JPS61147521A - Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor - Google Patents

Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor

Info

Publication number
JPS61147521A
JPS61147521A JP26841384A JP26841384A JPS61147521A JP S61147521 A JPS61147521 A JP S61147521A JP 26841384 A JP26841384 A JP 26841384A JP 26841384 A JP26841384 A JP 26841384A JP S61147521 A JPS61147521 A JP S61147521A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
reaction chamber
heat source
wall
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26841384A
Other languages
Japanese (ja)
Inventor
Hiroyasu Kubota
裕康 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26841384A priority Critical patent/JPS61147521A/en
Publication of JPS61147521A publication Critical patent/JPS61147521A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To prevent a reactive product from accumulating on the inner wall of a reaction vessel by forming a heat beam transmitting partition plate between a heat source and the wall of the vessel, and providing cooling blowing means at both the heat source and vessel sides. CONSTITUTION:A partition plate 1 is formed of a material having excellent heat resistance and heat beam transmitting property, surrounded coaxially with a reaction vessel 101 in a tubular shape, mounted separately from the vessel 101 to partition between a heat source 102 and the vessel. One air flow 2 is interrupted by the plate 1 through the side of the source 102 externally of the source 102, and falls along the surface. The other air flow 12 is injected from above to a gap between the plate 1 and the side wall of the vessel 101 to fall.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体基質(以下半導体ウェーハと称する)
に化学蒸着層を被覆する方法とこれに用いられる反応器
に係り、特に反応器壁に対する冷却手段の改良に適用さ
れるものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a semiconductor substrate (hereinafter referred to as a semiconductor wafer).
The present invention relates to a method of applying a chemical vapor deposited layer to a reactor and a reactor used therein, and has particular application to improving cooling means for the reactor walls.

〔発明の技術的背景〕[Technical background of the invention]

半導体ウェーハに化学蒸着層を被覆する気相成長方法の
従来の方法を第2図に示される反応器(以下装置と称す
る)によって説明する。
A conventional method of vapor deposition for coating semiconductor wafers with chemical vapor deposited layers is illustrated by the reactor (hereinafter referred to as the apparatus) shown in FIG.

半導体基板1例えばシリコンm結晶ウェーハ(以下半導
体ウェーハと略称する) (104)を反応容器(10
1)内の支持台(103)に載置する。反応容器内はま
ず、N2.不活性ガス等で空気をパージしたのち、反応
ガスの1つであるN2を流す。
A semiconductor substrate 1, for example, a silicon m-crystal wafer (hereinafter abbreviated as semiconductor wafer) (104) is placed in a reaction vessel (10).
1) Place it on the support stand (103) inside. The inside of the reaction vessel was first filled with N2. After purging the air with an inert gas or the like, N2, which is one of the reaction gases, is supplied.

次に、加熱源のハロゲンランプ(102)を点じ、透明
な石英の反応容器(103)の側壁を透過するふく射熱
によって半導体ウェーハ(104)を加熱する。
Next, a halogen lamp (102) as a heat source is turned on, and the semiconductor wafer (104) is heated by radiant heat transmitted through the side wall of the transparent quartz reaction vessel (103).

この温度は使用される反応ガスの種類によっても異なる
が、5iC14,5iHC12,Si’82C12等の
ハロゲン化珪素を用いる場合には1050〜1200℃
がよい。
This temperature varies depending on the type of reaction gas used, but when using silicon halides such as 5iC14, 5iHC12, Si'82C12, it is 1050 to 1200°C.
Good.

次に反応ガスを反応ガス導入口(101a)から反応容
器に導入する。これにより加熱されている半導体ウェー
ハの表面近傍で気相反応が進行してこのウェーハ上にシ
リコンの単結晶が形成される。
Next, a reaction gas is introduced into the reaction vessel through the reaction gas inlet (101a). As a result, a gas phase reaction progresses near the surface of the heated semiconductor wafer, and a silicon single crystal is formed on the wafer.

次に上記単結晶層の厚さが所望に達したのち、加熱源の
出力を停止し半導体ウェーハを冷却過程に導く。所定に
冷却されたのちN2等の不活性ガスで反応容器内を十分
にパージし1反応容器を開き取出して気相成長工程を完
了する。
Next, after the thickness of the single crystal layer reaches a desired value, the output of the heating source is stopped and the semiconductor wafer is guided into a cooling process. After cooling to a predetermined level, the inside of the reaction vessel is sufficiently purged with an inert gas such as N2, and one reaction vessel is opened and taken out to complete the vapor phase growth process.

取上の工程中、特に加熱段階で反応容器壁における加熱
源のランプに対向する部分は透明体とはいえ温度上昇の
傾向にある。そして気相成長物質が蒸着しやすく、蒸着
が起こると鎖部の温度上昇が進み、半導体ウェーハの気
相成長が妨げられるという問題点がある。この対策とし
て次に述べるように加熱ランプの間隙から反応容器壁に
向は送風を施し、ふく射熱のみを照射するように設けて
いたが、加熱源のランプおよび放射板の発熱により送風
も昇温するので反応容器壁の昇温は不可避であった。
During the pick-up process, especially during the heating stage, the temperature of the portion of the wall of the reaction vessel facing the lamp of the heat source tends to rise, even though it is a transparent body. There is a problem in that vapor-phase growth substances tend to be vapor-deposited, and when vapor-deposition occurs, the temperature of the chain portion increases, which impedes vapor-phase growth of semiconductor wafers. As a countermeasure to this problem, as described below, air was blown from the gap between the heating lamps to the wall of the reaction vessel to irradiate only radiant heat, but the temperature of the blown air also rose due to the heat generated by the heat source lamps and radiation plate. Therefore, an increase in the temperature of the reaction vessel wall was unavoidable.

次に、取上の方法に用いられる従来の半導体気相成長装
置を第2図に例示する。図において、(101)は反応
容器で、熱線透過性を有する例えば透明石英でなり、こ
れを囲繞して外周に設けられたハロゲンランプの加熱源
(102)からふく射熱を透過させる。そして、反応容
器の内部には表面がSiCで被覆されたカーボンの加熱
基台(103)が設けられ、その周面に半導体ウェーハ
(104,104・・・)が配置され、前記加熱源(1
02)に反応容器壁を介して対向する。また、加熱源(
102)はこれが対向する反応容器壁側に開口された反
射板(112)を備えた実際は直線状の加熱用ランプで
ある。
Next, a conventional semiconductor vapor phase growth apparatus used in the pick-up method is illustrated in FIG. In the figure, reference numeral (101) denotes a reaction vessel, which is made of, for example, transparent quartz that is transparent to heat rays, and is surrounded by a reaction vessel that transmits heat radiated from a heat source (102) of a halogen lamp provided on the outer periphery. A heating base (103) made of carbon whose surface is coated with SiC is provided inside the reaction vessel, and semiconductor wafers (104, 104...) are arranged on the circumferential surface of the base (103), and the heating source (103) is
02) across the wall of the reaction vessel. In addition, the heating source (
Reference numeral 102) is actually a linear heating lamp equipped with a reflecting plate (112) opened on the opposite wall side of the reaction vessel.

次に、上述の装置による半導体ウェーハ(104゜10
4・・・)への気相成長膜の形成は、加熱源(102)
のふく射熱によって半導体ウェーハおよび加熱基台(1
03)が所定の温度まで加熱されたのち、反応容器(1
01)の上部の反応ガス導入口(101a)から反応ガ
ス、例えば5iC14、112、ドーピングガスの混合
ガスを導入し、半導体ウェーハ(104,104・・・
)の表面附近で気相成長を起こさせ、遊離したシリコン
原子が半導体ウェーハ上に堆積させて達成される。
Next, a semiconductor wafer (104°10
Formation of a vapor-phase growth film on 4...) is performed using a heating source (102).
The semiconductor wafer and the heating base (1
03) is heated to a predetermined temperature, the reaction vessel (1
A reactive gas, for example, a mixed gas of 5iC14, 112 and a doping gas, is introduced from the reactive gas inlet (101a) at the top of the semiconductor wafer (104, 104...
) is achieved by causing vapor phase growth near the surface of the semiconductor wafer, and the free silicon atoms are deposited on the semiconductor wafer.

この気相成長において、反応容器は石英のように熱線透
過材で形成されているが、長時間の加熱によって温度が
上昇し、内壁に反応生成物が堆積する。これを防止する
ためと、さらに加熱源ランプのケース、反射体等の温度
上昇を低減するため、反応容器の上方からこの容器壁に
沿う方向と、加熱源の外方から加熱源に向かう方向に高
圧空気噴射を施している。第2図(a)に一部を側面図
で、同図(b)に平面図で示すように、下向きの空冷流
と、加熱源の間隙を抜ける空冷流をつくる。
In this vapor phase growth, the reaction vessel is made of a heat-transmitting material such as quartz, but the temperature rises due to long-term heating, and reaction products are deposited on the inner wall. In order to prevent this and further reduce the temperature rise of the heat source lamp case, reflector, etc., Equipped with high pressure air injection. As partially shown in a side view in FIG. 2(a) and in a plan view in FIG. 2(b), a downward air cooling flow and an air cooling flow passing through the gap between the heating sources are created.

従来の気相成長装置では反応生成物が反応容器の内壁に
堆積しやすく、堆積物が多くなると気相成長膜の品質が
低下し、さらには加熱源からの赤外線を吸収してしまう
ため、反応容器内の半導体ウェーハ自体の加熱効率が低
下するという問題がある。そのため、安定した品質の気
相成長膜を製造するには頻繁に反応容器を洗浄し、内壁
に堆積した反応生成物を洗い落す必要があった6〔発明
の目的〕 この発明は上記従来の問題点を改良するもので、反応容
器の内壁に反応生成物が堆積するのを防止し安定した気
相成長膜を設ける。
In conventional vapor phase growth equipment, reaction products tend to accumulate on the inner walls of the reaction vessel, and when the amount of deposits increases, the quality of the vapor phase grown film deteriorates, and furthermore, the infrared rays from the heating source are absorbed, so the reaction There is a problem in that the heating efficiency of the semiconductor wafer itself inside the container is reduced. Therefore, in order to produce a vapor-phase grown film of stable quality, it was necessary to frequently clean the reaction vessel and wash off the reaction products deposited on the inner wall.6 [Object of the Invention] This invention solves the above-mentioned conventional problems. This method improves this point by preventing reaction products from accumulating on the inner wall of the reaction vessel and providing a stable vapor phase growth film.

〔発明の概要〕[Summary of the invention]

この発明は熱線透過性の反応容器壁の外周に加熱源を、
内部に上記加熱源に対向させて半導体ウェーハを置き、
容器内を気相成長雰囲気にして加熱された半導体ウェー
ハに気相成長を施すとともに、この加熱中加熱源のケー
スと反応容器壁に対し強制空冷を施す半導体ウェーハの
気相成長方法と装置に関し、加熱源と反応容器壁との間
に熱線透過性の仕切板を設け、前記仕切板の加熱源側に
加熱源ケースの冷却用送風手段を、仕切板の反応容器壁
側に反応容器壁の冷却用送風手段を備えて半導体ウェー
ハに化学蒸着層を被覆させることを特徴とする。
In this invention, a heating source is placed on the outer periphery of a heat-transparent reaction vessel wall.
A semiconductor wafer is placed inside facing the heating source,
Regarding a method and apparatus for vapor phase growth of a semiconductor wafer, which performs vapor phase growth on a heated semiconductor wafer in a vapor phase growth atmosphere inside a container, and also applies forced air cooling to the case of a heat source and the wall of a reaction vessel during this heating, A heat ray-transparent partition plate is provided between the heat source and the reaction vessel wall, a ventilation means for cooling the heating source case is provided on the heat source side of the partition plate, and a cooling means for cooling the reaction vessel wall is provided on the reaction vessel wall side of the partition plate. The present invention is characterized in that it includes an air blowing means for coating a semiconductor wafer with a chemical vapor deposition layer.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図面を参照して従来との相
違点につき説明する。なお、説明において、従来と変わ
らない部分については図面に同じ符号をもって示し、説
明を省略する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings, regarding the differences from the conventional one. In addition, in the description, parts that are the same as the conventional ones are indicated by the same reference numerals in the drawings, and the description will be omitted.

一実施例を従来の第2図に準じて第1図に示す。One embodiment is shown in FIG. 1 in accordance with the conventional FIG. 2.

図において、(1)は加熱源(102)と反応容器(1
01)との間に設けられた仕切板で1例えば透明石英の
ような耐熱性と熱線透過性に優れた材質で構成され、管
型で反応容器(101)と同軸に囲続し、かつこれから
離れて装着される。
In the figure, (1) represents a heating source (102) and a reaction vessel (1).
01) is made of a material with excellent heat resistance and heat ray transparency, such as transparent quartz, and is tubular in shape and coaxially surrounding the reaction vessel (101). mounted apart.

そして冷却送風の手段としての高圧空気による空気流(
2,12)は次の2系統でなる。
and airflow using high-pressure air as a means of cooling air (
2, 12) consists of the following two systems.

まず、その一方の空気流(2)は、従来の方向と同様で
加熱源(102)の外方からこの加熱源の側方を経て仕
切板(1)に遮られこの面に沿って下降することによっ
て形成される。
First, one of the airflows (2) is the same as the conventional direction, from outside the heating source (102), passing through the side of this heating source, being blocked by the partition plate (1), and descending along this surface. formed by

次に他方の空気流(12)は、仕切板(1)と反応容器
(101)の側壁との間隙に上方から噴射され下降する
ことによって形成される。
Next, the other air flow (12) is formed by being injected from above into the gap between the partition plate (1) and the side wall of the reaction vessel (101) and descending.

なお、上記冷却のための空気流は一般に用いられる送気
用パイプによってこの装置の外方に多数配置すればよく
、図にはその一部のみ示し、他を省略した。
Note that the air flow for the cooling described above may be provided in large numbers on the outside of this device using commonly used air supply pipes, and only some of them are shown in the figure, and the others are omitted.

取上の如く、反応容器と加熱源とを冷却するための媒体
(空気)の流れを分離させることによって反応容器壁を
冷却するための媒体は加熱源の熱によって熱せられるこ
とがなく、反応容器壁のみを効率的に冷却できる。
As mentioned above, by separating the flow of the medium (air) for cooling the reaction vessel and the heating source, the medium for cooling the reaction vessel wall is not heated by the heat of the heating source, and the reaction vessel Only the walls can be efficiently cooled.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、まず1反応容器壁と加熱源との冷却
媒体(空気)の流れを夫々独立させることにより、反応
容器壁に対する冷却が向上し、反応容器内壁への反応生
成物の堆積が防止できた。
According to this invention, first, by making the flow of the cooling medium (air) between the wall of the reaction vessel and the heating source independent, cooling of the wall of the reaction vessel is improved, and the accumulation of reaction products on the inner wall of the reaction vessel is prevented. It could have been prevented.

その結果、これまでふく射加熱型装置では反応生成物の
堆積が多すぎて実用的には使用不能とされていた5it
(4ガスを反応ガスとして使用できるようになった。ま
た、反応容器内壁への堆積を抑止できることから反応容
器の頻繁な洗浄を大幅に少なくでき、安定した品質の気
相成長膜を長期にわたって製造できてこの装置の稼働率
を大幅に向上させた。
As a result, 5it, which had previously been considered unusable due to the accumulation of reaction products in radiant heating equipment, was developed.
(4 gases can now be used as reaction gases. In addition, since deposition on the inner walls of the reaction vessel can be suppressed, frequent cleaning of the reaction vessel can be significantly reduced, allowing the production of vapor-grown films of stable quality over a long period of time. This greatly improved the operating rate of this equipment.

なお、冷却用媒体としては空気に限らず、加熱源からの
ふく射を吸収せず、熱的に安定なガスであれば同様の効
果が得られることはいうまでもない。
Note that the cooling medium is not limited to air; it goes without saying that the same effect can be obtained as long as it is a thermally stable gas that does not absorb radiation from the heating source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の1実施例の半導体気相成長装置を示
す図(a)は側面断面図、図(b)は図(a)のAA線
に沿う断面図、第2図は従来の半導体気相成長装置を示
す図(a)は側面断面図、図(b)は図(a)のAA線
に沿う断面図である6 1       仕切板
FIG. 1 shows a semiconductor vapor phase growth apparatus according to an embodiment of the present invention. (a) is a side cross-sectional view, FIG. (b) is a cross-sectional view taken along line AA in FIG. Figure (a) showing a semiconductor vapor phase growth apparatus is a side cross-sectional view, and figure (b) is a cross-sectional view taken along line AA in figure (a).

Claims (1)

【特許請求の範囲】 1、壁の少なくとも一部が予定の短波長で伝達される放
射エネルギに対して透過性である反応室内に前記放射エ
ネルギに不透過性であるサセプタに被覆すべき半導体基
質を載置し、放射熱源を設けて熱エネルギをその予定の
波長で前記反応室壁を通して前記サセプタを加熱するこ
とによって前記半導体基質に伝達加熱し、前記放射熱源
と前記反応室壁間に前記放射エネルギに対し透過性の仕
切板を設置し、ガス状の反応剤を前記反応室内に導入し
て前記加熱された半導体基質に接触するとともに前記仕
切板と前記反応室壁および前記放射熱源間を冷却して前
記半導体基質のみに化学蒸着層を形成することを特徴と
する半導体基質に化学蒸着層を被覆する方法。 2、短波長の放射エネルギを照射する放射熱源と、前記
放射熱源に近接して配置され被覆すべき半導体基質を収
納する反応室と、前記反応室壁の前記放射源に近接する
位置部分に設けられた前記熱源によって得られる短波長
の熱エネルギに対し透明な反応室壁部と、前記反応室内
に設けられ前記半導体基質を支持し前記熱エネルギに不
透過性のサセプタと、前記反応室壁と前記放射熱源間に
配置された前記放射熱エネルギに対し透明な仕切板とを
備えたことを特徴とする半導体基質に化学蒸着層を被覆
する反応器。
Claims: 1. A semiconductor substrate to be coated on a susceptor that is opaque to radiant energy in a reaction chamber, at least a portion of whose walls are transparent to radiant energy transmitted at a predetermined short wavelength. and a radiant heat source is provided to transfer thermal energy at a predetermined wavelength to the semiconductor substrate by heating the susceptor through the reaction chamber wall, and the radiant heat source is provided between the radiant heat source and the reaction chamber wall to transfer heat to the semiconductor substrate by heating the susceptor through the reaction chamber wall. An energy-permeable partition plate is installed, and a gaseous reactant is introduced into the reaction chamber to contact the heated semiconductor substrate and cool the space between the partition plate, the reaction chamber wall, and the radiant heat source. A method for coating a semiconductor substrate with a chemical vapor deposited layer, the method comprising: forming a chemical vapor deposited layer only on the semiconductor substrate. 2. A radiant heat source that irradiates short-wavelength radiant energy, a reaction chamber that is placed close to the radiant heat source and houses the semiconductor substrate to be coated, and a reaction chamber that is provided in a portion of the wall of the reaction chamber that is close to the radiant source. a reaction chamber wall that is transparent to short wavelength thermal energy obtained by the heat source; a susceptor that is provided within the reaction chamber and supports the semiconductor substrate and is impermeable to the thermal energy; A reactor for coating a semiconductor substrate with a chemical vapor deposition layer, comprising: a partition plate transparent to the radiant heat energy disposed between the radiant heat sources.
JP26841384A 1984-12-21 1984-12-21 Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor Pending JPS61147521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26841384A JPS61147521A (en) 1984-12-21 1984-12-21 Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26841384A JPS61147521A (en) 1984-12-21 1984-12-21 Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor

Publications (1)

Publication Number Publication Date
JPS61147521A true JPS61147521A (en) 1986-07-05

Family

ID=17458132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26841384A Pending JPS61147521A (en) 1984-12-21 1984-12-21 Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor

Country Status (1)

Country Link
JP (1) JPS61147521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028544A (en) * 2010-07-23 2012-02-09 Ulvac Japan Ltd Substrate heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028544A (en) * 2010-07-23 2012-02-09 Ulvac Japan Ltd Substrate heating furnace

Similar Documents

Publication Publication Date Title
US5493987A (en) Chemical vapor deposition reactor and method
US4653428A (en) Selective chemical vapor deposition apparatus
US6720531B1 (en) Light scattering process chamber walls
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
US4499354A (en) Susceptor for radiant absorption heater system
US6325858B1 (en) Long life high temperature process chamber
JP4108748B2 (en) Cold wall vapor deposition
JPS6258639A (en) Chemical evaporating apparatus and method
TW201833381A (en) Absorbing reflector for semiconductor processing chamber
KR100375396B1 (en) Reaction chamber with semi-high temperature wall
JPS60161616A (en) Infrared heating unit for semiconductor wafer
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPH09245957A (en) High frequency induction heating furnace
JPS61147521A (en) Method of coating chemical deposition layer on semiconductor substrate and reactor using therefor
EP0223787A1 (en) Selective chemical vapor deposition method and apparatus.
JPS60189927A (en) Vapor phase reactor
JPH04243122A (en) Chemical vapor growth apparatus
JPS60116778A (en) Chemical deposition and device
JPS61289623A (en) Vapor-phase reaction device
JPS62101021A (en) Semiconductor manufacturing equipment
US4856458A (en) Photo CVD apparatus having no ultraviolet light window
JPS6314870A (en) Method for selective growth of thin metallic film
JPS63181414A (en) Apparatus for forming semiconductor film
JPS60253212A (en) Vapor growth device
JPH0611031B2 (en) Gas phase reaction vessel