JPS61148406A - Optical coupling device - Google Patents

Optical coupling device

Info

Publication number
JPS61148406A
JPS61148406A JP27160784A JP27160784A JPS61148406A JP S61148406 A JPS61148406 A JP S61148406A JP 27160784 A JP27160784 A JP 27160784A JP 27160784 A JP27160784 A JP 27160784A JP S61148406 A JPS61148406 A JP S61148406A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
substrate
light
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27160784A
Other languages
Japanese (ja)
Other versions
JPH0697285B2 (en
Inventor
Keiji Hanada
花田 啓二
Shiro Ogata
司郎 緒方
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP59271607A priority Critical patent/JPH0697285B2/en
Publication of JPS61148406A publication Critical patent/JPS61148406A/en
Publication of JPH0697285B2 publication Critical patent/JPH0697285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Abstract

PURPOSE:To constitute a compact optical circuit device by arranging the 1st and the 2nd substrates which have optical waveguide provided to the 2nd substrate with the optical waveguide of the 1st substrate while leaving a gap. CONSTITUTION:An optical waveguide 11 having a photodetecting element 16 and an optical waveguide 15 having a light emitting element 12 are formed on the base substrate 10. Then, an optical waveguide 21 which has a light emitting element 22 and an optical processing part 23 and an optical waveguide 25 which has a photodetecting element 26 and an optical processing part 27 are formed on a circuit substrate 20. Then, the base substrate 10 and circuit substrate 20 are arranged at right angles. The optical waveguide 21 is extended to an end surface 20a where the circuit substrate 20 contacts the base substrate 10 with a fine gap left to form and optical waveguide part 21a for coupling and also form a slanting surface 24. Light propagated in the optical waveguide 21 is reflected totally by the slanting surface 24 and propagated from the optical waveguide part 21a to an optical waveguide 11. Consequently, the light transmission and reception between the two substrates is facilitated and the integrated optical circuit device is made compact.

Description

【発明の詳細な説明】 発明の背景 この発明は、2つの基板間で光を授受するための光結合
装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an optical coupling device for transmitting and receiving light between two substrates.

近年、多くの光処理機能を一基板上に集積化して作成す
る技術の研究が盛んに行なわれている。、基板上の所望
の場所に光を導くために基板に光導波路が形成される。
In recent years, research has been actively conducted on techniques to integrate and create many optical processing functions on one substrate. , an optical waveguide is formed in the substrate to guide light to a desired location on the substrate.

多くの光機能素子を一基板上に集積化した場合には、光
を縦横に伝播させなければならないから、光を伝播させ
るための光導波路が互いに交差してしまうことがあるの
は避けられない。光導波路の交差部では一方の光導波路
を伝播してきた光が交差する他方の光導波路に漏れてし
まうので、クロス・トーク環やS/N比の増大を招くと
いう問題がある。このような点から、−基板上に集積化
できる光機能素子の数は自ずと限られたものとなってし
まう。
When many optical functional elements are integrated on one substrate, the light must be propagated vertically and horizontally, so it is inevitable that the optical waveguides used to propagate the light will sometimes cross each other. . At intersections of optical waveguides, light propagating through one optical waveguide leaks to the other intersecting optical waveguide, resulting in a problem of increased cross talk rings and an increase in the S/N ratio. From this point of view, the number of optical functional elements that can be integrated on a -substrate is naturally limited.

そこで、多くの光機能をコンパクトに実現するための一
方策して、複数の基板を立体的に配置することが考えら
れる。複数の基板を立体的に配置した場合には、基板間
で光の授受を行なう必要がある。
Therefore, one possible way to realize many optical functions in a compact manner is to arrange multiple substrates three-dimensionally. When a plurality of substrates are arranged three-dimensionally, it is necessary to transmit and receive light between the substrates.

発明の概要 この発明は、2つの基板間での光の授受を比較的簡単な
構造で可能とし、コンパクトな集積型光回路の実現のた
めの一手段を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to enable transmission and reception of light between two substrates with a relatively simple structure, and to provide a means for realizing a compact integrated optical circuit.

この発明による光結合装置は、光導波路が形成された第
1の基板と、この第1の基板の結合されるべき面に垂直
に配置され、表面に光導波路が形成された第2の基板と
を備え、第2の基板の端面に結合用の光導波路が形成さ
れ、この結合用光導波路は、第2の基板表面の光導波路
と全反射面を介して光結合されているとともに、第1の
基板の結合されるべき面の光導波路と小さな間隙をあけ
て対面していることを特徴とする。
An optical coupling device according to the present invention includes a first substrate on which an optical waveguide is formed, and a second substrate arranged perpendicularly to the surface of the first substrate to be coupled, and on whose surface an optical waveguide is formed. A coupling optical waveguide is formed on the end face of the second substrate, and the coupling optical waveguide is optically coupled to the optical waveguide on the surface of the second substrate via the total reflection surface. It is characterized by facing the optical waveguide on the surface of the substrate to be coupled with a small gap therebetween.

この発明による光結合装置は、双方向性をもつから第1
の基板から第2の基板に光を導くことができるばかりで
なく、第2の基板から第1の基板に光を伝達することも
可能となる。この発明によると、2つの基板間で自在に
光を授受することができる。また、構成も簡素で調整も
容易である。さらにこの発明によると2つの基板を互い
に垂直に配置して光結合を行なうことが可能となるから
、一基板の面積を増大させることなく2つの基板を立体
的に配置して集積度を高めることもできる。、基板の平
面的な広がりを抑えることができるから、全体的にコン
パクトな集積型光回路の実現に役立つ。
The optical coupling device according to the present invention has bidirectionality, so
Not only can light be guided from the second substrate to the second substrate, but also light can be transmitted from the second substrate to the first substrate. According to this invention, light can be freely exchanged between two substrates. Further, the configuration is simple and adjustment is easy. Furthermore, according to this invention, it is possible to perform optical coupling by arranging two substrates perpendicularly to each other, so it is possible to increase the degree of integration by arranging two substrates three-dimensionally without increasing the area of one substrate. You can also do it. Since it is possible to suppress the planar expansion of the substrate, it is useful for realizing an overall compact integrated optical circuit.

実施例の説明 以下、この発明を立体光回路装置に適用した実施例につ
いて詳述する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments in which the present invention is applied to a three-dimensional optical circuit device will be described in detail.

(1)立体光回路装置 第1図は立体光回路装置の概要を示している。(1) Three-dimensional optical circuit device FIG. 1 shows an outline of the three-dimensional optical circuit device.

母基板(10)および複数の回路基板(2G)  (3
0)(40)が支持体(1)に固定支持されている。
Mother board (10) and multiple circuit boards (2G) (3
0) (40) is fixedly supported on the support (1).

各回路基板(20)〜(40)は母基板(10)に対し
て直角に接している。母尽板(10)および回路基板(
20)〜(40)には所望の光回路を構成する光導波路
および光機能素子が集積化してつくられている。母基板
(10)上に形成された光導波路の一例が(11)  
(15)で示されている。
Each circuit board (20) to (40) is in contact with the mother board (10) at right angles. Mother board (10) and circuit board (
20) to (40) are formed by integrating optical waveguides and optical functional elements constituting a desired optical circuit. An example of the optical waveguide formed on the motherboard (10) is (11)
(15).

光導波路(11)から導かれた光を受光する受光素子(
16)および光導波路(15)に光を送出するための発
光素子(12)が母基板(10)の端面に固定されてい
る。回路基板(20)上に形成された光導波路の一例が
(21)  (25)で示されており、これらの光導波
路(21)  (25)の途上に設けられた光機能素子
または光処理部の例が(23)  (2γ)で示されて
いる。光導波路(21)および光処理部(23)は回路
基板(20)の上面に、光導波路(25)および光処理
部(21)は基板(20)の下面に形成されている。光
導波路(21)には発光素子(22)からの光が導かれ
、光導波路(25)を伝播してきた光は受光素子(26
)に受光される。これらの素子(22)  (26)は
回路基板(20)の端面に固定されている。光導波路は
よく知られているように、基板に所定の物質を拡散させ
ることにより形成される。回路基板(30)にも、同じ
ように、光導波路(31)(35)、光処理部(33)
  (37) 、発光素子(32)、受光素子(36)
等が設けられている。図示は省略されているが、必要に
応じて他の光導波路、光機能素子または光処理部、発、
受光素子等が母基板(io)、回路基板(20)〜(4
0)に設けられる。
A light receiving element (
16) and a light emitting element (12) for transmitting light to the optical waveguide (15) are fixed to the end surface of the motherboard (10). Examples of optical waveguides formed on the circuit board (20) are shown in (21) and (25), and optical functional elements or optical processing units provided in the middle of these optical waveguides (21) and (25) An example is shown in (23) (2γ). The optical waveguide (21) and the optical processing section (23) are formed on the upper surface of the circuit board (20), and the optical waveguide (25) and the optical processing section (21) are formed on the lower surface of the substrate (20). Light from the light emitting element (22) is guided to the optical waveguide (21), and light propagated through the optical waveguide (25) is guided to the light receiving element (26).
) is received. These elements (22) (26) are fixed to the end face of the circuit board (20). As is well known, an optical waveguide is formed by diffusing a predetermined substance into a substrate. Similarly, the circuit board (30) also has optical waveguides (31) (35) and an optical processing section (33).
(37), light emitting element (32), light receiving element (36)
etc. are provided. Although not shown in the figure, other optical waveguides, optical functional elements or optical processing units, emitters,
The light receiving elements etc. are connected to the mother board (io), the circuit boards (20) to (4)
0).

(2)回路基板と光結合装置 回路基板(20)〜(40)上の光導波路、およびこれ
らの回路基板(20)〜(40)と母基板(10)との
間の光結合装置はすべて同じ構成であるから、回路基板
(20)およびその光導波路(21)を例にとって説明
する。
(2) Circuit boards and optical coupling devices The optical waveguides on the circuit boards (20) to (40) and the optical coupling devices between these circuit boards (20) to (40) and the mother board (10) are all Since they have the same configuration, the circuit board (20) and its optical waveguide (21) will be explained as an example.

第2図および第4図において、回路基板(20〉に形成
された光導波路(21)は基板(20)の母基板(10
)と接する端面(20a)にまでのびている。端面上の
光導波路が結合用光導波路であり、これを(21a )
で示す。そうして、回路基板(20)の表面と端面(2
0a)との稜が45゜の角度で切欠かれ斜面(24)と
なっている。この斜面(24)が全反射面となる。光導
波路(2旬を伝播する光は斜面(24)で全反射して光
導波路(21a)に向う。光導波路(21a )を伝播
する光があれば、この光は斜面(24)で全反射して光
導波路(21)に向うのはいうまでもない。
2 and 4, the optical waveguide (21) formed on the circuit board (20) is connected to the motherboard (10) of the board (20).
) extends to the end surface (20a) in contact with. The optical waveguide on the end face is a coupling optical waveguide, which is called (21a)
Indicated by Then, the front surface of the circuit board (20) and the end surface (2
The edge with 0a) is notched at an angle of 45° to form a slope (24). This slope (24) becomes a total reflection surface. Light propagating through the optical waveguide (24) is totally reflected on the slope (24) and heads toward the optical waveguide (21a).If there is light propagating through the optical waveguide (21a), this light is totally reflected on the slope (24). Needless to say, the light is then directed to the optical waveguide (21).

光導波路(21)の屈折率を01、空気の屈折率をn2
=1とし、斜面(24)への入射光が斜面(24)に立
てた法線となす角をθとすると、入射光が斜面(24)
で全反射する条件はsinθ〉n2/ nlテ与えられ
る。基板(20)がLiNbO3の場合にはその屈折率
は約2.2、ガラスの場合は約1.5である。これらの
屈折率を01として採用したとすると、上記の全反射条
件はそれぞれθ>27’、θ〉42°となる。通常、基
板(20)の表面と端面とのなす角は直角であるから斜
面(24)は456の傾きをもつ。したがって、第4図
に示されるθは45°であるから、斜面(24)は全反
射の条件を満足する。
The refractive index of the optical waveguide (21) is 01, and the refractive index of air is n2.
= 1, and if the angle between the incident light on the slope (24) and the normal to the slope (24) is θ, then the incident light will be on the slope (24).
The condition for total reflection is given by sinθ〉n2/nlte. When the substrate (20) is made of LiNbO3, its refractive index is about 2.2, and when it is made of glass, it is about 1.5. If these refractive indices are adopted as 01, the total reflection conditions described above will be θ>27' and θ>42°, respectively. Since the angle between the surface of the substrate (20) and the end surface is usually a right angle, the slope (24) has an inclination of 456 degrees. Therefore, since θ shown in FIG. 4 is 45°, the slope (24) satisfies the condition for total reflection.

第2図において、母基板(10)の表面上の光導波路(
11)と回路基板(20)の端面(20a)上の光導波
路(21a )とは対面している。また母基板(10)
の表面と回路基板(20)の端面(20a>とは密着し
て接しているが、両面の間には実際にはわずかの間隙(
波長オーダ)がある。したがって、母基板(io)、そ
の光導波路(ti)、上記両面間の間隙、光導波路(2
1a )および回路基板(20)は5層2次元光導波路
構造と考えることできる。このような5層2次元光導波
路構造では、光導波路(21a)を伝播する光は、光の
伝播にともない次第に光導波路(11)に移行し、ある
長さく完全結合長)で光導波路(11〉にその全パワー
が移行する。光導波路(21a )から光導波路(11
)に、移行する光のパワーは、画光導波路(21a >
  (11)の重なっている部分の長さく結合長)に依
存する。完全結合長の場合に全光パワーが光導波路(2
1a)から光導波路(11)に移る。したがって、光導
波路(21)を伝播する光は、斜面(24)で全反射し
て光導波路(21a )に進み、ざらに結合長に応じた
割合で光導波路(11)に移行し、光導波路(11)を
伝播していく。
In FIG. 2, the optical waveguide (
11) and the optical waveguide (21a) on the end surface (20a) of the circuit board (20) face each other. Also mother board (10)
Although the surface of the circuit board (20) and the end surface (20a> of the circuit board (20) are in close contact with each other, there is actually a small gap (20a) between the two surfaces).
wavelength order). Therefore, the mother substrate (io), its optical waveguide (ti), the gap between the above-mentioned surfaces, and the optical waveguide (2)
1a) and the circuit board (20) can be considered to have a five-layer two-dimensional optical waveguide structure. In such a five-layer two-dimensional optical waveguide structure, light propagating through the optical waveguide (21a) gradually transfers to the optical waveguide (11) as the light propagates, and at a certain length (perfect coupling length), the light propagates through the optical waveguide (11). >The entire power is transferred from the optical waveguide (21a) to the optical waveguide (11
), the power of the light transferred to the imaging optical waveguide (21a >
(11) depends on the length of the overlapping portion (bond length). In the case of perfect coupling length, the total optical power is
1a) to the optical waveguide (11). Therefore, the light propagating through the optical waveguide (21) is totally reflected on the slope (24) and proceeds to the optical waveguide (21a), and then moves to the optical waveguide (11) at a rate roughly corresponding to the coupling length. (11) will be propagated.

光導波路(11)を伝播する光があればこの光は光導波
路(21a )に移行し、さらに光導波路(21)に進
むのはいうまでもない。
Needless to say, if there is light propagating through the optical waveguide (11), this light moves to the optical waveguide (21a) and then further to the optical waveguide (21).

第3図は、回路基板(20)の上下(表裏)両面に光導
波路(21)  (28)が形成され、これらの光導波
路(21)  (28)が端面に形成された光導波路(
21a )と全反射面を経てつながっている例を示して
いる。光導波路(21)の光は光導波路(21a)から
母基板(10)の光導波路(11)に移行する。また光
導波路(11)の光は光導波路(21a)に移り光導波
路(28)に進む。
FIG. 3 shows an optical waveguide (21) (28) formed on both the upper and lower (front and back) surfaces of a circuit board (20), and an optical waveguide (21) (28) formed on the end face of the circuit board (20).
21a) through a total reflection surface. The light in the optical waveguide (21) moves from the optical waveguide (21a) to the optical waveguide (11) of the mother board (10). Further, the light in the optical waveguide (11) moves to the optical waveguide (21a) and proceeds to the optical waveguide (28).

第5図は、第2図、第3図に示すような光導波路を作成
するための方法を示している。槽(60)内に、たとえ
ばKNO3溶液が入っている。基板材料、たとえば1−
iNboa基板(10)および電1(61)がこの溶液
内に浸されている。
FIG. 5 shows a method for making optical waveguides such as those shown in FIGS. 2 and 3. For example, a KNO3 solution is contained in the tank (60). Substrate material, e.g. 1-
The iNboa substrate (10) and the electrode 1 (61) are immersed in this solution.

基板(70)の稜には斜面(全反射面)があらかじめ形
成されかつ光学研磨されている。基板(70)は直流電
源(62)の負極に、電極(61)はスイッチ(63)
を介して正極にそれぞれ接続されている。スイッチ(6
3)がオンとされると、KNOa溶液中のに+イオンが
基板(70)に引き寄せられかつ基板(70)内部に拡
散していく。
A slope (total reflection surface) is formed in advance on the edge of the substrate (70) and optically polished. The substrate (70) is connected to the negative terminal of the DC power supply (62), and the electrode (61) is connected to the switch (63).
are respectively connected to the positive electrode through. Switch (6
3) is turned on, the + ions in the KNOa solution are attracted to the substrate (70) and diffuse into the substrate (70).

この結果、基板(70)にはに+が拡散された光導波路
が形成される。これはイオン交換法と呼ばれる方法であ
る。基板(γ0)の光導波路を形成すべき部分以外の表
面をマスクしておけば、所望パターンの光導波路をつく
ることができ、マスクを施さない場合には基板(70)
の表裏、端、側面および斜面に光導波層(路)が形成さ
れる。
As a result, an optical waveguide in which + is diffused is formed in the substrate (70). This is a method called ion exchange method. If the surface of the substrate (γ0) other than the part where the optical waveguide is to be formed is masked, an optical waveguide with a desired pattern can be created; if no mask is applied, the surface of the substrate (70)
Optical waveguide layers (paths) are formed on the front and back, edges, sides, and slopes of the substrate.

(3)立体光回路装置の作用 、  第1図に戻って、発光素子(12)から出力され
た光は母基板(10)上の光導波路(15)を伝播し、
上述の光結合装置により回路基板〈20)(30)の下
面に形成された光導波路(25)  (35)に適当な
割合で移行しこれらの光導波路(25)(35ンをそれ
ぞれ伝播していく。そして、光処理部(27)  (3
γ)で所定の加工がそれぞれ施されたのち、各受光素子
(2G>  (3G>に受光される。このようにして、
母基板(10)から光を複数の回路基板(20>  (
30)等に供給することが可能となる。
(3) Effects of the three-dimensional optical circuit device Returning to FIG. 1, the light output from the light emitting element (12) propagates through the optical waveguide (15) on the motherboard (10),
The light is transferred at an appropriate rate to the optical waveguides (25) (35) formed on the bottom surfaces of the circuit boards (20) (30) by the optical coupling device described above, and is propagated through these optical waveguides (25) (35), respectively. Then, the light processing section (27) (3
γ), and then the light is received by each light receiving element (2G>(3G>). In this way,
Light is transmitted from the motherboard (10) to multiple circuit boards (20> (
30) etc.

発光素子(22)から出力された光は回路基板(20)
の上面に形成された光導波路(21)に導かれ、光処理
部(23)で適当な処理が施されたのち、さらに光導波
路(21)を進み、上述の光結合装置を介して母基板(
10)上の光導波路(11)に移行する。そして、光導
波路(11)を伝播し、受光素子(16)によって受光
される。
The light output from the light emitting element (22) is transmitted to the circuit board (20)
After being guided through the optical waveguide (21) formed on the top surface and subjected to appropriate processing in the optical processing section (23), it further advances through the optical waveguide (21) and is connected to the mother substrate via the above-mentioned optical coupling device. (
10) Move to the upper optical waveguide (11). The light then propagates through the optical waveguide (11) and is received by the light receiving element (16).

回路基板(30)上の発光素子(32)から出力され光
導波路(31)を伝播する光もまた同じように、母基板
(10)上の光導波路(11)から取出される。このよ
うに、複数の回路基板(20)(30)等上を伝播する
光を母基板(10)から取出すことができる。
Light output from the light emitting element (32) on the circuit board (30) and propagating through the optical waveguide (31) is also extracted from the optical waveguide (11) on the motherboard (10) in the same way. In this way, light propagating on the plurality of circuit boards (20), (30), etc. can be extracted from the mother board (10).

上述の光の導入、取出しは同時に行なってもよいし、時
間的タイミングを変えて(たとえば時分割に)行なって
もよい。母基板(10)上の光導波路と回路基板(20
)  (30)等上の光導波路との結合効率を所望の値
に設定することにより、任意の光量の光の導入、取出し
が可能となる。
The above-mentioned introduction and extraction of light may be performed simultaneously, or may be performed at different temporal timings (for example, in a time-sharing manner). Optical waveguide and circuit board (20) on motherboard (10)
) (30) etc. By setting the coupling efficiency with the above optical waveguide to a desired value, it becomes possible to introduce and extract an arbitrary amount of light.

たとえば、回路基板(20)から回路基板(30)へと
いう風に、複数の回路基板上の光導波路間の光の送受も
母基板(10)を介して行なうことができる。
For example, light can also be transmitted and received between optical waveguides on a plurality of circuit boards via the mother board (10), such as from the circuit board (20) to the circuit board (30).

上記実施例では、各基板上に3次元的な光導波路が形成
されているが、各基板衣(裏、端、側)面全体に高屈折
率層を形成し、これを光導波路(層)としてもよい。も
ちろん、発、受光素子等との光結合のために、光導波路
(層)上に導波型レンズを形成することもできる。
In the above embodiment, a three-dimensional optical waveguide is formed on each substrate, but a high refractive index layer is formed on the entire surface of each substrate (back, end, side), and this is used as an optical waveguide (layer). You can also use it as Of course, a waveguide lens can also be formed on the optical waveguide (layer) for optical coupling with the light emitting and light receiving elements.

2つの回路基板を結合用導波路が形成されたそれらの端
面同志を突きあわせることにより、平面的に光結合させ
ることも可能である。
It is also possible to optically couple two circuit boards in a plane by abutting their end faces on which coupling waveguides are formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は立体光回路装置の例を示す斜視図、第2図およ
び第3図は光結合装置の例をそれぞれ示す断面図、第4
図は回路基板の角部を拡大して示す断面図、第5図は回
路基板の作成方法の例を説明するための構成図である。 (10)・・・母基板、(11)  (15)・・・母
基板の光導波路、  (20)  (30)  (40
)・・・回路基板、(21)(25)  (31)  
(35)・・・回路基板の光導波路、(21a )・・
・結合用光導波路、(24)・・・全反射面。 以上 外4名 @1図 第4図 第5図 手続補正書(關) 昭和61年1り/3日
FIG. 1 is a perspective view showing an example of a three-dimensional optical circuit device, FIGS. 2 and 3 are sectional views showing an example of an optical coupling device, and FIG.
The figure is a sectional view showing an enlarged corner of the circuit board, and FIG. 5 is a configuration diagram for explaining an example of a method for manufacturing the circuit board. (10)... Mother board, (11) (15)... Optical waveguide of mother board, (20) (30) (40
)...Circuit board, (21) (25) (31)
(35)... Optical waveguide of circuit board, (21a)...
-Coupling optical waveguide, (24)...total reflection surface. 4 people other than the above @ 1 Figure 4 Figure 5 Procedure amendment (related) January 3, 1986

Claims (1)

【特許請求の範囲】[Claims] 光導波路が形成された第1の基板と、この第1の基板の
結合されるべき面に垂直に配置され、表面に光導波路が
形成された第2の基板とを備え、第2の基板の端面に結
合用の光導波路が形成され、この結合用光導波路は、第
2の基板表面の光導波路と全反射面を介して光結合され
ているとともに、第1の基板の結合されるべき面の光導
波路と小さな間隙をあけて対面している、光結合装置。
A first substrate on which an optical waveguide is formed, and a second substrate arranged perpendicularly to a surface of the first substrate to be bonded and on which an optical waveguide is formed, the second substrate having an optical waveguide formed thereon. A coupling optical waveguide is formed on the end face, and the coupling optical waveguide is optically coupled to the optical waveguide on the surface of the second substrate via the total reflection surface, and the surface of the first substrate to be coupled. An optical coupling device that faces the optical waveguide with a small gap.
JP59271607A 1984-12-21 1984-12-21 Optical coupling device Expired - Lifetime JPH0697285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59271607A JPH0697285B2 (en) 1984-12-21 1984-12-21 Optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59271607A JPH0697285B2 (en) 1984-12-21 1984-12-21 Optical coupling device

Publications (2)

Publication Number Publication Date
JPS61148406A true JPS61148406A (en) 1986-07-07
JPH0697285B2 JPH0697285B2 (en) 1994-11-30

Family

ID=17502429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59271607A Expired - Lifetime JPH0697285B2 (en) 1984-12-21 1984-12-21 Optical coupling device

Country Status (1)

Country Link
JP (1) JPH0697285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455240A2 (en) * 1990-05-02 1991-11-06 E.I. Du Pont De Nemours And Company Slot-coupling of optical waveguide to optical waveguide devices
US6944377B2 (en) 2002-03-15 2005-09-13 Hitachi Maxell, Ltd. Optical communication device and laminated optical communication module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423903U (en) * 1977-07-21 1979-02-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423903U (en) * 1977-07-21 1979-02-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455240A2 (en) * 1990-05-02 1991-11-06 E.I. Du Pont De Nemours And Company Slot-coupling of optical waveguide to optical waveguide devices
US6944377B2 (en) 2002-03-15 2005-09-13 Hitachi Maxell, Ltd. Optical communication device and laminated optical communication module

Also Published As

Publication number Publication date
JPH0697285B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
CA1175270A (en) Optical plane circuit with an optical coupler and a method for manufacturing the same
US5500523A (en) Optical information transmitting device and method of manufacturing same
US4449783A (en) Optical star coupler with a planar mixer element
US3922062A (en) Integrally formed optical circuit with gradient refractive index
KR850005088A (en) 3 input coupler and its manufacturing method
JPS61148405A (en) Microwave optical circuit device
JPS61148406A (en) Optical coupling device
JPS61147204A (en) 3-pimensional optical circuit
JPH04288507A (en) Optical fiber two-dimensional array module
JPH0450561B2 (en)
JP2955781B2 (en) Optical waveguide connection structure
US5235661A (en) Optical connection device of a planar type
JPH0766089B2 (en) Method for manufacturing substrate for optical surface mount circuit
CN218728383U (en) Y-shaped optical structure with extended exit pupil
JP3100154B2 (en) Composite line for optoelectronic devices
JP2002323627A (en) Mother board and optical coupling structure between the mother board and card substrate
JPS6186713A (en) Optical coupling parts
JP2679760B2 (en) Optical waveguide
JPS5895715A (en) Optical switch
JPS62239113A (en) Optical waveguide and connection method thereof
JPH02110425A (en) Optical circuit element
JPS5810705A (en) Photocoupler
JPS5842967Y2 (en) Illumination device in endoscope
JPH02240607A (en) Light incident/exit structure of light guide
SU1206985A1 (en) Waveguide plate for optical integrated circuit