JPS5824920A - Power source controller - Google Patents

Power source controller

Info

Publication number
JPS5824920A
JPS5824920A JP12281081A JP12281081A JPS5824920A JP S5824920 A JPS5824920 A JP S5824920A JP 12281081 A JP12281081 A JP 12281081A JP 12281081 A JP12281081 A JP 12281081A JP S5824920 A JPS5824920 A JP S5824920A
Authority
JP
Japan
Prior art keywords
voltage
load
coil
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12281081A
Other languages
Japanese (ja)
Inventor
Tatsuya Matsukawa
吉田康夫
Masaki Tsuneoka
恒岡まさき
Ryuichi Shimada
佐藤俊治
Yasuo Yoshida
山中芳宣
Yoshinori Yamanaka
松川達哉
Toshiharu Sato
嶋田隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Mitsubishi Electric Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP12281081A priority Critical patent/JPS5824920A/en
Publication of JPS5824920A publication Critical patent/JPS5824920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration

Abstract

PURPOSE:To perform rising of a load with high accuracy, by providing a feedback loop of load voltage in a field weakening control circuit of a power generator and by setting the voltage of the basis on the load voltage and the voltage measured value in a controller of a power source device peforming excitation of magnetic field coils of which a nuclear fusion device is constituted. CONSTITUTION:A voltage detector 12 detecting coil voltage, a current detector 13 detecting coil current and an operation setting device 15 deriving the setting of the coil voltage by an operation are provided to a troidal coil 1. To control the coil current, the set value of the coil voltage is operated at the setting device 15 on the bisis of the measured value by detectors 12, 13. The deviation signal between a feedback signal from the detector 12 obtained through an amplifier 14 and the set signal of the setting device 15 is amplified 9, and an output of a thyristor exciting device 10 is controlled by the deviation signal and an output of a generator 2 is controlled.

Description

【発明の詳細な説明】 この発明は、例えば、核融合装置を構成する磁場コイル
の励磁を行なう電源装置の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to, for example, a control device for a power supply device that excites a magnetic field coil that constitutes a nuclear fusion device.

以下、従来のもの及び本発明の実施例のいずれについて
もトロイダル磁場コイル電源を例に説明する。
Hereinafter, both the conventional power supply and the embodiment of the present invention will be explained using a toroidal magnetic field coil power supply as an example.

従来、この種の装置として第1図に示すように、発電機
電圧を制御して、負荷であるコイルの励磁を行なうもの
がある。
BACKGROUND ART Conventionally, as shown in FIG. 1, there is a device of this type that excites a coil, which is a load, by controlling a generator voltage.

図において、(1)は負荷となるトロイダル磁場コイル
(以下、単にコイルと称す。) 、(2)はこのコイf
i/(1)へ電力を供給する発電機、(3)はこの発電
機の出力を降圧する変圧器、(4)はこの変圧器を介し
て供給される発電機(2)の交流電力を整流して上記コ
イル(1)への直流電力を供給する整流装置、(5)は
発電機(2)の出力電圧を検出する計器用変圧器、(6
)はこの計器用変圧器の2次側出力を増幅する信号増幅
器、(7)は発電機(2)の出力電圧を設定する電圧設
定器、(8)は信号加算器、(9)はこの信号加算器の
出力を増幅する偏差増幅器、QGはこの偏差増幅器の出
力に応じた出力を発電機(2)の界磁(2a)に供給す
るサイリスタ励磁回路、αυは図示しない電源電圧を変
成し、サイリスタ励磁回路QQへ供給する変圧器である
In the figure, (1) is a toroidal magnetic field coil (hereinafter simply referred to as a coil) that serves as a load, and (2) is this coil f.
i/(1) is a generator that supplies power, (3) is a transformer that steps down the output of this generator, and (4) is the AC power of generator (2) that is supplied via this transformer. A rectifier that rectifies and supplies DC power to the coil (1), (5) is an instrument transformer that detects the output voltage of the generator (2), and (6)
) is a signal amplifier that amplifies the secondary output of this potential transformer, (7) is a voltage setting device that sets the output voltage of the generator (2), (8) is a signal adder, and (9) is this signal amplifier. A deviation amplifier that amplifies the output of the signal adder, QG is a thyristor excitation circuit that supplies an output corresponding to the output of this deviation amplifier to the field (2a) of the generator (2), and αυ is a transformer for the power supply voltage (not shown). , a transformer that supplies the thyristor excitation circuit QQ.

第1図に示すものは、発電機(1)の出力電圧を所定の
値に制御し、コイ/I/ (1)を励磁するものである
The one shown in FIG. 1 controls the output voltage of a generator (1) to a predetermined value and excites the carp /I/ (1).

すなわち、計器用変圧器(5)によシ発電機(2)の出
力電圧を変成し、信号増幅器(6)を介して信号加算器
(8)へ入力する。他方、信号加算器(8)には電圧設
定器(7)に設定された発電機電圧の設定値も入力して
おり、信号加算器(8)によシ両者の偏差信号が導出さ
れ、偏差信号増幅器(9)を介してサイリスタ励磁回路
αqへ入力される。サイリスタ励磁回路QOは上記偏差
信号が零になるように界磁(2a)を調整し、発電機(
2)の出力電圧を電圧設定器(7)に設定した設定値に
なるように制御する。このように制御された発電機電圧
によシ、変圧器(3)を介して整流装置(4)に供給さ
れ、直流電圧に変換されて、コイ/I/ (1)を励磁
する。
That is, the output voltage of the generator (2) is transformed by the instrument transformer (5) and inputted to the signal adder (8) via the signal amplifier (6). On the other hand, the signal adder (8) also inputs the set value of the generator voltage set in the voltage setting device (7), and the signal adder (8) derives a deviation signal between the two. The signal is input to the thyristor excitation circuit αq via the signal amplifier (9). The thyristor excitation circuit QO adjusts the field (2a) so that the deviation signal becomes zero, and the generator (
The output voltage of step 2) is controlled to the set value set in the voltage setting device (7). The thus controlled generator voltage is supplied to the rectifier (4) via the transformer (3), converted into a DC voltage, and excites the coil /I/ (1).

ところで、トロイダル磁場コイルの電流Ie、第2図に
示すように、所定の時間0−Tに、設定する電流値工F
に到達させ、更に所定の時間T−で、その電流値を維持
するよう制御する必要がある。
By the way, the current Ie of the toroidal magnetic field coil, as shown in FIG.
It is necessary to maintain the current value for a predetermined time T-.

第1図において、界磁(2a)の調整によって必要電圧
に制御された発電機の電圧は、変圧器(3)により、適
当な電圧に降圧され、更に整流装置(4)を介して直流
電圧に変換され、コイ/L’ (1)を励磁する。
In Fig. 1, the voltage of the generator, which is controlled to the required voltage by adjusting the field (2a), is stepped down to an appropriate voltage by the transformer (3), and is further passed through the rectifier (4) to the DC voltage. , and excites the carp/L' (1).

上述の如き発電機電圧一定制御によシ、コイル(1)に
流入するコイル電流の立上げを制御する場合には、発電
機電圧V、コイル電圧75d、コイル電流工4は第8図
1a) 、 lbl 、 ic)に示すとおシとなる。
When controlling the rise of the coil current flowing into the coil (1) using the generator voltage constant control as described above, the generator voltage V, coil voltage 75d, and coil current 4 are set as shown in Fig. 8 1a). , lbl, ic).

っまシ、コイル電流の立上げ時において、設定する時間
に、設定する電流値に達するような、発電機電圧の設定
値v1を電圧設定器(7)に与えて、発電機(2)の電
圧を制御する。コイル電流工dが設定する電流工Fに達
すると、コイfi/電流を工F一定に維持するため、電
圧設定器(7)の設定値を馬に変更し、所定の時間、コ
イル電流を一定に保つ。
When starting up the coil current, give the voltage setter (7) a set value v1 of the generator voltage so that the set current value is reached at the set time, and set the generator (2). Control voltage. When the coil current d reaches the set current F, in order to keep the coil fi/current constant at the current F, the setting value of the voltage setting device (7) is changed to H, and the coil current is kept constant for a predetermined period of time. Keep it.

しかしながら、コイル電圧は、負荷であるコイ〃の電流
に従って電圧降下が生じる。従って、所定の時間で、コ
イル電流を立上げるためには、電圧降下を正確に予測し
て、補償する回路が必要となる。更に、コイル導体の温
度により、コイル抵抗値が変化するため、これらを補償
して、高い精度でコイiV電流の制御を行なうことは、
困難である。また、その他の方法として、コイル電流を
フィード・パック制御する方法が考えられるが、発電機
、およびコイルといった、2つの大きい時定数を持つ回
路の制御系において、コイル電流を設定値に対して、精
度よく、かつ安定に制御することは困難である。
However, a voltage drop occurs in the coil voltage according to the current of the coil, which is a load. Therefore, in order to ramp up the coil current at a predetermined time, a circuit that accurately predicts and compensates for the voltage drop is required. Furthermore, since the coil resistance value changes depending on the temperature of the coil conductor, it is necessary to compensate for these changes and control the coil iV current with high accuracy.
Have difficulty. Another possible method is to perform feed-pack control on the coil current, but in a control system for a circuit that has two large time constants, such as a generator and a coil, the coil current may be controlled relative to the set value. It is difficult to control accurately and stably.

この発明は、上記のような従来のものの欠点を除去する
ためになされたものであシ、電源装置の出力を制御する
、例えば発電機の界磁制御回路に負荷電圧のフィード・
パックループを設け、電圧設定値は、負荷電流、負荷電
圧の測定値をもとに、抵抗値の変動を補正して、与えて
行き、こうした制御回路によシ整流回路の電圧降下、負
荷の抵抗値の変動によらず、高い精度で負荷を立上げ、
更に、維持することのできる制御装置を提供するもので
ある。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.
A pack loop is provided, and the voltage setting value is given after correcting resistance fluctuations based on the measured values of load current and load voltage. Starts up the load with high accuracy regardless of resistance value fluctuations,
Furthermore, it provides a control device that can be maintained.

この発明の一実施例を第4図に示す。第4図において、
(2)はコイル電圧を検出する電圧検出器、(至)はコ
イル電流を検出する電流検出器、a4はコイル電圧検出
信号の増幅器、(ト)はコイル電圧の設定を演算によシ
導出する演算設定器である。
An embodiment of this invention is shown in FIG. In Figure 4,
(2) is a voltage detector that detects the coil voltage, (to) is a current detector that detects the coil current, a4 is an amplifier for the coil voltage detection signal, and (g) is the coil voltage setting derived by calculation. It is a calculation setting device.

なお、他の構成は第、1図のものと同様のものである。Note that the other configurations are similar to those shown in FIG. 1.

次に、本発明により、コイル電流を制御する場合の動作
について説明する。第4図において、電圧検出器(2)
、電流検出器(2)による測定値をもとに、演算設定器
(至)において、コイル電圧の設定値を、後述する手段
によシ演算して行く。増幅器04を介して得られる電圧
検出器(2)からのフィード・パック信号と設定器(ト
)の設定信号との偏差信号を増幅器(9)で増幅し、該
偏差信号によってサイリスタ励磁装置QQの出力を調整
し、発電機(2)の出力を制御する。
Next, the operation when controlling the coil current according to the present invention will be explained. In Figure 4, voltage detector (2)
Based on the measured value by the current detector (2), the set value of the coil voltage is calculated in the calculation setting device (to) by means described later. The deviation signal between the feed pack signal from the voltage detector (2) obtained via the amplifier 04 and the setting signal of the setting device (G) is amplified by the amplifier (9), and the deviation signal is used to control the thyristor excitation device QQ. Adjust the output and control the output of the generator (2).

コイル電圧の設定値は、第6図に示すように△Y秒毎に
修正して行く。まず、ある時間区分の電圧、電流の測定
値をもとに、同時刻における、コイμの抵抗値を求める
。次に、残っている立上げ期間において、設定電流工F
まで立上げるために必要なコイル電圧を求める。こうし
て求めた電圧値を、各時間区分毎に界磁制御回路の電圧
設定値として与えて行く。
The set value of the coil voltage is corrected every ΔY seconds as shown in FIG. First, based on the measured values of voltage and current in a certain time period, the resistance value of the carp μ at the same time is determined. Next, during the remaining start-up period, set current F
Find the coil voltage required to start up to. The voltage value thus obtained is given as the voltage setting value of the field control circuit for each time segment.

上記制御方法による、電圧設定値の算出手順の一例を示
す。第に時間区分において、抵抗値は、次のように表わ
せる。
An example of a procedure for calculating a voltage setting value using the above control method will be shown. In the first time segment, the resistance value can be expressed as follows.

1+n −11番Δt 1(daマ:第に時間区分終了時の電圧値、第に一1時
間区分終了時の電圧値の平均値。
1+n - No. 11 Δt 1 (da ma: Voltage value at the end of the 1st time period, average value of the voltage values at the end of the 11th time period.

ldk  : 第に時間区分終了時の電流値fah−1
:第に−1 Δt :1時間区分 L :インダクタンス コイルの抵抗値変化は、上式を適用することによυ、各
時間毎に求められる。次に、1時間区分前の抵抗値Rk
 −1が計算されたとすると、残つている。立上げ時間
において、設定電流IPに立上げるために必要なコイ1
v電圧を次のようにして求める。
ldk: Current value fah-1 at the end of the first time period
: 1st -1 Δt : 1 time segment L : The resistance value change of the inductance coil is obtained for each time υ by applying the above formula. Next, the resistance value Rk before 1 hour division
If -1 is calculated, it remains. Coil 1 required to raise the set current IP during startup time
Find the v voltage as follows.

τh−t  :   L / Rk−1Δt : 1時
間区分 tr:  立上げ時間 このようにして求めた電圧値を、各時間区分毎に界磁制
御の設定電圧値として、与えることにより、コイル電流
の制御が行なえる。
τh-t: L/Rk-1Δt: 1 time segment tr: Start-up time By giving the voltage value obtained in this way as the setting voltage value for field control for each time segment, the coil current can be controlled. Ru.

なお、上記実施例では、各時間区分毎に抵抗値を求め、
コイル電圧設定値を演算して与えて行く制御方式を示し
たが、コイ/I’電流立上げ初期において、電流、電圧
の絶対値が小さいため、検出誤差が相対的に大きくなり
、精度よく抵抗値の予測を行なうことができない。従っ
て、立上げ初期において、ある程度の時間区分、コイ/
L/M圧設定値を保持するようにしておく方式も考えら
れる。また、コイル電流立上げから電流を維持する移行
時において、コイル電圧が大きく変動し、抵抗値の演算
が正確でなくなるため、この区間は電圧設定値をゆるや
かに変化させる方式も考えられる。
In addition, in the above example, the resistance value is determined for each time period,
Although we have shown a control method in which the coil voltage setting value is calculated and given, since the absolute values of the current and voltage are small at the beginning of the rise of the coil/I' current, the detection error becomes relatively large. Unable to predict values. Therefore, in the initial stage of startup, there are certain time divisions, carp/
A method may also be considered in which the L/M pressure set value is held. Further, since the coil voltage fluctuates greatly during the transition from the coil current rise to the current maintenance, and the calculation of the resistance value becomes inaccurate, a method may be considered in which the voltage setting value is gradually changed during this period.

なお、上記実施例の説明では、負荷がトロイダル磁場コ
イルを例にとって説明したが、それに限らず、比較的時
定数の大きな負荷であればどのようなものであっても良
い。
In the above embodiments, the load is a toroidal magnetic field coil as an example, but the present invention is not limited to this, and any load having a relatively large time constant may be used.

以上のように、この発明によれば、実際の負荷の抵抗値
の変化分を負荷電圧の設定値で補正するものとし、しか
もコイル電圧を制御対象としているので、整流回路の電
圧降下によらずに、高い精度で、コイル電流の立上げ、
維持の制御が可能となる。
As described above, according to the present invention, the change in the actual resistance value of the load is corrected by the set value of the load voltage, and since the coil voltage is controlled, it is not affected by the voltage drop in the rectifier circuit. To start up the coil current with high precision,
Maintenance can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のトロイダル磁場コイル電源の制御回路
図、第2図は、トロイダル磁場コイル電流の制御パター
ンを示す図、第8図は、従来の制御回路での制御特性を
示す特性図、第4図は、この発明の一実施例による制御
回路図、−第6図は、この発明の制御回路により、制御
した場合の制御パターンを示す図である。 (1)・・・トロイダル磁場コイル、(2)・・・発電
機、(3)・・・変圧器、(4)・・・整流装置、(5
)・・・計器用変圧器、(7)・・・電圧設定器、QG
・・・サイリスタ励磁回路、(2)・・・電圧検出器、
α埠:電流検出器、(至)・・・演算設定器。 なお、各図中、同一符号は、同−又は相当部分を示すも
のとする。 代理人 葛野信−(ほか1名) 第1図 第3図 第1頁の続き 特許法第30条第1項適用 (2)昭和56年2月5日講演会当日配布資料(Pb−
3−10JT−60t−ロイダル磁場コイル電源システ
ムノシュミレーション)にて発表 0発 明 者 佐藤俊治 神戸市兵庫区和田崎町1丁目1 番2号三菱電機株式会社制御製 作所内 ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号
FIG. 1 is a control circuit diagram of a conventional toroidal magnetic field coil power supply, FIG. 2 is a diagram showing a control pattern of a toroidal magnetic field coil current, and FIG. 8 is a characteristic diagram showing control characteristics in a conventional control circuit. FIG. 4 is a control circuit diagram according to an embodiment of the present invention, and FIG. 6 is a diagram showing a control pattern when controlled by the control circuit of the present invention. (1)... Toroidal magnetic field coil, (2)... Generator, (3)... Transformer, (4)... Rectifier, (5
)...Instrument transformer, (7)...Voltage setting device, QG
... Thyristor excitation circuit, (2) ... Voltage detector,
α: Current detector, (to)... Calculation setting device. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno (and 1 other person) Figure 1 Figure 3 Continued from page 1 Application of Article 30, Paragraph 1 of the Patent Act (2) Materials distributed on the day of the February 5, 1980 lecture (Pb-
Presented at 3-10 JT-60t-Loidal Magnetic Field Coil Power Supply System (Simulation)0 Inventor: Shunji Sato Inside Mitsubishi Electric Corporation Control Manufacturing Works, 1-1-2 Wadazaki-cho, Hyogo-ku, Kobe ■Applicant: Mitsubishi Electric Co., Ltd. Company 2-2-3 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 制御される電源装置の出力を調整し、時定数の大なる負
荷へ供給される負荷電流を所定期間に設定値まで立上げ
るように上記電源装置を制御するものにおいて、上記電
源装置の出力を整流し、上記負荷へ電力を給供する整流
装置、上記負荷に印加される負荷電圧を検出する電圧検
出器、上記負荷に流れる負荷電流を検出する電流検出器
、上記電圧検出器及び電流検出器の検出値を導入し、そ
の時点の上記負荷の抵抗値を求め、かつ該抵抗値をもと
に所定時点までに負荷電流を設定値に立上げるに必要な
負荷電圧値を任意の時間区分毎に順次導出する演算設定
器、この演算設定器により順次導出される負荷電圧値に
応じて上記電源装置の出力を制御する装置を備えたこと
を特徴とする電源制御装置。
Rectifying the output of the power supply in a device that controls the power supply to adjust the output of the power supply to be controlled so that the load current supplied to the load with a large time constant rises to a set value in a predetermined period. and a rectifier that supplies power to the load, a voltage detector that detects the load voltage applied to the load, a current detector that detects the load current flowing to the load, and detection of the voltage detector and current detector. value, calculate the resistance value of the load at that time, and based on the resistance value, calculate the load voltage value necessary to raise the load current to the set value by a predetermined time point, sequentially for each arbitrary time interval. A power supply control device comprising: a calculation setting device that derives the load voltage value; and a device that controls the output of the power supply device in accordance with load voltage values sequentially derived by the calculation setting device.
JP12281081A 1981-08-04 1981-08-04 Power source controller Pending JPS5824920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12281081A JPS5824920A (en) 1981-08-04 1981-08-04 Power source controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12281081A JPS5824920A (en) 1981-08-04 1981-08-04 Power source controller

Publications (1)

Publication Number Publication Date
JPS5824920A true JPS5824920A (en) 1983-02-15

Family

ID=14845196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12281081A Pending JPS5824920A (en) 1981-08-04 1981-08-04 Power source controller

Country Status (1)

Country Link
JP (1) JPS5824920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132882U (en) * 1979-03-13 1980-09-20
JPS58186815A (en) * 1982-04-26 1983-10-31 Toshiba Corp Controlling method of power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132882U (en) * 1979-03-13 1980-09-20
JPS58186815A (en) * 1982-04-26 1983-10-31 Toshiba Corp Controlling method of power supply device

Similar Documents

Publication Publication Date Title
US2066943A (en) Regulating system
JPH0239350B2 (en)
JPS5824920A (en) Power source controller
JP2007511305A (en) Amplifier with control system controlled at the final stage
US1948372A (en) Regulating system
US2057490A (en) Regulating system
JPS60221997A (en) X-ray generator having phase advancing circuit in voltage feedback circuit
US3026470A (en) Control apparatus
US2005892A (en) Alternating-current regulator
US3211987A (en) Excitation system for a dynamoelectric machine
US2728044A (en) Regulator systems
US2075105A (en) Regulating system
US2938128A (en) Polyphase generator power transmission
JP2830640B2 (en) Adjustment control device
US2081995A (en) Regulating system
JPH0984378A (en) Constant deciding method and apparatus of current control system
JP3530742B2 (en) Power supply
US2300515A (en) Electron tube regulator
US2426027A (en) Regulating system
JPH11194842A (en) Control method for power unit
US2210715A (en) Electronic regulator
JPH0588703A (en) Controller
US2432909A (en) Electrode feed control system
US2993158A (en) Motor voltage regulator with adjustable rate control
JP2982382B2 (en) DC motor voltage controller