JPS6114741B2 - - Google Patents

Info

Publication number
JPS6114741B2
JPS6114741B2 JP52142295A JP14229577A JPS6114741B2 JP S6114741 B2 JPS6114741 B2 JP S6114741B2 JP 52142295 A JP52142295 A JP 52142295A JP 14229577 A JP14229577 A JP 14229577A JP S6114741 B2 JPS6114741 B2 JP S6114741B2
Authority
JP
Japan
Prior art keywords
cooling liquid
coolant
conduits
magnetic shield
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52142295A
Other languages
Japanese (ja)
Other versions
JPS5386413A (en
Inventor
Arekuseeuichi Uinokurofu Arekusandoru
Sutepanoichi Gorubunofu Gennadeii
Georugieuichi Kororukofu Anatorii
Sutepanoichi Hohofu Yurii
Marukoichi Rozenfuerudo Refu
Uashirieuichi Sukachikofu Yurii
Ioshifu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RENIN PUROIZUBODOSUTOBENNOE EREKUTOROMASHINOSUTOROITERUNOE OBIEDEINENIE EREKUTOROSHIRA IMENI ESU EMU KIROWA
SUPECHIARU KONSUTO BYUROO ENERUGOHIMUMASHI
Original Assignee
RENIN PUROIZUBODOSUTOBENNOE EREKUTOROMASHINOSUTOROITERUNOE OBIEDEINENIE EREKUTOROSHIRA IMENI ESU EMU KIROWA
SUPECHIARU KONSUTO BYUROO ENERUGOHIMUMASHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RENIN PUROIZUBODOSUTOBENNOE EREKUTOROMASHINOSUTOROITERUNOE OBIEDEINENIE EREKUTOROSHIRA IMENI ESU EMU KIROWA, SUPECHIARU KONSUTO BYUROO ENERUGOHIMUMASHI filed Critical RENIN PUROIZUBODOSUTOBENNOE EREKUTOROMASHINOSUTOROITERUNOE OBIEDEINENIE EREKUTOROSHIRA IMENI ESU EMU KIROWA
Publication of JPS5386413A publication Critical patent/JPS5386413A/en
Publication of JPS6114741B2 publication Critical patent/JPS6114741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 本発明は電気機器、特に低温流体によつて冷却
される電気機器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrical equipment, particularly electrical equipment cooled by cryogenic fluid.

本発明は、原子力発電所、火力発電所、その他
の発電所、輸送機関および飛行機に設置される、
電気モータ、発電機および変換器のようなあらゆ
る種類の電気機器に使用できる。本発明は発電所
の外部空間にも使用できる。また、超電導現象を
利用する他の装置および設備において、本発明は
経時変化する磁場の影響から超電導体をシールド
するのに有利に使用できる。
The present invention is installed in nuclear power plants, thermal power plants, other power plants, transportation facilities, and airplanes.
Can be used in all kinds of electrical equipment such as electric motors, generators and converters. The invention can also be used in external spaces of power plants. Additionally, in other devices and equipment that utilize superconducting phenomena, the present invention can be advantageously used to shield superconductors from the effects of time-varying magnetic fields.

従来の低温流体によつて冷却される電気機器
(参照:フランス特許第2089515号、1971年4月9
日、分類H02k3/00)は超電導材料の磁気しやへ
いによつて囲まれる中空回転子の中に位置する超
電導場コイルを具備する。
Electrical equipment cooled by conventional cryogenic fluids (see French Patent No. 2089515, April 9, 1971)
(Japan, classification H02k3/00) comprises a superconducting field coil located in a hollow rotor surrounded by a magnetic shield of superconducting material.

従来形の磁気しやへいは熱伝導係数の大きい材
料によつて包まれた超電導材料の長いフアイバで
ある。この磁気しやへいは回転子の外面に直接配
置され、自らの熱伝導性によつて回転子の超電導
コイルに結合して冷却される。
A conventional magnetic shield is a long fiber of superconducting material wrapped in a material with a high coefficient of thermal conductivity. This magnetic shield is placed directly on the outer surface of the rotor and is cooled by its thermal conductivity, which couples it to the rotor's superconducting coils.

交番する磁場によつて磁気しやへいに生じた熱
はただちに超電導コイルに伝わるので、上述の磁
気しやへいの配置は低効率である。これは余分に
冷却剤の消費を必要とし、またこの熱に見合う電
力消費量も膨大となる。
The above-described magnetic shield arrangement is inefficient because the heat generated in the magnetic shield by the alternating magnetic field is immediately transferred to the superconducting coil. This requires additional coolant consumption, and the power consumption associated with this heat is also significant.

本発明の目的は超電導場コイルの熱的絶縁の効
率を向上させ、従つて、電気機器の効率を向上さ
せることにある。
The object of the invention is to improve the efficiency of the thermal insulation of superconducting field coils and thus to improve the efficiency of electrical equipment.

上述の目的を達成するために本発明によれば、
中空回転子と、該中空回転子の内側に配置され且
つ冷却液によつて冷却される超電導場コイルと、
前記中空回転子を囲む熱および磁気しやへい手段
とを具備する低温流体によつて冷却される電気機
器において、前記熱および磁気しやへい手段が、
熱しやへいとして少なくとも2つの同軸の円筒
と、該円筒間に固定された磁気しやへいとを具備
し、冷却液の循環のための導管が前記磁気しやへ
いと前記接合面に設けられ、前記導管が前記冷却
液の取入用および排出用の少なくとも2つの平担
な円板室に通じ、該円板室が前記中空回転子の軸
対称に位置且つ前記円筒の端面の少なくとも1つ
に隣接され、前記熱および磁気しやへい手段を、
前記導管中に前記冷却液を軸方向に逆流させるこ
とによつて冷却することを特徴とする低温流体に
よつて冷却される電気機器が提供される。
According to the present invention, in order to achieve the above object,
a hollow rotor; a superconducting field coil disposed inside the hollow rotor and cooled by a cooling liquid;
An electrical appliance cooled by a cryogenic fluid comprising thermal and magnetic shielding means surrounding said hollow rotor, said thermal and magnetic shielding means comprising:
comprising at least two coaxial cylinders as heating shields and a magnetic shield fixed between the cylinders, a conduit for circulation of cooling liquid being provided at the joint surface of the magnetic shield, The conduit leads to at least two flat disk chambers for intake and discharge of the cooling fluid, the disk chambers being located axially symmetrically of the hollow rotor and adjacent to at least one end face of the cylinder. , the thermal and magnetic shielding means;
There is provided an electrical device cooled by a cryogenic fluid, characterized in that it is cooled by axially counter-flowing the cooling liquid into the conduit.

上述の電気機器によつて超電導場コイルを磁気
しやへい内に生ずる熱の影響から保護することが
でき、ゆえに冷却液の消費量を減少させ且つ該電
気機器の効率を向上させることができる。
The above-mentioned electrical equipment makes it possible to protect the superconducting field coils from the effects of heat generated in the magnetic shield, thus reducing the consumption of cooling liquid and increasing the efficiency of the electrical equipment.

上述の電気機器にあつて、前記導管を前記磁気
しやへいと前記円筒との接合面に沿つてらせん状
に配置させるのが有利である。
In the electrical device described above, it is advantageous for the conduit to be arranged in a helical manner along the interface between the magnetic shield and the cylinder.

さらに上述の電気機器にあつて、製造を容易に
するために、前記磁気しやへいの外面および内面
がねじ接合によつて前記円筒に固定され、該ねじ
接合が冷却液の循環のための隙間を有するのが好
ましい。
Furthermore, in the above-mentioned electrical equipment, in order to facilitate manufacturing, the outer and inner surfaces of the magnetic shield are fixed to the cylinder by screw joints, and the screw joints provide a gap for circulation of cooling fluid. It is preferable to have

導管の流れる冷却液の流速を大きくするため
に、上述の電気機器にあつて、冷却液の取入用の
前記円板室が循環液のための導管の中に冷却液を
強制的に挿入する手段を備え、一方、冷却液の排
出用の前記円板室が導管の中の冷却液を排出する
手段を備え、もつて循環する冷却液の圧力低下を
生じさせるのが好ましい。
In order to increase the flow rate of the coolant flowing through the conduit, in the above-mentioned electrical equipment, the disk chamber for the intake of the coolant is configured to forcibly insert the coolant into the conduit for the circulating fluid. Preferably, the disc chamber for the discharge of coolant is provided with means for discharging the coolant in the conduit, thereby creating a pressure drop in the circulating coolant.

冷却液が滑らかに循環するために且つ冷却液の
取入用の平担な円板室の端面を均一に冷却するた
めに、上述の電気機器にあつて、冷却液の循環の
ための導管の中に冷却液を強制的に挿入する前記
手段が円板室の端面に固定された翼の形状である
のが好ましい。
In order for the coolant to circulate smoothly and to uniformly cool the end face of the flat disk chamber for the intake of the coolant, in the above-mentioned electrical equipment, inside the conduit for the circulation of the coolant. Preferably, said means for forcibly introducing cooling liquid into the chamber are in the form of wings fixed to the end faces of the disc chamber.

導管から冷却液を滑らかに排出するために、冷
却液の循環のための導管の中から冷却液を排出す
る前記手段が円板室の端面に固定されたらせん状
のストリツプであることが好ましい。
In order to smoothly discharge the coolant from the conduit, it is preferred that said means for discharging the coolant from within the conduit for circulation of the coolant is a helical strip fixed to the end face of the disc chamber.

添付図を参照して本発明の実施例を説明する。 Embodiments of the present invention will be described with reference to the accompanying drawings.

第1図を参照すると、低温流体によつて冷却さ
れる電気機器は中空回転子1を具備する。中空回
転子1の軸2は密閉された枠5の端しやへい4の
中に配置された軸受3に保持されている。枠5の
内面に固定コイル6がある。回転子1の熱的絶縁
のために電気機器の回転子1と枠5との間の空間
は真空に保持されている。正しいシールは端しや
へい4内の真空シール7を回転することによつて
保証される。
Referring to FIG. 1, an electrical device cooled by a cryogenic fluid comprises a hollow rotor 1. The shaft 2 of the hollow rotor 1 is held in a bearing 3 arranged at the end of a closed frame 5 or in a shield 4. There is a fixed coil 6 on the inner surface of the frame 5. In order to thermally insulate the rotor 1, the space between the rotor 1 and the frame 5 of the electrical device is kept in a vacuum. Correct sealing is ensured by rotating the vacuum seals 7 in the ends and enclosures 4.

中空回転子1は超電導場コイル9を含む非磁性
体円筒8を具備する。超電導場コイル9はエポキ
シ樹脂によつて固定され、超電導材料たとえば錫
ニオブ(NbSn)から作られている。超電導場コ
イル9は他の高電導度の材料たとえばジルコニウ
ムニオブまたはチタニウムニオブからも作られ
る。
The hollow rotor 1 comprises a non-magnetic cylinder 8 containing a superconducting field coil 9. The superconducting field coil 9 is fixed by epoxy resin and is made of a superconducting material, for example tin niobium (NbSn). The superconducting field coil 9 can also be made from other highly conductive materials, such as zirconium niobium or titanium niobium.

枠5と非磁性体円筒8との間の空間には磁気し
やへい12を間にはさむ2つの非磁性体の同軸な
円筒10,11の熱しやへいが設けられている。
磁気しやへい12は、超電導材料たとえば
Nb3Sn、または高電導度材料たとえば銅、アルミ
ニウムから作られる。超電導材料は電気導体材料
の表面にスパツタによつて付着される。磁気しや
へい12は電気導体材料内に設けられた超電導材
料フアイバから作られる。
In the space between the frame 5 and the non-magnetic cylinder 8, there are provided heating shields made of two coaxial non-magnetic cylinders 10 and 11 with a magnetic shield 12 sandwiched therebetween.
The magnetic shield 12 is made of superconducting material, for example
Nb 3 Sn, or made from high conductivity materials such as copper and aluminum. The superconducting material is sputtered onto the surface of the electrically conductive material. The magnetic shield 12 is made from superconducting material fibers disposed within an electrically conductive material.

超電導場コイル9は非磁性体円筒8の中に充満
する冷却液13によつて超電導状態まで冷却され
る。冷却液13としては液体ヘリウムが使用され
る。
The superconducting field coil 9 is cooled to a superconducting state by the cooling liquid 13 filling the non-magnetic cylinder 8. Liquid helium is used as the coolant 13.

超電導場コイル9まで冷却液13を運ぶため
に、回転子1の軸2は管14を含む軸導管を備え
る。2つの平担な円板室15は冷却液13の取入
のために熱しやへいの端面に隣接し、一方、2つ
の平担な円板室16は冷却液13の排出のために
円板室15と同軸に位置する。熱しやへいの端面
に隣接する円板室15,16は、同軸な外側の円
筒10および内側の円筒11の端面、熱しやへ
い、中空仕切り17によつて規定される。磁気し
やへい12は冷却液13を戻すために磁気しやへ
い12の両端面から等距離の位置に孔18を有す
る。冷却液13の排出用の円板室16は冷却液1
3を排出するために回転子1の軸2の中に設けら
れた導管19に通じている。磁気しやへい12は
非磁性体円筒8から取り出される冷却液13によ
つて冷却される。第2図を参照すると冷却液13
は磁気しやへい12と同軸な円筒10,11との
接合面に沿つてらせん状に位置する導管20に沿
つて循環する。
In order to convey the cooling liquid 13 to the superconducting field coils 9, the shaft 2 of the rotor 1 is provided with an axial conduit containing a tube 14. Two flat disk chambers 15 adjoin the end faces of the heating chamber for the intake of the cooling liquid 13, while two flat disk chambers 16 are connected to the disk chamber 15 for the discharge of the cooling liquid 13. Located coaxially. The disc chambers 15, 16 adjacent to the end surfaces of the heating chamber are defined by the end surfaces of the coaxial outer cylinder 10 and inner cylinder 11, the heating chamber, and the hollow partition 17. The magnetic shield 12 has holes 18 at positions equidistant from both end faces of the magnetic shield 12 for returning the coolant 13. The disc chamber 16 for discharging the coolant 13 is the coolant 1.
3 into a conduit 19 provided in the shaft 2 of the rotor 1. The magnetic shield 12 is cooled by a cooling liquid 13 taken out from the non-magnetic cylinder 8. Referring to FIG.
is circulated along a conduit 20 located in a spiral manner along the interface between the magnetic shield 12 and the coaxial cylinders 10, 11.

冷却液13を循環させるための導管20は、基
本的には、不完全なねじ山形状をした、磁気しや
へい12と同軸な外側の円筒10および内側の円
筒11とをねじ接合することによつて生じる隙間
である。
The conduit 20 for circulating the coolant 13 is basically formed by threading an outer cylinder 10 and an inner cylinder 11 coaxial with the magnetic shield 12 and having an incomplete thread shape. This is the gap that is created as a result.

ねじは多案ねじ形状で熱交換表面を拡大してあ
るものが好ましい。同軸な円筒11,12の両端
から中央の孔18までの2つの部分に互いに反対
方向のねじ山(左巻ねじ山と右巻ねじ山)が切ら
れている。
Preferably, the screw has a multiple thread shape with an enlarged heat exchange surface. Threads (left-handed threads and right-handed threads) in opposite directions are cut in two parts from both ends of the coaxial cylinders 11 and 12 to the hole 18 in the center.

第3図は磁気しやへい12と熱しやへいの同軸
な外側の円筒23および内側の円筒24との接合
の他の変更例を示す。
FIG. 3 shows another modification of the connection between the magnetic shield 12 and the coaxial outer cylinder 23 and inner cylinder 24 of the thermal shield.

磁気しやへい12は銅円筒22の外面および内
面にNb3Snの超電導膜を付着したものである。円
筒23,24,22は重嵌着接合(heavy−
drive fit)によつて接合される。冷却液13を循
環させるための導管25は磁気しやへい12と円
筒23,24との接合面に沿つてらせん状に位置
し、また導管25の形状は矩形である。
The magnetic shield 12 is a copper cylinder 22 with superconducting films of Nb 3 Sn attached to the outer and inner surfaces. The cylinders 23, 24, 22 are joined by heavy fitting (heavy-
drive fit). A conduit 25 for circulating the coolant 13 is located in a spiral along the joint surface between the magnetic shield 12 and the cylinders 23 and 24, and the shape of the conduit 25 is rectangular.

第4図を参照すると、冷却液13の取入側の平
坦な円板室15は円板室15の端面に固定された
中心から外に向かう翼26を具備する。
Referring to FIG. 4, the flat disc chamber 15 on the intake side of the coolant 13 is provided with centrally directed wings 26 fixed to the end face of the disc chamber 15.

第5図を参照すると、冷却液13の排出側の平
坦な円板室16は円板室16の端面に固定された
渦巻状のストリツプ27から作られる仕切りを有
する。
Referring to FIG. 5, the flat disk chamber 16 on the discharge side of the coolant 13 has a partition made of a spiral strip 27 fixed to the end face of the disk chamber 16.

冷却液13としての液体ヘリウムは管14から
超電導場コイル9へ供給され、超電導場コイル9
を冷却後に磁気しやへい12の両端に位置する円
板室15に送られる。
Liquid helium as a cooling liquid 13 is supplied from a tube 14 to the superconducting field coil 9.
After being cooled, it is sent to the disk chambers 15 located at both ends of the magnetic shield 12.

回転子1が回転している場合、蒸発したヘリウ
ムが円板室15の中に入つて中央から周辺へ流れ
る。このとき円板室15の壁が冷却される。また
回転子1が回転すると、翼26は冷却液を引込み
冷却後に円周方向の速度を与える。冷却液13に
作用する遠心力のために非磁性体円筒8から付加
的に冷却液13が排出され、導管20の中に送り
込まれる。さらに冷却液13は熱しやへいの円筒
11の内側のらせん状導管20に沿つて流れ、さ
らに孔18を介して円筒10の外側のらせん状導
管20に沿つて流れる。冷却液13がらせん状の
導管20を循環しているときは、冷却液13は回
転速度成分を有するので滑らかに平坦な円板室1
6の中に流れ込む。円板室16においては、スト
リツプ27が冷却液13を導管20から排出する
手段として働き、これにより、冷却液13の圧力
低下を生じさせる。そして冷却液13は排出用導
管19に送られ、円板室16の壁を冷却後に回転
子1の外へ排出される。
When the rotor 1 is rotating, evaporated helium enters the disk chamber 15 and flows from the center to the periphery. At this time, the wall of the disk chamber 15 is cooled. Further, when the rotor 1 rotates, the blades 26 draw in the cooling fluid and provide a speed in the circumferential direction after cooling. Due to the centrifugal force acting on the coolant 13 , the coolant 13 is additionally discharged from the non-magnetic cylinder 8 and fed into the conduit 20 . Furthermore, the cooling liquid 13 flows along a helical conduit 20 inside the heating cylinder 11 and further along a helical conduit 20 outside the cylinder 10 via the hole 18 . When the coolant 13 is circulating through the spiral conduit 20, the coolant 13 has a rotational speed component, so that the disk chamber 1 is smoothly and flat.
It flows into 6. In the disk chamber 16, the strip 27 serves as a means for draining the coolant 13 from the conduit 20, thereby creating a pressure drop in the coolant 13. The cooling liquid 13 is then sent to a discharge conduit 19 and discharged to the outside of the rotor 1 after cooling the wall of the disc chamber 16.

低温流体によつて冷却される電気機器の上述の
実施例は交番磁界によつて磁気しやへいに生ずる
熱を取り除くことを可能にする。
The above-described embodiments of electrical equipment cooled by cryogenic fluids make it possible to remove the heat generated magnetically by alternating magnetic fields.

また、上述の実施例は、電気機器の両端に位置
する平坦な円板室を備えることによつて該電気機
器の両端からの熱流入を減少させ、もつて、超電
導場コイルの熱的保護効率を向上させる。
The above-described embodiment also reduces the heat inflow from both ends of the electrical equipment by providing flat disk chambers located at both ends of the electrical equipment, thereby increasing the thermal protection efficiency of the superconducting field coil. Improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る低温流体によつて冷却さ
れる電気機器の一実施例を示す縦断面図、第2図
は第1図の部分Aの拡大図、第3図は本発明に係
る磁気しやへいおよび平坦な円板室による熱しや
へいの他の変更例を示す部分図、第4図は本発明
に係る冷却液の取入用の平坦な円板室の断面図、
第5図は本発明に係る冷却液の排出用の平坦な円
板室の断面図である。 1……中空回転子、5……枠、9……超電導場
コイル、10,11,23,24……熱しやへい
としての同軸な円筒、12……磁気しやへい、1
3……冷却液、15……冷却液の取入用の平坦な
円板室、16……冷却液の排出用の平坦な円板
室、20,25……冷却液の循環用導管、26…
…翼、27……ストリツプ。
FIG. 1 is a longitudinal sectional view showing an embodiment of an electrical device cooled by a low-temperature fluid according to the present invention, FIG. 2 is an enlarged view of part A in FIG. 1, and FIG. FIG. 4 is a sectional view of a flat disc chamber for intake of cooling fluid according to the present invention; FIG.
FIG. 5 is a sectional view of a flat disk chamber for cooling liquid discharge according to the invention. 1... Hollow rotor, 5... Frame, 9... Superconducting field coil, 10, 11, 23, 24... Coaxial cylinder as heat shield, 12... Magnetic shield, 1
3...Cooling liquid, 15...Flat disk chamber for intake of coolant, 16...Flat disk chamber for discharging coolant, 20, 25...Conduit for circulation of coolant, 26...
...wings, 27...strips.

Claims (1)

【特許請求の範囲】 1 中空回転子1と、該中空回転子の内側に配置
され且つ冷却液13によつて冷却される超電導場
コイル9と、前記中空回転子を囲む熱および磁気
しやへい手段10,11,12とを具備する低温
流体によつて冷却される電気機器において、前記
熱および磁気しやへい手段が、熱しやへいとして
の少なくとも2つの同軸の円筒10,11と、該
円筒間に固定された磁気しやへい12とを具備
し、冷却液13の循環のための導管20,25が
前記磁気しやへい12と前記円筒10,11との
接合面に設けら、前記導管20,25が前記冷却
液13の取入用および排出用の少なくとも2つの
平担な円板室15,16に通じ、該円板室15,
16が前記中空回転子1の軸対称に位置且つ前記
円筒10,11の端面の少なくとも1つに隣接さ
れ、前記熱および磁気しやへい手段10,11,
12を、前記導管20,25中に前記冷却液13
を軸方向に逆流させることによつて冷却すること
を特徴とする低温流体によつて冷却される電気機
器。 2 前記導管20,25が前記磁気しやへい12
と前記円筒10,11との前記接合面に沿つてら
せん状に配置された特許請求の範囲第1項に記載
の電気機器。 3 前記磁気しやへい12の外面および内面がね
じ接合によつて円筒10,11に固定され、該ね
じ接合が冷却液13の循環のための隙間を有する
特許請求の範囲第2項に記載の電気機器。 4 冷却液13の取入用の前記円板室15が冷却
液13の循環のための導管20,25の中に冷却
液13を強制的に挿入する手段を備え、一方、冷
却液13の排出用の前記円板室16が導管20,
25の中の冷却液13を排出する手段を備え、も
つて循環する冷却液13の圧力低下を生じさせる
特許請求の範囲第3項に記載の電気機器。 5 冷却液13の循環のための導管20,25の
中に冷却液13を強制的に挿入する前記手段が円
板室15の端面に固定された翼26の形状である
特許請求の範囲第4項記載の電気機器。 6 冷却液13の循環のための導管20,25の
中から冷却液13を排出する前記手段が円板室1
6の端面に固定されたらせん状のストリツプ27
である特許請求の範囲第4項に記載の電気機器。
[Claims] 1. A hollow rotor 1, a superconducting field coil 9 disposed inside the hollow rotor and cooled by a cooling liquid 13, and a thermal and magnetic shield surrounding the hollow rotor. an electrical appliance cooled by a cryogenic fluid comprising means 10, 11, 12, said thermal and magnetic shielding means comprising at least two coaxial cylinders 10, 11 as thermal shields; A magnetic shield 12 is fixed therebetween, and conduits 20 and 25 for circulating the coolant 13 are provided at the joint surfaces of the magnetic shield 12 and the cylinders 10 and 11, and the conduits 20, 25 lead to at least two flat disk chambers 15, 16 for the intake and discharge of said cooling liquid 13, said disk chambers 15,
16 is located axially symmetrically of the hollow rotor 1 and adjacent to at least one of the end faces of the cylinders 10, 11, and the thermal and magnetic resistance means 10, 11,
12 and the cooling liquid 13 in the conduits 20, 25.
An electrical device cooled by a low-temperature fluid, characterized in that it is cooled by axially counterflowing the fluid. 2 The conduits 20 and 25 are connected to the magnetic shield 12
The electric device according to claim 1, wherein the electric device is arranged spirally along the joint surface between the cylinders 10 and 11. 3. The outer and inner surfaces of the magnetic shield 12 are fixed to the cylinders 10, 11 by threaded joints, and the threaded joints have a gap for circulation of the cooling liquid 13. electrical equipment. 4. Said disc chamber 15 for the intake of the cooling liquid 13 is provided with means for forcibly inserting the cooling liquid 13 into the conduits 20, 25 for the circulation of the cooling liquid 13, while for the discharge of the cooling liquid 13 The disc chamber 16 is connected to the conduit 20,
4. An electrical appliance as claimed in claim 3, comprising means for discharging the coolant 13 in the circulating coolant 13, thereby creating a pressure drop in the circulating coolant 13. 5. Said means for forcibly inserting the cooling liquid 13 into the conduits 20, 25 for the circulation of the cooling liquid 13 is in the form of a wing 26 fixed to the end face of the disc chamber 15. Electrical equipment listed. 6. Said means for discharging the cooling liquid 13 from the conduits 20, 25 for circulation of the cooling liquid 13
Helical strip 27 fixed to the end face of 6
An electrical device according to claim 4.
JP14229577A 1976-11-30 1977-11-29 Electric machine which is cooled by lowwtemperature fluid Granted JPS5386413A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU762421859A SU629601A1 (en) 1976-11-30 1976-11-30 Electric machine with cryogenic cooling

Publications (2)

Publication Number Publication Date
JPS5386413A JPS5386413A (en) 1978-07-29
JPS6114741B2 true JPS6114741B2 (en) 1986-04-21

Family

ID=20683519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14229577A Granted JPS5386413A (en) 1976-11-30 1977-11-29 Electric machine which is cooled by lowwtemperature fluid

Country Status (3)

Country Link
JP (1) JPS5386413A (en)
DE (1) DE2753460C3 (en)
SU (1) SU629601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354863U (en) * 1986-09-29 1988-04-13

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH623174A5 (en) * 1978-01-25 1981-05-15 Bbc Brown Boveri & Cie
DE2820985C2 (en) * 1978-05-12 1983-11-03 Leningradskoe proizvodstvennoe elektromašinostroitel'noe ob"edinenie "Elektrosila", Leningrad Cryogenically cooled electrical machine
DE2843129C2 (en) * 1978-10-03 1987-03-26 Institut teplofiziki sibirskogo otdelenija Akademii Nauk SSSR, Novosibirsk Electric machine with cryocooling
DE2855832C2 (en) * 1978-12-22 1984-11-29 Leningradskoe proizvodstvennoe elektromašinostroitel'noe ob"edinenie "Elektrosila", Leningrad Cryogenically cooled electrical machine
DE2858052C2 (en) * 1978-12-22 1986-03-20 Leningradskoe proizvodstvennoe elektromašinostroitel'noe ob"edinenie "Elektrosila", Leningrad Power supply for a cryogenically cooled electrical machine
JPS5594559A (en) * 1979-01-11 1980-07-18 Sp K Buyuro Enerugohimashiyu Electric machine using cryogenic cooling
JPS5686051A (en) * 1979-12-14 1981-07-13 Fuji Electric Co Ltd Superconduction rotor
JPS61196763A (en) * 1985-02-26 1986-08-30 Mitsubishi Electric Corp Rotor of superconductive rotary electric machine
WO1991017902A1 (en) * 1990-05-24 1991-11-28 Seiko Epson Corporation Electric automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044405A (en) * 1973-08-06 1975-04-21
JPS5171903A (en) * 1974-12-19 1976-06-22 Mitsubishi Electric Corp Chodendokaitenshino netsukokanki

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1068803B (en) * 1958-01-28 1959-11-12
CH428919A (en) * 1965-10-29 1967-01-31 Bbc Brown Boveri & Cie Turbo generator with directly cooled windings
GB1282412A (en) * 1968-08-09 1972-07-19 English Electric Co Ltd Dynamo electric machines
GB1351601A (en) * 1970-04-09 1974-05-01 Int Research & Dev Co Ltd Superconducting dynamo-electric machines
CH516250A (en) * 1970-07-21 1971-11-30 Int Research & Dev Co Ltd Alternating current synchronous machine system
DE2453182C3 (en) * 1974-11-08 1982-01-21 Siemens AG, 1000 Berlin und 8000 München Arrangement for cooling rotor parts of a turbo generator
US3956648A (en) * 1974-11-13 1976-05-11 Massachusetts Institute Of Technology Superconducting machine having flexible shield means operable to protect the superconducting field winding against transients

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044405A (en) * 1973-08-06 1975-04-21
JPS5171903A (en) * 1974-12-19 1976-06-22 Mitsubishi Electric Corp Chodendokaitenshino netsukokanki

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354863U (en) * 1986-09-29 1988-04-13

Also Published As

Publication number Publication date
DE2753460B2 (en) 1980-12-11
DE2753460A1 (en) 1978-06-01
JPS5386413A (en) 1978-07-29
SU629601A1 (en) 1978-10-25
DE2753460C3 (en) 1986-03-27

Similar Documents

Publication Publication Date Title
US3809933A (en) Supercooled rotor coil type electric machine
US6515383B1 (en) Passive, phase-change, stator winding end-turn cooled electric machine
US6313556B1 (en) Superconducting electromechanical rotating device having a liquid-cooled, potted, one layer stator winding
JP2005518777A (en) Heat conduction stator support structure
JPS6114741B2 (en)
US3189769A (en) Dynamoelectric machine rotor cooling
US4174483A (en) Cryogenically cooled electrical machine
JPH0728526B2 (en) Synchronous device with superconducting windings
KR20020087364A (en) Synchronous machine having cryogenic gas transfer coupling to rotor with super-conducting coils
US4277705A (en) Method and apparatus for cooling a winding in the rotor of an electrical machine
CA1148191A (en) Liquid coolant transfer device
US4227102A (en) Electrical machine with cryogenic cooling
US4745313A (en) Stator having three-phase superconducting windings
US4208598A (en) Electrical machine with cryogenic cooling
JPS6114742B2 (en)
US6577028B2 (en) High temperature superconducting rotor power leads
GB1564646A (en) Cryogenically cooled electrical apparatus
US6459178B1 (en) Forced-convection heat exchanger for a rotary electrical machine
Edmonds et al. Application of high temperature superconductivity to electric motor design
JPS63228960A (en) Rotor for superconducting rotary electric machine
JPS63228957A (en) Rotor for superconducting rotary electric machine
JPS6035896B2 (en) rotating electric machine
JPS6248473B2 (en)
JPS6143949B2 (en)
JPS605768A (en) Stator of rotary field type superconductive electric machine