JPH0421042B2 - - Google Patents

Info

Publication number
JPH0421042B2
JPH0421042B2 JP58105932A JP10593283A JPH0421042B2 JP H0421042 B2 JPH0421042 B2 JP H0421042B2 JP 58105932 A JP58105932 A JP 58105932A JP 10593283 A JP10593283 A JP 10593283A JP H0421042 B2 JPH0421042 B2 JP H0421042B2
Authority
JP
Japan
Prior art keywords
blade body
passage
blade
cooling fluid
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58105932A
Other languages
Japanese (ja)
Other versions
JPS59231102A (en
Inventor
Katsuyasu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10593283A priority Critical patent/JPS59231102A/en
Publication of JPS59231102A publication Critical patent/JPS59231102A/en
Publication of JPH0421042B2 publication Critical patent/JPH0421042B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷却構造を改良したガスタービンの
翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine blade having an improved cooling structure.

〔発明の背景技術とその問題点〕[Background technology of the invention and its problems]

ガスタービンは、通常、1つの軸に圧縮機とタ
ービンとを連結し、圧縮機で圧縮された高圧空気
で燃焼器内の圧力を高め、この状態で燃焼器内に
燃料を噴射して燃焼させ、この燃焼によつて生じ
た高温、高圧のガスをタービンに導いて膨張させ
ることにより回転動力を得るように構成されてい
る。圧縮機は、通常、案内翼と回転翼とを軸方向
に交互に配列して構成され、また、タービンも動
翼と静翼とを軸方向に交互に配列して構成されて
いる。
A gas turbine usually has a compressor and a turbine connected to a single shaft, uses high-pressure air compressed by the compressor to increase the pressure in the combustor, and in this state fuel is injected into the combustor and combusted. The high-temperature, high-pressure gas produced by this combustion is guided to a turbine and expanded to obtain rotational power. Compressors are usually configured with guide vanes and rotor blades arranged alternately in the axial direction, and turbines are also configured with moving blades and stationary blades alternately arranged in the axial direction.

ところで、上記のようなガスタービンにおい
て、出力効率を高めるにはタービンの入口におけ
る燃焼ガスの温度を高めることが最も有効である
と云われている。しかし、タービンの入口ガス温
度は、タービンの翼を構成する材料の耐熱応力性
あるいは高温酸化腐食特性等により制限される。
そこで、従来、翼本体の耐熱特性を向上させるた
めに翼本体を冷却流体によつて強制冷却するよう
にした翼が用いられている。すなわち、翼根部お
よび翼本体内に冷却流体の通路を形成し、この通
路内に翼根部側から冷却流体を導いて翼本体を内
側から対流冷却するとともに上記通路を通過した
冷却流体を翼本体の前縁部、後縁部および側縁部
から翼本体外へ流出させることによつて翼本体の
外面をフイルム冷却するようにした翼が用いられ
ている。
By the way, in the above gas turbine, it is said that the most effective way to increase the output efficiency is to increase the temperature of the combustion gas at the inlet of the turbine. However, the inlet gas temperature of the turbine is limited by the thermal stress resistance or high-temperature oxidation/corrosion characteristics of the materials forming the turbine blades.
Therefore, in the past, blades have been used in which the blade body is forcibly cooled with a cooling fluid in order to improve the heat resistance characteristics of the blade body. That is, a cooling fluid passage is formed in the blade root and the blade body, and the cooling fluid is guided into this passage from the blade root side to convection cool the blade body from the inside, and the cooling fluid that has passed through the passage is transferred to the blade body. A blade is used in which the outer surface of the blade body is film-cooled by allowing the film to flow out of the blade body from the leading edge, trailing edge, and side edge.

しかしながら、上記のように、冷却流体を使つ
て翼本体を内外から冷却するようにした翼にあつ
ても次のような問題があつた。すなわち、翼根部
から導かれた冷却流体を翼本体内において分岐さ
せ、翼本体の前縁部、後縁部および側縁部から翼
本体外へ流出させるようにしているので必然的に
翼本体の先端部を冷却する冷却流体の量が少なく
なり、この結果、他の部分に較べて翼本体の先端
部の温度上昇が大きく、特に燃焼ガスが直接衝突
する先端部の前縁部は温度上昇が大きく、この温
度上昇に基いてガス温度が制限される問題があつ
た。
However, as described above, even with blades that use cooling fluid to cool the blade body from the inside and outside, the following problems still occur. In other words, since the cooling fluid led from the blade root is branched within the blade body and flowed out of the blade body from the leading edge, trailing edge, and side edge of the blade body, it is inevitable that the cooling fluid The amount of cooling fluid that cools the tip is reduced, and as a result, the temperature rise at the tip of the blade body is greater than in other parts, especially the leading edge of the tip where the combustion gas directly impinges. A major problem was that the gas temperature was limited based on this temperature rise.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、翼本体を全体に
亘つて良好に冷却でき、もつてガス温度の高温
化、すなわち出力効率の向上化に寄与できるガス
タービンの翼を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to be able to cool the entire blade body well, thereby increasing the gas temperature, that is, improving the output efficiency. The objective is to provide gas turbine blades that can contribute to the development of gas turbines.

〔発明の概要〕[Summary of the invention]

本発明は、翼本体内に冷却流体の通路を直接形
成し、この通路に導かれた冷却流体で翼本体を内
部から冷却するとともに通路を通過した冷却流体
を翼本体外へ流出させて翼本体を外部からも冷却
できるようにしたガスタービンの翼において、翼
本体内の先端壁内に翼本体の最前縁部近傍からキ
ヤンバ線に沿つて翼本体の最後縁近傍まで形成さ
れた空洞と、通路内に導かれた冷却流体の一部を
少なくとも前記翼本体内の前縁部近傍から前記空
洞内に導く導入口と、この導入口から導かれた冷
却流体を空洞内を翼本体の前縁部からキヤンバ線
に沿つて翼本体の後縁部まで略全域にわたつて連
続的に通流させ、空洞内がほぼ均一な温度となる
ように冷却した後に翼本体外へ流出させる排出孔
と、 を具備してなることを特徴としている。
The present invention forms cooling fluid passages directly within the blade body, cools the blade body from the inside with the cooling fluid guided through the passage, and allows the cooling fluid that has passed through the passage to flow out of the blade body. In a gas turbine blade that can also be cooled from the outside, a cavity and a passage are formed in the tip wall of the blade body from near the leading edge of the blade body to near the rearmost edge of the blade body along the camber line. an inlet for introducing a portion of the cooling fluid into the cavity from at least the vicinity of the leading edge of the blade body; a discharge hole that allows the flow to flow continuously over almost the entire area from the camber line to the trailing edge of the blade body, cools the inside of the cavity to a substantially uniform temperature, and then flows out of the blade body; It is characterized by the following:

〔発明の効果〕〔Effect of the invention〕

上記のように翼本体の先端壁内に空洞を設け、
この空洞内にも冷却流体を通流させるようにして
いるので、翼本体の先端部の冷却不足を解消する
ことができる。この場合、空洞への冷却流体の入
口および出口の径を所望に設定することによつて
空洞内での流速を十分高めることができ、この結
果、先端部を良好に冷却することが可能となる。
したがつて翼本体を内、外から冷却したことと相
俟つて翼本体全体を良好に冷却でき、ガス温度の
高温化に寄与できるものが得られる。
As mentioned above, a cavity is provided in the tip wall of the wing body,
Since the cooling fluid is allowed to flow through this cavity as well, it is possible to solve the problem of insufficient cooling of the tip of the blade body. In this case, by setting the diameters of the inlet and outlet of the cooling fluid to the cavity as desired, the flow velocity within the cavity can be sufficiently increased, and as a result, the tip can be cooled well. .
Therefore, in combination with the fact that the blade body is cooled from the inside and outside, the entire blade body can be cooled well, and it is possible to obtain something that can contribute to increasing the gas temperature.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明を適用した動翼をキヤンバ線
に沿つて切断して示す図である。すなわち、この
動翼は、大きく分けて翼本体1と、この翼本体1
を支持する翼根部2およびプラツトホーム部3と
で構成されている。翼本体1、翼根部2およびプ
ラツトホーム部3は、翼本体1の先端壁4を除い
て精密鋳造によつて一体的に形成されたもので、
鋳造後に、同じく精密鋳造等によつて形成された
上記先端壁4を溶接あるいは拡散接合等によつて
接合したものとなつている。
FIG. 1 is a diagram showing a rotor blade to which the present invention is applied, cut along a camber line. That is, this rotor blade can be roughly divided into a blade body 1 and a blade body 1.
It consists of a blade root part 2 and a platform part 3 that support the blade. The blade body 1, the blade root part 2, and the platform part 3 are integrally formed by precision casting, except for the tip wall 4 of the blade body 1.
After casting, the tip wall 4, which was also formed by precision casting, is joined by welding, diffusion bonding, or the like.

しかして、上記翼本体1および翼根部2の内部
には冷却流体の通路11が形成されており、ま
た、先端壁4の内部には通路11から分岐した冷
却流体の一部を通流させる通路12が形成されて
いる。
A passage 11 for the cooling fluid is formed inside the blade body 1 and the blade root 2, and a passage branched from the passage 11 through which a part of the cooling fluid flows is formed inside the tip wall 4. 12 are formed.

上記通路11は、翼根部2から翼本体1の先端
壁4まで高さ方向に延びた第1の通路13と、こ
の通路13と翼本体11の前縁部外面との間に上
記第1の通路13と平行に高さ方向に延びた第2
の通路14と、上記第1の通路13と翼本体11
の後縁部外面との間に上記第1の通路13と平行
に高さ方向に延びた第3の通路15と、第1の通
路13と第2の通路14との間に存在する仕切壁
16に高さ方向に複数設けられた小孔17と、翼
本体1の前縁部外面と第2の通路14との間に存
在する壁18に高さ方向に複数設けられた小孔1
9と、前記第1の通路13と第3の通路15との
間に存在する仕切壁20に高さ方向に複数設けら
れた小孔21と、翼本体1の後縁部外面と第3の
通路15との間に存在する壁22に高さ方向に複
数設けられた小孔23とで構成されている。
The passage 11 includes a first passage 13 extending in the height direction from the blade root 2 to the tip wall 4 of the blade body 1, and a first passage 13 between the passage 13 and the outer surface of the leading edge of the blade body 11. A second tube extending in the height direction parallel to the passage 13
passage 14, the first passage 13 and the wing body 11.
a third passage 15 extending in the height direction parallel to the first passage 13 between the rear edge outer surface and a partition wall existing between the first passage 13 and the second passage 14; A plurality of small holes 17 are provided in the height direction in the wall 18 between the leading edge outer surface of the blade body 1 and the second passage 14.
9, a plurality of small holes 21 provided in the height direction in the partition wall 20 existing between the first passage 13 and the third passage 15, and the outer surface of the trailing edge of the wing body 1 and the third It is composed of a plurality of small holes 23 provided in the height direction in the wall 22 existing between the passage 15 and the passage 15.

一方、通路12は、先端壁4の内部にキヤンバ
線方向に延びる関係に形成された空洞25と、前
記第2の通路14と上記空洞25内の前縁部側と
を連通させる導入口26と、空洞25の後縁部側
を翼本体外へ通じさせる排出口27とで構成され
ている。
On the other hand, the passage 12 includes a cavity 25 formed inside the tip wall 4 extending in the camber line direction, and an introduction port 26 that communicates the second passage 14 with the front edge side of the cavity 25. , and a discharge port 27 that communicates the trailing edge side of the cavity 25 to the outside of the wing body.

このような構成であると、通路11の第1の通
路13に、図中実線矢印で示すように冷却流体を
導入すると、この冷却流体は、第1の通路13内
を翼本体1の先端方向へと流れ、この間に翼本体
1の中央部分を対流冷却によつて内側から冷却す
る。そして、第1の通路13内の冷却流体は、第
2図にも示すように、次に2つの流れに分岐さ
れ、一方においては小孔17から壁18の内面に
向けて噴射され、壁18をインピンジ冷却した
後、一部が小孔19から噴出して翼本体1の周面
に冷却流体の膜を形成するフイルム冷却に供さ
れ、また残りが前縁部近傍に設けられた導入口2
6を介して空洞25内に流れ込む。また、他方に
おいては小孔21から壁22の内面に向けて噴射
され、壁22をインピンジ冷却し、続いて小孔2
3から噴出し、小孔23内を通る間に壁22を対
流冷却する。そして、空洞25内の前縁側に流れ
込んだ冷却流体は、最初に温度上昇の大きい前縁
側を冷却した後、空洞25内を燃焼ガスの圧力の
高い前縁側からガスの圧力の低い後縁側へとスム
ーズに流れ、その間に対流冷却によつて先端壁4
を冷却した後、排出口27を介して翼本体外へと
流出する。したがつて、翼本体1は、その中央
部、前縁部、後縁部および先端壁4の全てが、冷
却流体による対流冷却、インピンジ冷却あるいは
フイルム冷却によつて冷却されることになり、従
来の翼のように局部的に非常に高温になるところ
がないので、結局、前述した効果が得られる。
With such a configuration, when the cooling fluid is introduced into the first passage 13 of the passage 11 as shown by the solid line arrow in the figure, the cooling fluid flows inside the first passage 13 toward the tip of the blade body 1. During this time, the central portion of the blade body 1 is cooled from the inside by convection cooling. The cooling fluid in the first passage 13 is then branched into two streams, as shown in FIG. After being impinged cooled, a portion is ejected from the small hole 19 and used for film cooling to form a film of cooling fluid on the circumferential surface of the blade body 1, and the rest is provided through the inlet 2 provided near the leading edge.
6 into the cavity 25. On the other hand, the water is injected from the small hole 21 toward the inner surface of the wall 22, impingement-cooling the wall 22, and then
3 and cools the wall 22 by convection while passing through the small hole 23. The cooling fluid flowing into the leading edge side of the cavity 25 first cools the leading edge side where the temperature rise is large, and then flows inside the cavity 25 from the leading edge side where the combustion gas pressure is high to the trailing edge side where the gas pressure is low. It flows smoothly, during which the tip wall 4 is cooled by convection cooling.
After being cooled, it flows out of the blade body through the outlet 27. Therefore, the center, leading edge, trailing edge, and tip wall 4 of the blade body 1 are all cooled by convection cooling, impingement cooling, or film cooling using a cooling fluid, which is different from conventional methods. Since there is no place where the temperature locally becomes extremely high as in the case of the blade, the above-mentioned effect can be obtained.

ここで、対流による熱伝達を表わすヌツセルト
数Nuは、一般に、 Nu∝RemPrn の形で表現される。但し、Reはレイノルズ数、
Prはプラントル数を示し、m、nは定数を示し
ている。レイノルズ数Reは流体の流速が速い程
大きい。したがつて、導入口26および排出口2
7の径を選択すれば、空洞25内の冷却流体の流
速を速めることができ、これによつて先端壁4を
良好に冷却できる。このことは、第2の通路14
の先端側位置(流量の少ない位置)から空洞25
内に冷却流体を送り込むようにしても空洞25内
の流体制御によつて良好に冷却できることを意味
している。
Here, the Nutsselt number Nu, which represents heat transfer by convection, is generally expressed in the form Nu∝Re m Pr n . However, Re is the Reynolds number,
Pr represents Prandtl's number, and m and n represent constants. The Reynolds number Re increases as the flow velocity of the fluid increases. Therefore, the inlet 26 and the outlet 2
If a diameter of 7 is selected, the flow velocity of the cooling fluid in the cavity 25 can be increased, thereby allowing the tip wall 4 to be cooled well. This means that the second passage 14
from the tip side position (position with low flow rate) to the cavity 25
This means that even if cooling fluid is sent into the cavity 25, good cooling can be achieved by controlling the fluid inside the cavity 25.

なお、本発明は上述した実施例に限定されるも
のではない。たとえば、第3図a,bに示すよう
に空洞25の内面にキヤンバ線と交差するように
凸部31を設け、この凸部31で通流する冷却流
体を積極的に撹拌させることによつて対流冷却効
果を向上させるようにしてもよい。また、第4図
a,bに示すように、第1の通路13および第3
の通路15からも孔32,33を介して空洞25
内に冷却流体を送り込むようにしてもよい。この
場合、孔32,33の径および配設ピツチの選択
によつて孔32,33から噴出する冷却流体でキ
ヤンバ線に沿つた所望のインピンジ冷却特性を発
揮させることができる。また、第1の通路13の
存在によつて翼本体1の腹側に形成された壁にフ
イルム冷却用の小孔を設けるようにしてもよい。
Note that the present invention is not limited to the embodiments described above. For example, as shown in FIGS. 3a and 3b, a convex portion 31 is provided on the inner surface of the cavity 25 so as to intersect with the camber line, and the cooling fluid flowing through the convex portion 31 is actively stirred. The convection cooling effect may be improved. In addition, as shown in FIGS. 4a and 4b, the first passage 13 and the third
The passage 15 also passes through the holes 32 and 33 to the cavity 25.
Cooling fluid may also be pumped into the interior. In this case, by selecting the diameters and arrangement pitches of the holes 32, 33, the cooling fluid ejected from the holes 32, 33 can exhibit desired impingement cooling characteristics along the camber line. Furthermore, due to the presence of the first passage 13, a small hole for cooling the film may be provided in the wall formed on the ventral side of the blade body 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る翼をキヤンバ
線に沿つて切断した縦断面図、第2図は同翼を第
1図におけるA−A線に沿つて切断し矢印方向に
みた図、第3図aは本発明の別の実施例に係る翼
を局部的に取り出して示す縦断面図、同図bは同
翼をaにおけるB−B線に沿つて切断し矢印方向
にみた図、第4図aは本発明のさらに別の実施例
に係る翼を局部的に取り出して示す縦断面図、同
図bは同翼をaにおけるC−C線に沿つて切断し
矢印方向にみた図である。 1…翼本体、2…翼根部、4…先端壁、11…
通路、25…空洞、26…導入口、27…排出
口。
FIG. 1 is a longitudinal cross-sectional view of a wing according to an embodiment of the present invention taken along a camber line, and FIG. 2 is a view of the same wing taken along line A-A in FIG. 1 and viewed in the direction of the arrow. , FIG. 3a is a vertical cross-sectional view partially taken out of a blade according to another embodiment of the present invention, and FIG. 3b is a view of the same blade cut along line B-B in a and viewed in the direction of the arrow , FIG. 4a is a longitudinal cross-sectional view showing a partially taken out blade according to yet another embodiment of the present invention, and FIG. It is a diagram. 1...Blade body, 2...Blade root, 4...Tip wall, 11...
Passage, 25...Cavity, 26...Inlet, 27...Outlet.

Claims (1)

【特許請求の範囲】 1 翼本体内に冷却流体の通路を直接形成し、こ
の通路に導かれた冷却流体で翼本体を内部から冷
却するとともに前記通路を通過した冷却流体を翼
本体外へ流出させて前記翼本体を外部からも冷却
できるようにしたガスタービンの翼において、 前記翼本体内の先端壁内に前記翼本体の最前縁
部近傍からキヤンバ線に沿つて前記翼本体の最後
縁近傍まで形成された空洞と、 前記通路内に導かれた冷却流体の一部を少なく
とも前記翼本体内の前縁部近傍から前記空洞内に
導く導入口と、 この導入口から導かれた冷却流体を前記空洞内
を前記翼本体の前縁部からキヤンバ線に沿つて前
記翼本体の後縁部まで略全域にわたつて連続的に
通流させ、前記空洞内がほぼ均一な温度となるよ
うに冷却した後に前記翼本体外へ流出させる排出
孔と、 を具備してなることを特徴とするガスタービンの
翼。 2 前記空洞は、内面に凸部が形成されたもので
あることを特徴とする特許請求の範囲第1項記載
のガスタービンの翼。
[Claims] 1. A cooling fluid passage is formed directly within the blade body, and the cooling fluid guided through the passage cools the blade body from within, and the cooling fluid that has passed through the passage flows out of the blade body. In the blade of a gas turbine, the blade body can be cooled from the outside by cooling the blade body from the vicinity of the leading edge of the blade body along the camber line to the vicinity of the rearmost edge of the blade body within the tip wall of the blade body. an inlet for introducing a portion of the cooling fluid introduced into the passage into the cavity from at least the vicinity of the leading edge in the blade body; and an inlet for introducing the cooling fluid introduced from the inlet into the cavity. The inside of the cavity is cooled so that the inside of the cavity has a substantially uniform temperature by flowing continuously over substantially the entire area from the leading edge of the wing main body to the trailing edge of the wing main body along the camber line. A gas turbine blade, comprising: a discharge hole that allows the air to flow out of the blade body after the air is removed. 2. The gas turbine blade according to claim 1, wherein the cavity has a convex portion formed on its inner surface.
JP10593283A 1983-06-15 1983-06-15 Gas turbine blade Granted JPS59231102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10593283A JPS59231102A (en) 1983-06-15 1983-06-15 Gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10593283A JPS59231102A (en) 1983-06-15 1983-06-15 Gas turbine blade

Publications (2)

Publication Number Publication Date
JPS59231102A JPS59231102A (en) 1984-12-25
JPH0421042B2 true JPH0421042B2 (en) 1992-04-08

Family

ID=14420621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10593283A Granted JPS59231102A (en) 1983-06-15 1983-06-15 Gas turbine blade

Country Status (1)

Country Link
JP (1) JPS59231102A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720431A (en) * 1988-08-24 1998-02-24 United Technologies Corporation Cooled blades for a gas turbine engine
US5975851A (en) * 1997-12-17 1999-11-02 United Technologies Corporation Turbine blade with trailing edge root section cooling
DE50309922D1 (en) * 2003-07-29 2008-07-10 Siemens Ag Chilled turbine blade
US7413403B2 (en) * 2005-12-22 2008-08-19 United Technologies Corporation Turbine blade tip cooling
EP2426316A1 (en) * 2010-09-03 2012-03-07 Siemens Aktiengesellschaft Turbine blade
DE102013224998A1 (en) * 2013-12-05 2015-06-11 Rolls-Royce Deutschland Ltd & Co Kg Turbine rotor blade of a gas turbine and method for cooling a blade tip of a turbine rotor blade of a gas turbine
US9835087B2 (en) * 2014-09-03 2017-12-05 General Electric Company Turbine bucket
US10508554B2 (en) 2015-10-27 2019-12-17 General Electric Company Turbine bucket having outlet path in shroud
US10156145B2 (en) * 2015-10-27 2018-12-18 General Electric Company Turbine bucket having cooling passageway
US9885243B2 (en) 2015-10-27 2018-02-06 General Electric Company Turbine bucket having outlet path in shroud

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865313A (en) * 1971-12-14 1973-09-08
JPS5114519A (en) * 1974-07-25 1976-02-05 Mitsui Shipbuilding Eng REIKYAKUTAABINDOYOKU
JPS5465209A (en) * 1977-10-08 1979-05-25 Rolls Royce Cooling type rotor blade
JPS57173506A (en) * 1981-03-20 1982-10-25 Gen Electric Leading end cap having replaceable moving blade

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865313A (en) * 1971-12-14 1973-09-08
JPS5114519A (en) * 1974-07-25 1976-02-05 Mitsui Shipbuilding Eng REIKYAKUTAABINDOYOKU
JPS5465209A (en) * 1977-10-08 1979-05-25 Rolls Royce Cooling type rotor blade
JPS57173506A (en) * 1981-03-20 1982-10-25 Gen Electric Leading end cap having replaceable moving blade

Also Published As

Publication number Publication date
JPS59231102A (en) 1984-12-25

Similar Documents

Publication Publication Date Title
JP4546760B2 (en) Turbine blade with integrated bridge
US5660524A (en) Airfoil blade having a serpentine cooling circuit and impingement cooling
EP0670953B1 (en) Coolable airfoil structure
US11448076B2 (en) Engine component with cooling hole
JP5879022B2 (en) Turbine blade cooling circuit
EP1001137B1 (en) Gas turbine airfoil with axial serpentine cooling circuits
EP1319803B1 (en) Coolable rotor blade for an industrial gas turbine engine
JP4094010B2 (en) Fan-shaped trailing edge teardrop array
US5975850A (en) Turbulated cooling passages for turbine blades
JP4659206B2 (en) Turbine nozzle with graded film cooling
JP4256704B2 (en) Method and apparatus for cooling a gas turbine engine nozzle assembly
JP2004308658A (en) Method for cooling aerofoil and its device
JPH0370084B2 (en)
JP2007107516A (en) Turbine shroud section, turbine engine and method for cooling turbine shroud
JPH09505655A (en) Cooled turbine airfoil
JP6345319B1 (en) Turbine blade and gas turbine
JP2004239263A (en) Turbine blade and method for cooling tip part of turbine blade
JP2012102726A (en) Apparatus, system and method for cooling platform region of turbine rotor blade
JP6010295B2 (en) Apparatus and method for cooling the platform area of a turbine rotor blade
JP2015516539A (en) Turbine airfoil trailing edge cooling slot
JP2017150475A (en) Airfoil trailing edge cooling
JP2003106101A (en) Turbine blade-shaped section for gas turbine engine
JP2002511123A (en) Cooling channel structure for cooling the trailing edge of gas turbine blades
CA2953594A1 (en) Turbine airfoil trailing edge cooling passage
JPH0421042B2 (en)