、26b・・・孔、28・・・ウィック構造体、
35・・・孔、36・・・仕切板。 出願人代理人  猪  股    清 第9図 第10図
FIG. 1 is a cross-sectional view showing one embodiment of a turbine blade according to the present invention, FIG. 2 is a vertical cross-sectional view taken along the line ■-■ in FIG. 1, and FIG.
The figure is a perspective view of the inner cylinder, FIG. 4 is a partially enlarged vertical sectional view taken along the rV-rV line in FIG. 1, FIG. 5 is a cross-sectional view showing another embodiment of the present invention, and FIG. 5 is a partially enlarged sectional view taken along the line Vl--Vl, FIG. 7 is a vertical sectional view showing an example of a conventional air-cooled blade, FIG. 8 is a cross-sectional view taken along the line FIG. 9 is a cross-sectional view showing an example of a conventional cooling blade that uses both air and water, and FIG. 10 is a vertical cross-sectional view taken along the line X--X in FIG. 9. 21.34...Turbine blade, 22.30.31°32
... Inner cylinder, 23, 37. 38 ... Cooling air flow path, 2
2a, 30a, 31a, 32a...liquid coolant flow path,
26a, 26b...hole, 28...wick structure,
35...hole, 36...partition plate. Applicant's agent Kiyoshi Inomata Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 1、内部に冷却流路を有する中空のタービン翼において
、壁面に多数の孔を穿設した1以上の筒体を翼体内に内
挿し、この筒体と上記翼体の内壁との間に冷却空気流路
を形成し、液体冷却剤または気液2相冷却剤を上記筒体
内から上記冷却空気流路へ吹出すと共に上記翼体の内壁
面を液滴保持体としたことを特徴とするタービン翼。 2、上記液滴保持体はウィック構造体であることを特徴
とする特許請求の範囲第1項記載のタービン翼。 3、上記液滴保持体は多数の小突起体からなることを特
徴する特許請求の範囲第1項記載のタービン翼。
[Claims] 1. In a hollow turbine blade having a cooling flow path inside, one or more cylindrical bodies with a large number of holes bored in the wall surface are inserted into the blade body, and this cylindrical body and the above-mentioned blade bodies are connected to each other. A cooling air flow path is formed between the wing body and the inner wall, and a liquid coolant or a gas-liquid two-phase coolant is blown from the cylinder body to the cooling air flow path, and the inner wall surface of the wing body is used as a droplet holder. A turbine blade characterized by: 2. The turbine blade according to claim 1, wherein the droplet holder is a wick structure. 3. The turbine blade according to claim 1, wherein the droplet holder comprises a large number of small protrusions.
JP27230884A 1984-12-24 1984-12-24 Turbine blade Pending JPS61149503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27230884A JPS61149503A (en) 1984-12-24 1984-12-24 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27230884A JPS61149503A (en) 1984-12-24 1984-12-24 Turbine blade

Publications (1)

Publication Number Publication Date
JPS61149503A true JPS61149503A (en) 1986-07-08

Family

ID=17512065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27230884A Pending JPS61149503A (en) 1984-12-24 1984-12-24 Turbine blade

Country Status (1)

Country Link
JP (1) JPS61149503A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484258A (en) * 1994-03-01 1996-01-16 General Electric Company Turbine airfoil with convectively cooled double shell outer wall
US5511937A (en) * 1994-09-30 1996-04-30 Westinghouse Electric Corporation Gas turbine airfoil with a cooling air regulating seal
US5720431A (en) * 1988-08-24 1998-02-24 United Technologies Corporation Cooled blades for a gas turbine engine
US6450759B1 (en) * 2001-02-16 2002-09-17 General Electric Company Gas turbine nozzle vane insert and methods of installation
US6543993B2 (en) * 2000-12-28 2003-04-08 General Electric Company Apparatus and methods for localized cooling of gas turbine nozzle walls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720431A (en) * 1988-08-24 1998-02-24 United Technologies Corporation Cooled blades for a gas turbine engine
US5484258A (en) * 1994-03-01 1996-01-16 General Electric Company Turbine airfoil with convectively cooled double shell outer wall
US5511937A (en) * 1994-09-30 1996-04-30 Westinghouse Electric Corporation Gas turbine airfoil with a cooling air regulating seal
US6543993B2 (en) * 2000-12-28 2003-04-08 General Electric Company Apparatus and methods for localized cooling of gas turbine nozzle walls
US6450759B1 (en) * 2001-02-16 2002-09-17 General Electric Company Gas turbine nozzle vane insert and methods of installation

Similar Documents

Publication Publication Date Title
US4616976A (en) Cooled vane or blade for a gas turbine engine
JP2862536B2 (en) Gas turbine blades
JP4794317B2 (en) Turbine airfoil
US3806275A (en) Cooled airfoil
US8714926B2 (en) Turbine component cooling channel mesh with intersection chambers
US8215374B2 (en) Peripheral microcircuit serpentine cooling for turbine airfoils
US3301526A (en) Stacked-wafer turbine vane or blade
JP4416287B2 (en) Internal cooling airfoil component and cooling method
JP4094010B2 (en) Fan-shaped trailing edge teardrop array
DE602004000633T2 (en) turbine blade
CN106437863B (en) Turbine engine component
JPS6148609B2 (en)
JPH0874503A (en) Baffle cooling mechanism of wall section
JP2006342805A (en) Turbine airfoil with integrated impingement and serpentine cooling circuit
JP2007146841A (en) Cooling microcircuit for use in turbine engine component, and turbine blade
US6547525B2 (en) Cooled component, casting core for manufacturing such a component, as well as method for manufacturing such a component
JPS6326242B2 (en)
JP2004239263A (en) Turbine blade and method for cooling tip part of turbine blade
CA2432490A1 (en) Improved film cooling for microcircuits
EP0927814A1 (en) Tip shroud for cooled blade of gas turbine
US3373970A (en) Gas turbine blade
JPS61149503A (en) Turbine blade
JPH0421042B2 (en)
JPS611804A (en) Cooling-type turbine wing
JPH06137102A (en) Hollow moving blade of gas turbine