JPS61148516A - Control device of magnetic field generating coil - Google Patents

Control device of magnetic field generating coil

Info

Publication number
JPS61148516A
JPS61148516A JP27252284A JP27252284A JPS61148516A JP S61148516 A JPS61148516 A JP S61148516A JP 27252284 A JP27252284 A JP 27252284A JP 27252284 A JP27252284 A JP 27252284A JP S61148516 A JPS61148516 A JP S61148516A
Authority
JP
Japan
Prior art keywords
current
magnetic field
coil
value
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27252284A
Other languages
Japanese (ja)
Other versions
JPH0527128B2 (en
Inventor
Itaru Asai
浅井 至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27252284A priority Critical patent/JPS61148516A/en
Publication of JPS61148516A publication Critical patent/JPS61148516A/en
Publication of JPH0527128B2 publication Critical patent/JPH0527128B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F7/00Regulating magnetic variables

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To increase a response speed, and also to control with a high accuracy the strength of a magnetic field by correcting a current set value of a loop for controlling a current flowing to a magnetic field generating coil to a constant current, by a difference between a current detecting value and a current theoretical value. CONSTITUTION:When a sample command circuit 33 sends a sample command to a sample and hold circuit 32 by a prescribed timing, an input signal of that time point is outputted from this sample are hold circuit 32, added at a current detecting value and a current set value, and inputted to a current controller 24. That is to say, a difference between a current detecting value outputted from an insulating amplifier 22 and a current theoretical value outputted from a virtual current computing element 31 is a magnetic field error, and a magnitude of the current set value is adjusted by this magnetic field error portion in the time point when the sample command signal is been generated. In this case, when a time interval of the sample command signal outputted from the sample command circuit 33 is set to a suitable length, even a magnetic field detector 11 whose response speed is low can correct its error portion correspondingly enough.

Description

【発明の詳細な説明】 この発明は、直流電流により磁界を発生するフィルの制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fill control device that generates a magnetic field using a direct current.

〔従来技術とその問題点〕[Prior art and its problems]

第2図は磁界制御により磁界発生コイルを制御する従来
例を示すブロック図であって、交流電源2からの交流電
力を絶線変圧器3と整流器4とで直流電力に変換し、平
滑コンデンサ5により平滑された直流電力はトランジス
タ60オン時間とオフ時間の比率を変化させるいわゆる
チョッパ制御により所望の直流電力に変換されてコイル
8に与えられる。ζこで符号フはフリーホイールダイオ
ードである。
FIG. 2 is a block diagram showing a conventional example of controlling a magnetic field generating coil by magnetic field control, in which AC power from an AC power source 2 is converted to DC power by a disconnected transformer 3 and a rectifier 4, The smoothed DC power is converted into desired DC power by so-called chopper control that changes the ratio of the on-time and off-time of the transistor 60, and is applied to the coil 8. ζHere, the symbol F is a freewheeling diode.

直流電流が流れることKよ抄フイル8が生ずる磁界の強
さは磁界検出器11より検出され、磁界増幅器12によ
り増幅されたのちに磁界設定器13の設定値と比較され
、この両者の偏差を零にする制御信号が磁界調節器14
から出力される。この磁界調節器14からの出力信号は
ペース駆動回路15に送られてトランジスタ6を適宜オ
ン・オフさせるので、コイル8が生ずる磁界の強さを磁
界設定器13が設定する値に維持することができる。
When a direct current flows, the strength of the magnetic field generated by the paper film 8 is detected by a magnetic field detector 11, amplified by a magnetic field amplifier 12, and then compared with the setting value of a magnetic field setting device 13, and the deviation between the two is calculated. The control signal to make it zero is the magnetic field adjuster 14.
is output from. The output signal from the magnetic field adjuster 14 is sent to the pace drive circuit 15 to turn on and off the transistor 6 as appropriate, so that the strength of the magnetic field generated by the coil 8 can be maintained at the value set by the magnetic field setting device 13. can.

しかしながら磁界の強さを検出するための磁界検出器H
にはホール素子あるいは核磁気共鳴現象を利用するシス
テムなどが用いられるのであるが、ホール素子は温度変
化によるドリフトがあること、また核磁気共鳴現象を利
用するものは、測定K 一定の周期的な操作が必要であ
ることから連続的に測定することができないばかりでな
く応答速度が遅い欠点があるので、いずれも磁界の強さ
を高精度で制御することは困離である。
However, the magnetic field detector H for detecting the strength of the magnetic field
For this purpose, a Hall element or a system that utilizes the nuclear magnetic resonance phenomenon is used, but the Hall element has drift due to temperature changes, and systems that utilize the nuclear magnetic resonance phenomenon require measurement K at a constant periodic rate. Not only do they require manipulation, making them impossible to measure continuously, but they also have the drawback of slow response speed, making it difficult to control the strength of the magnetic field with high precision.

第3図は電流制御により磁界発生コイルを制御する従来
例を示すブロック図であって、交流電源2からの交流電
力を絶縁変圧器3と整流器4とで直流電力に変換したの
ち平滑コンデンサ5により平滑し、さらにトランジスタ
6とフリーホイール゛ダイオードフを経て所望の直流電
力に変換してコイル8を励磁するのは前述の牙2図に示
す従来例の場合と同じである。この牙3図に示す従来例
は、コイル8に流れる電流の大きさと磁界の強さとが比
例関係にあるととく着目したものであって、コイル8に
流れ゛る電流を分流器21と絶縁増幅器22とで検出し
、電流設定器23が定める電流設定値とこの電流検出値
との偏差を電流調節器aに入力させ、この電流調節器4
からの制御出力信号をペース駆動回路15を経てトラン
ジスタ60ベースに与えてこのトランジスタ6を適宜オ
ン・オフさ′せることによりコイル8に流れる電流を所
望値に制御しようとするものである。
FIG. 3 is a block diagram showing a conventional example of controlling a magnetic field generating coil by current control, in which AC power from an AC power supply 2 is converted into DC power by an insulating transformer 3 and a rectifier 4, and then by a smoothing capacitor 5. The smoothing and further conversion to desired DC power through the transistor 6 and freewheel diode to excite the coil 8 are the same as in the conventional example shown in FIG. 2 described above. The conventional example shown in Fig. 3 focuses on the proportional relationship between the magnitude of the current flowing through the coil 8 and the strength of the magnetic field, and the current flowing through the coil 8 is divided into a shunt 21 and an isolation amplifier. 22, the deviation between the current setting value determined by the current setting device 23 and this detected current value is inputted to the current regulator a, and this current regulator 4
The current flowing through the coil 8 is controlled to a desired value by applying a control output signal from the coil 8 to the base of the transistor 60 via the pace drive circuit 15 to turn the transistor 6 on and off as appropriate.

この牙3図に示す従来例では高速度の制御は可能である
が、温度によるコイル寸法の変化や、鉄心などの残留磁
化等によシ磁界の強さが変化するため、磁界の強さを所
望値に維持することができない欠点を有する。
Although high-speed control is possible with the conventional example shown in Figure 3, the strength of the magnetic field changes due to changes in coil dimensions due to temperature, residual magnetization of the iron core, etc. It has the disadvantage that it cannot be maintained at the desired value.

〔発明の目的〕[Purpose of the invention]

この発明は、応答速度が速く、かつ磁界の強さを高精度
で制御できる磁界発生コイルの制御装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for a magnetic field generating coil that has a fast response speed and can control the strength of a magnetic field with high precision.

〔発明の要点〕[Key points of the invention]

この発明は、磁界発生コイルに流れる電流と発生磁界と
を検出し、この磁界検出値から所要電流の理論値を演算
して求め、この電流理論値と電流検出値とを比較して両
者の差分を電流設定値に加算して電流調節動作を行わせ
ようとするものであシ、前述の両電流の差分はサンプル
ホールド回路を用いて所定の時期に更新するようにして
制御精度を向上させるとともに高速度の応答の妨げにな
らないよ゛うくしようとするものである。
This invention detects the current flowing through a magnetic field generating coil and the generated magnetic field, calculates the theoretical value of the required current from the detected magnetic field value, compares the theoretical current value with the detected current value, and calculates the difference between the two. is added to the current setting value to perform current adjustment operation, and the difference between the two currents mentioned above is updated at a predetermined time using a sample and hold circuit to improve control accuracy. This is intended to avoid interference with high-speed response.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示すブロック図であり、この
牙1図により以下に本発明の内容を記述する。
FIG. 1 is a block diagram showing an embodiment of the present invention, and the content of the present invention will be described below with reference to this first diagram.

牙1図において、交流電源2からの交流電力は絶縁と変
圧とを兼ねている絶縁変圧器3ならびに整流器4により
直流電力に変換され、平滑コンデンサ5によりリップル
分が除去されて平滑な直流電力となる。トランジスタ6
は高速度でオン・オフ動作を繰返すのであるが、オン時
間とオフ時間との比率を変化させることによシ、フリー
ホイールダイオードフの作用とともにコイル8に流れる
電流値を制御する。
In Fig. 1, AC power from an AC power source 2 is converted to DC power by an isolation transformer 3 and a rectifier 4, which serve as both insulation and transformer, and ripples are removed by a smoothing capacitor 5, resulting in smooth DC power. Become. transistor 6
repeats on/off operations at high speed, and by changing the ratio of on time to off time, the current value flowing through the coil 8 is controlled along with the action of the freewheel diode.

コイル8に流れる電流は分流器21と絶縁増幅器22と
によシ検出されるのであるが、この電流検出値と電流設
定器秘か設定する電流設定値との偏差が比例積分演算器
で構成される電流設定器秘に入力され、電流設定器秘は
入力される偏差を零にする制御信号を出力するのである
が、この出力信号はペース駆動回路16を経てトランジ
スタ60ベース回路に4見られるので、このトランジス
タ6はコイル8に流れる電流を電流設定器秘が設定する
値に一致させるように制御する。一方コイル8が発生す
る磁界の強さが磁界検出器11によシ検出されるので、
磁界増幅器用を介して得られるこの磁界検出値からこの
コイル8に流すべき電流理論値が仮想電流演算器31に
より演算される。このようにして求められた電流理論値
と前述の電流検出値との偏差がサンプルホールド回路3
2に入力される。
The current flowing through the coil 8 is detected by the shunt 21 and the isolation amplifier 22, and the deviation between this detected current value and the current setting value set by the current setting device is determined by a proportional-integral calculator. The current setting signal is input to the current setting device, and the current setting device outputs a control signal that makes the input deviation zero, but this output signal passes through the pace drive circuit 16 and is seen in the transistor 60 base circuit. This transistor 6 controls the current flowing through the coil 8 to match the value set by the current setting mechanism. On the other hand, since the strength of the magnetic field generated by the coil 8 is detected by the magnetic field detector 11,
A virtual current calculator 31 calculates a theoretical current value to be passed through the coil 8 from this magnetic field detection value obtained through the magnetic field amplifier. The deviation between the theoretical current value obtained in this way and the above-mentioned detected current value is determined by the sample and hold circuit 3.
2 is input.

サンプル指令回路33が所定のタイミングでサンプルホ
ールド回路32にサンプル指令を送ると、その時点の入
力信号がこのサンプルホールド回路32から出力されて
上述の電流検出値および電流設定値と加え合わせて電流
調節器夙に入力されるようになっている。すなわち絶縁
増幅器22が出力する電流検出値と仮想電流演算器31
が出力する電流理論値との差分が磁界誤差であり、サン
プル指令信号が発せられた時点におけるこの磁界誤差分
だけ電流設定値の大きさを加減している。ここでサンプ
ル指令回路品から出力されるサンプル指令信号の時間間
隔を適宜の長さにするならば、応答速度の遅い磁界検出
器Uでも十分に対応してその誤差分を修正できる。
When the sample command circuit 33 sends a sample command to the sample hold circuit 32 at a predetermined timing, the input signal at that time is output from the sample hold circuit 32 and added to the above-mentioned current detection value and current setting value to adjust the current. It is now entered automatically. In other words, the current detection value output by the isolation amplifier 22 and the virtual current calculator 31
The difference from the theoretical current value output by is the magnetic field error, and the magnitude of the current setting value is adjusted by this magnetic field error at the time when the sample command signal is issued. Here, if the time interval of the sample command signal outputted from the sample command circuit product is set to an appropriate length, even the magnetic field detector U having a slow response speed can sufficiently respond and correct the error.

なお、上述のサンプル指令は、当該コイル8を始動する
ときと、フオームアップ完了して正規運転を開始すると
きの2回のみであってもよい。すなわち牙1回目の始動
時のサンプル指令は、いわゆるイニシャルリセットであ
って、コイル8の残留磁化分が補正された電流設定値を
目標値とする電流制御が行われるようにしてウオームア
ツプ運転を開始することになる。このウオームアツプ運
転によりコイル8の温度が上昇して一定になればフオー
ムアップ完了であるから、この時点で牙2回目のサンプ
ル指令が発せられ、磁界の強さと電流の大きさとの関係
が計画値から外れた分の補正が行われる。このようにし
て電流設定値の補正が行われたのちは定電流制御により
運転状態に入ることとなる。
Note that the above-mentioned sample command may be issued only twice: when starting the coil 8 and when starting normal operation after completing the form-up. In other words, the sample command at the first startup is a so-called initial reset, and warm-up operation is started by performing current control with the current setting value corrected for the residual magnetization of the coil 8 as the target value. I will do it. Form-up is completed when the temperature of the coil 8 rises and becomes constant due to this warm-up operation, so the second sample command is issued at this point, and the relationship between the magnetic field strength and the current magnitude is adjusted to the planned value. Corrections are made for deviations from the range. After the current setting value is corrected in this way, the operating state is entered by constant current control.

〔発明の効果〕〔Effect of the invention〕

この発FIAK、よれば、磁界発生コイルに流れる電流
を一定電流に制御するループの電流設定値を電流検出値
と電流理論値との差分て補正するように構成しているの
で、この磁界発生コイルのウオームアツプが完了して定
常状態になったちとでは定磁界制御となるので、最初か
ら定電流制御を行うものKくらべれば、コイル外形の変
化の影響やコイル周辺の磁性材料の残留磁化による影響
などが除去できる。ま九補正の丸めの電流検出値と電流
理論値との差分はサンプルホールド回路を介し、適宜サ
ンプル指令に応じて電流設定値を補正するようにしてい
るので、核磁気共鳴現象を利用する磁界検出器のように
応答速度の遅い検出器を使用できるし、ドリフトが大き
い磁界検出であっても運転中のコイルが発生する磁界の
安定度を確保できるし、これら磁界検出器で定まる精度
を確保できる。さらに直流電流は高速度検出できること
から、電源の電圧変動や各種の外乱に対しても高い応答
速度を確保できる。
According to this FIAK, the current setting value of the loop that controls the current flowing through the magnetic field generating coil to a constant current is corrected by the difference between the detected current value and the theoretical current value, so this magnetic field generating coil Once the warm-up is completed and the steady state is reached, constant magnetic field control is applied, so compared to the case where constant current control is performed from the beginning, the influence of changes in the coil outer shape and residual magnetization of the magnetic material around the coil is lower. etc. can be removed. The difference between the rounded current detection value and the theoretical current value for magnification correction is passed through a sample and hold circuit, and the current setting value is corrected as appropriate according to the sample command, so magnetic field detection using nuclear magnetic resonance phenomena is possible. It is possible to use a detector with a slow response speed such as a magnetic field detector, and even when detecting a magnetic field with a large drift, it is possible to ensure the stability of the magnetic field generated by the operating coil, and the accuracy determined by these magnetic field detectors can be ensured. . Furthermore, since direct current can be detected at high speed, a high response speed can be ensured even against power supply voltage fluctuations and various disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図であり、牙2
図は磁界制御により磁界発生コイルを制御する従来例を
示すブロック図、牙3図は電流制御によシ磁界発生コイ
ルを制御する従来例を示すブロック図である。 2・・・交流電源、3・・・絶縁変圧器、4・・・整流
器、5′°・平滑コンデンサ、6・・・トランジスタ、
フ・・・7リーホイールダイオード、8・・・コイル、
11・・・磁界検出器、12・・・磁界増幅器、13・
・・磁界設定器、14・・・磁界調節器、15・・・ベ
ース駆動回路、21・・・分流器、羽・・・絶縁増幅器
、恥・・・電流設定器、夙・・・電流調節器、31・・
・仮想電流演算器、32・・・サンプルホールド回路、
33・・・サンプル指令回路。 第2図 第8図
FIG. 1 is a block diagram showing an embodiment of the present invention.
The figure is a block diagram showing a conventional example of controlling a magnetic field generating coil by magnetic field control, and Figure 3 is a block diagram showing a conventional example of controlling a magnetic field generating coil by current control. 2... AC power supply, 3... Isolation transformer, 4... Rectifier, 5'° smoothing capacitor, 6... Transistor,
F...7 Lee wheel diode, 8...Coil,
11... Magnetic field detector, 12... Magnetic field amplifier, 13.
...Magnetic field setting device, 14...Magnetic field regulator, 15...Base drive circuit, 21...Shunt, vane...Isolation amplifier, Shame...Current setting device, 夙...Current adjustment Vessel, 31...
・Virtual current calculator, 32...sample hold circuit,
33...Sample command circuit. Figure 2 Figure 8

Claims (1)

【特許請求の範囲】 1)直流電流を流すことにより磁界を発生するコイルに
おいて、前記コイルに流れる直流電流を検出する電流検
出器と該コイルが生ずる磁界の強さを検出する磁界検出
器とを備え、電流設定器が定める電流設定値と前記電流
検出器が検出する電流検出値との偏差を入力して前記コ
イルに流れる直流電流を電流設定値に一致させる制御信
号を出力する電流調節器と、前記磁界検出器により得ら
れる磁界の強さに対応する直流電流理論値を演算する仮
想電流演算器と、該仮想電流演算器が出力する電流理論
値と前記電流検出器からの電流検出値との差分を入力す
るとともにサンプル指令回路からのサンプル指令信号が
与えられるときの差分入力信号を前記電流設定値に加算
または減算するように出力するサンプルホールド回路と
を備えていることを特徴とする磁界発生コイルの制御装
置。 2)特許請求の範囲第1項記載の制御装置において、前
記サンプル指令回路は、前記コイルの始動時とウォーム
アップ完了時にサンプルホールド回路にサンプル指令信
号を与えるサンプル指令回路であることを特徴とする磁
界発生コイルの制御装置。
[Claims] 1) A coil that generates a magnetic field by passing a direct current, including a current detector that detects the direct current flowing through the coil and a magnetic field detector that detects the strength of the magnetic field generated by the coil. a current regulator, which inputs the deviation between the current setting value determined by the current setting device and the current detection value detected by the current detector and outputs a control signal to make the DC current flowing through the coil match the current setting value; , a virtual current calculator that calculates a theoretical DC current value corresponding to the strength of the magnetic field obtained by the magnetic field detector, and a theoretical current value outputted by the virtual current calculator and a detected current value from the current detector. and a sample hold circuit that inputs the difference between the sample command signals from the sample command circuit and outputs the difference input signal so as to be added to or subtracted from the current setting value when the sample command signal from the sample command circuit is given. Generator coil control device. 2) In the control device according to claim 1, the sample command circuit is a sample command circuit that provides a sample command signal to the sample hold circuit at the time of starting the coil and at the completion of warm-up. Control device for magnetic field generating coil.
JP27252284A 1984-12-24 1984-12-24 Control device of magnetic field generating coil Granted JPS61148516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27252284A JPS61148516A (en) 1984-12-24 1984-12-24 Control device of magnetic field generating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27252284A JPS61148516A (en) 1984-12-24 1984-12-24 Control device of magnetic field generating coil

Publications (2)

Publication Number Publication Date
JPS61148516A true JPS61148516A (en) 1986-07-07
JPH0527128B2 JPH0527128B2 (en) 1993-04-20

Family

ID=17515065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27252284A Granted JPS61148516A (en) 1984-12-24 1984-12-24 Control device of magnetic field generating coil

Country Status (1)

Country Link
JP (1) JPS61148516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001285A1 (en) * 1990-07-13 1992-01-23 Deutsche Thomson-Brandt Gmbh Circuit for reversing a magnetic field
CN107068325A (en) * 2015-10-02 2017-08-18 克洛纳测量技术有限公司 Adjust the method and magnetic-inductive flow measurement instrument of the constant magnetic field intensity in magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001285A1 (en) * 1990-07-13 1992-01-23 Deutsche Thomson-Brandt Gmbh Circuit for reversing a magnetic field
CN107068325A (en) * 2015-10-02 2017-08-18 克洛纳测量技术有限公司 Adjust the method and magnetic-inductive flow measurement instrument of the constant magnetic field intensity in magnetic field

Also Published As

Publication number Publication date
JPH0527128B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JPH0239350B2 (en)
US2661009A (en) Strip pickling apparatus and saturable reactor control therefor
JPS58119792A (en) Controlling method for induction motor
JPS61148516A (en) Control device of magnetic field generating coil
US3400251A (en) Electric control circuits
JPH11194842A (en) Control method for power unit
JP2609218B2 (en) Digital excitation controller for generator
JPH0549163A (en) Dc power supply
JPS63316687A (en) Vector controlling arithmetic device for induction motor
JPS6225695Y2 (en)
JPS5824920A (en) Power source controller
SU421098A1 (en) DEVICE FOR REGULATING THE MAXIMUM CURRENT OF THE ROTOR OF THE SYNCHRONOUS GENERATOR
JPS6032570A (en) Controller of chopper inverter
JPH0543132B2 (en)
SU401021A1 (en) TO AUTHOR'S CERTIFICATE. Cl. Н 05Ь 5 / 04УДК 621.365.5 (088.8)
JPS62201090A (en) Field control device
SU723738A1 (en) Stabilized rectifier
JPH0833778B2 (en) Electromagnet coil power supply
SU700913A1 (en) Thyristorized voltage regulator for synchronous generator
JPH082198B2 (en) Variable speed controller for induction motor
SU904195A1 (en) Method of automatic equilizing of currents of bridge inverter power-diodes
JPH0665993B2 (en) Tube current detection circuit for X-ray equipment
JPS5854899A (en) Exciter for alternating current generator
JPS61228515A (en) Controller for dc power supply
JPS6369494A (en) Control method for motor magnetic flux