JPS61147154A - Thin-film oxygen sensor - Google Patents

Thin-film oxygen sensor

Info

Publication number
JPS61147154A
JPS61147154A JP59269769A JP26976984A JPS61147154A JP S61147154 A JPS61147154 A JP S61147154A JP 59269769 A JP59269769 A JP 59269769A JP 26976984 A JP26976984 A JP 26976984A JP S61147154 A JPS61147154 A JP S61147154A
Authority
JP
Japan
Prior art keywords
oxygen
film
solid electrolyte
electrode film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59269769A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishiguro
俊行 石黒
Takeshi Nagai
彪 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59269769A priority Critical patent/JPS61147154A/en
Publication of JPS61147154A publication Critical patent/JPS61147154A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To utilize an oxygen pumping phenomenon in operation at an ordinary temp. and to determine the concentration of oxygen in a gas by laminating the 1st electrode film, a solid electrolyte film and the 2nd electrode film on an electrical insulating substrate. CONSTITUTION:When an electric power source 8 is driven against the 2nd electrode film 14 installed through the 1st electrode film 2 and the solid electrolyte film 3 on the electrical insulating substrate 1, oxygen ions pass through the electrolyte film 3 and flow from the electrod film 2 side to the electrode film 4 side toward the reverse direction against that of the electric current, and so-called pumping phenomenon occurs. Accordingly, when the volume of a chamber consisting of an opening part 5 and a resistor 6 for diffusing oxygen and the impessed current are kept constant, the discharging time of oxygen present in the chamber to the outside corresponds to the concentration of oxygen in an atmosphere to be determined. The oxygen present in the resistor 6 is discharged by increasing gradually the voltage impressed to the electrolyte film 3, and at this point of time the current is saturated, the phenomenon of limiting current is obtained and this limiting current corresponds to the concentration of oxygen in the atmosphere to be determined.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は固体電解質を利用した気体中の酸素濃度測定
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to the measurement of oxygen concentration in gas using a solid electrolyte.

従来の技術 従来、この種のセンサとしては例えば、特開昭52−7
2286号、−特開昭59−192953号や、「セン
ナの基礎と応用」シンポジウム(第4回)の限界電流式
酸素センサ、低温作動型ジルコニア酸素センサ等に開示
されているように酸素ポンプ現象を利用したものが知ら
れている。
2. Description of the Related Art Conventionally, this type of sensor has been disclosed, for example, in Japanese Patent Application Laid-Open No. 52-7
No. 2286, - JP-A-59-192953, and the oxygen pump phenomenon as disclosed in the limiting current type oxygen sensor, low-temperature operation type zirconia oxygen sensor, etc. of the "Fundamentals and Applications of Senna" Symposium (4th). It is known that it is used.

ところが、これらのセ/すは固体電解質を形成するジル
コニアが焼結体で作られており、厚みが0.3〜2騙前
後と厚膜型であるためにセンサとしての動作温度が30
0〜800 ’Cと高い状態で使用するようになってい
た。
However, these cells are made of sintered zirconia, which forms the solid electrolyte, and are thick film types with a thickness of approximately 0.3 to 2 mm, so the operating temperature as a sensor is 30°C.
It was designed to be used at temperatures as high as 0 to 800'C.

発明が解決しようとする問題点 しかしながら上記のような構成では動作温度を高めるた
めに燃焼排ガス中に設置したり、ヒータ全使用して温度
制御をするために加熱源が必要であシ、また高温使用の
ために耐久性に難があるという問題点を有していた。
Problems to be Solved by the Invention However, with the above configuration, a heating source is required to be installed in the combustion exhaust gas to increase the operating temperature, or to control the temperature by fully using the heater. It had a problem of poor durability due to its use.

本発明はかかる従来の問題を解消するもので常温動作(
室温〜200°C付近)での酸素ポンプ現象を利用して
気体中の酸素濃度を測定するセンサを提供することを目
的とする。
The present invention solves such conventional problems and operates at room temperature (
An object of the present invention is to provide a sensor that measures oxygen concentration in a gas by utilizing the oxygen pump phenomenon at temperatures ranging from room temperature to around 200°C.

問題点を解決するための手段 上記問題点を解決するために、本発明は絶縁性基板上に
、第1の電極膜、固体電解質膜お上び第2の電極膜を積
層形成し、上記絶縁性基板の固体電解質膜を形成した部
分の少なくとも一部を除去するとともに、除去部分を覆
う酸素拡散抵抗体を設けた構成である。
Means for Solving the Problems In order to solve the above problems, the present invention forms a first electrode film, a solid electrolyte film, and a second electrode film in layers on an insulating substrate. In this structure, at least a portion of the solid electrolyte membrane formed on the solid substrate is removed, and an oxygen diffusion resistor is provided to cover the removed portion.

作用 本発明は上記した構成によって、固体i解質膜の両側の
電極に通電を行ない、固体電解質膜に電圧を印加すると
、酸素拡散抵抗体側(第1の電極が陰極)から酸素分子
の流入2反対の第2の電極が陽極側からは酸素分子の放
出が始まり、電圧増加と共に電流が比例的に増す75S
ある電流で飽和し、これが限界電流となり、酸素濃度に
比例した値をとる。これは、第1の電極側への酸素分子
の流入が酸素拡散抵抗体により妨げられ拡散律速となる
ためである。ここで、固体電解質膜を薄膜形成I〜てい
るために、低温においても酸素イオン導伝性が向上し動
作温度を低下させることができる。
Effect of the present invention With the above-described configuration, when electricity is applied to the electrodes on both sides of the solid electrolyte membrane and a voltage is applied to the solid electrolyte membrane, oxygen molecules flow in from the oxygen diffusion resistor side (the first electrode is the cathode). Oxygen molecules begin to be released from the anode side of the opposite second electrode, and the current increases proportionally as the voltage increases 75S
It saturates at a certain current, which becomes the limiting current, and takes a value proportional to the oxygen concentration. This is because the oxygen diffusion resistor prevents the oxygen molecules from flowing into the first electrode side, resulting in diffusion rate limiting. Here, since the solid electrolyte membrane is formed into a thin film, oxygen ion conductivity is improved even at low temperatures, and the operating temperature can be lowered.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。第1図は本発明の薄膜酸素センサの一実施例を示す
断面図である。平板状の硝子板や石英板やシリコン板等
よりなる絶縁性基板1の一部の表面上に一部を除いて第
1の電極膜2全蒸着やスパッタリングにより形成し、そ
の第1の電極膜2の端面の一部を残してその上面に酸化
ジルコニウム(ZrOz)に酸化イツトリウム(Y2O
2)や酸化カルシウム(CaO)  や酸化マグネシウ
ム(MgO)等より選んだ一種を固溶させたターゲット
i用いてスパッタリングを400°C以上の温度状態で
行ない1〜20μmの固体電解質膜3を形成した。次に
前記第1の電極膜2に非接触になるように固体電解質膜
3を介して第2の電極膜4を蒸着やスパッタリングによ
り絶縁性基板1の第1の電極2を形成した残りの面に形
成した。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 is a sectional view showing an embodiment of the thin film oxygen sensor of the present invention. A first electrode film 2 is formed by full vapor deposition or sputtering on a part of the surface of an insulating substrate 1 made of a flat glass plate, quartz plate, silicon plate, etc., except for a part. Zirconium oxide (ZrOz) and yttrium oxide (Y2O
2), calcium oxide (CaO), magnesium oxide (MgO), etc., was used as a solid solution in target i, and sputtering was performed at a temperature of 400°C or higher to form a solid electrolyte film 3 with a thickness of 1 to 20 μm. . Next, a second electrode film 4 is deposited on the remaining surface of the insulating substrate 1 on which the first electrode 2 is formed by vapor deposition or sputtering through the solid electrolyte film 3 so as not to contact the first electrode film 2. was formed.

第1の電極膜2と第2の電極膜4としてはpt。The first electrode film 2 and the second electrode film 4 are PT.

Zr等の薄膜電極膜が用いられる。A thin film electrode film such as Zr is used.

上記第1の電極膜2.固体電解質膜3.第2の電極膜4
を形成後、平板状の絶縁性基板1の裏面の一部は、HF
などにより化学的に溶解して除去される。この時点で第
1の電極膜2の表面が一部臨んで開口部5を形成する。
The first electrode film 2. Solid electrolyte membrane 3. Second electrode film 4
After forming, a part of the back surface of the flat insulating substrate 1 is covered with HF.
It is chemically dissolved and removed by methods such as methods. At this point, a part of the surface of the first electrode film 2 is exposed to form an opening 5.

この開口部6側に酸素拡散抵抗体6を装着し、毛管7を
形成している。
An oxygen diffusion resistor 6 is attached to the opening 6 side to form a capillary tube 7.

前記第1の電極膜2.第2の電極膜4の間に電圧を印加
すべく構成した電源8と両電極間に流れる電流全測定す
るために配した電流計9と同じく電圧を測定するために
配した電圧計10により回路を構成している。これら電
源構成は、酸素拡散抵抗体が反対面にあるために、電極
リードの取出しゃ、膜の破損がなくなシ、簡単な構成が
得られる。
Said first electrode film 2. A circuit is constructed using a power source 8 configured to apply a voltage between the second electrode film 4, an ammeter 9 arranged to measure the total current flowing between both electrodes, and a voltmeter 10 arranged similarly to measure the voltage. It consists of In these power source configurations, since the oxygen diffusion resistor is on the opposite side, there is no damage to the membrane when the electrode lead is taken out, and a simple configuration can be obtained.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

絶縁性基板1上に構成した第1の電極膜2と固体電解質
膜3′ft:介して設けた第2の電極膜4に電源8を駆
動させ電流を流すと、電流流れと逆方向で第1の電極2
側から固体電解質膜3を通過し、第2の電極膜4側に酸
素イオンが流れる。いわゆる酸素のボンピング現象が生
じる。このため、開口部5と酸素拡散抵抗体6により構
成している室の容積と印加電流を一定にすると室内の酸
素が外部へ放出される時間が被測定雰囲気A中の酸素濃
度に対応してくる。そして、固体電解質膜3への印加電
圧を漸次増やすことにより、前記酸素拡散抵抗体θ内の
室の酸素が放出された時点で電流が一定で飽和し限界電
流となる現象が得られ、この限界電流が被測定雰囲気A
中の酸素濃度に対応して得られる。これが第2図、第3
図に表わしたグラフである。詳細て言うならば、第1の
電極膜を陰極とし、第2の電極膜を陽極として固体電解
質3に電圧印加を行なうと、酸素拡散抵抗体6の毛管7
が非常に酸素流入に抵抗になって抑制され、その結果酸
素拡散抵抗体θ内の室の酸素濃度が拡散律速により外気
の被測定雰囲気中入の濃度よりも減少するものである。
When the power source 8 is driven and a current is applied to the second electrode film 4 provided between the first electrode film 2 and the solid electrolyte film 3'ft formed on the insulating substrate 1, the second electrode film 2 and the solid electrolyte film 3' are formed on the insulating substrate 1. 1 electrode 2
Oxygen ions flow from the side through the solid electrolyte membrane 3 to the second electrode membrane 4 side. A so-called oxygen bombing phenomenon occurs. Therefore, if the volume of the chamber made up of the opening 5 and the oxygen diffusion resistor 6 and the applied current are constant, the time it takes for oxygen in the chamber to be released to the outside corresponds to the oxygen concentration in the atmosphere A to be measured. come. By gradually increasing the voltage applied to the solid electrolyte membrane 3, it is possible to obtain a phenomenon in which the current saturates at a constant level at the point when the oxygen in the chamber in the oxygen diffusion resistor θ is released, and reaches the limit current. Current is measured in atmosphere A
Obtained according to the oxygen concentration inside. This is Figure 2 and Figure 3.
This is a graph shown in the figure. In detail, when a voltage is applied to the solid electrolyte 3 with the first electrode film as a cathode and the second electrode film as an anode, the capillary 7 of the oxygen diffusion resistor 6
The oxygen concentration in the chamber inside the oxygen diffusion resistor θ becomes lower than the concentration in the outside air entering the atmosphere to be measured due to diffusion control.

ここで、従来の原模型の固体電解質を使用したものでは
、最低でも300゛C以上の高温状態に加熱しなければ
、内部抵抗と酸素イオン導伝性が良くならない欠点があ
ったが本発明のように従来に比へて一〜□程度も薄い固
体電解質1〜20μm=r形成させることに工り、常温
から200 ”C以下でも十分に酸素イオン導伝性が向
上し、動作温度の低減が可能になった。また、この固体
電解質膜3は、前述したように酸化ジルコニウム(Zr
0z )に酸化イツトリウム(Y2O5)等を固溶した
ターゲツト材を用いてスパッタリングを行ない、その時
の固体電解質形成面を400″C以上に保つことにより
、固体電解質膜3の結晶構造が完全安定化ジルコニアの
立方晶構造が得られ、内部のジルコニアとイツトリアの
イオン価の違いから酸素のイオン空孔が生じ、これが常
温で酸素イオンの導伝性を高め、動作温度の減少に寄与
しているものである。
Here, the conventional original model using a solid electrolyte had the disadvantage that the internal resistance and oxygen ion conductivity did not improve unless it was heated to a high temperature of at least 300°C, but the present invention By forming a solid electrolyte 1-20μm=r which is 1-20μm thinner than the conventional method, the oxygen ion conductivity is sufficiently improved even from room temperature to 200"C or less, and the operating temperature can be reduced. Furthermore, as mentioned above, this solid electrolyte membrane 3 is made of zirconium oxide (Zr
By performing sputtering using a target material containing yttrium oxide (Y2O5) etc. as a solid solution in solid electrolyte membrane 3 and keeping the solid electrolyte forming surface at a temperature of 400"C or higher, the crystal structure of the solid electrolyte membrane 3 becomes completely stabilized zirconia. A cubic crystal structure is obtained, and the difference in ionic valence between zirconia and yttria inside creates oxygen ion vacancies, which increases the conductivity of oxygen ions at room temperature and contributes to a reduction in operating temperature. be.

発明の効果 本発明は、第1の電極膜と固体電解質膜と第2の電極膜
を絶縁性基板に積層することにより次の効果を奏する。
Effects of the Invention The present invention provides the following effects by laminating a first electrode film, a solid electrolyte film, and a second electrode film on an insulating substrate.

■ 固体電解質膜を1〜20μmの薄膜化にして、動作
温度の低減化を図り、常温使用の可能性を見い出し、信
頼性、耐久性が向上した。
(2) By making the solid electrolyte membrane thinner to a thickness of 1 to 20 μm, the operating temperature was lowered, the possibility of use at room temperature was discovered, and reliability and durability were improved.

■ 固体電解質膜の常温使用で酸素イオン導伝性を高め
る立方晶構造の薄膜が得られた。
■ A thin film with a cubic structure that improves oxygen ion conductivity was obtained by using a solid electrolyte membrane at room temperature.

■ 平板状絶縁性基板の上部へ積層したセンサ膜の下面
の一部を化学的に取除き薄膜化を維持した強固なセンサ
構成を開発した。
■ We have developed a strong sensor structure that maintains a thin film by chemically removing part of the bottom surface of the sensor film stacked on top of a flat insulating substrate.

■ 酸素拡散抵抗体は、平板状絶縁性基板の薄膜形成面
と反対側に取付可能となり、膜の破損や電極リードの取
出しが簡単になる。
■ The oxygen diffusion resistor can be mounted on the opposite side of the flat insulating substrate from the thin film formation surface, making it easier to damage the film and remove the electrode leads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の薄膜酸素センサの断面図、
第2図は酸素濃度と限界電流特性、第3電 図は電圧と限界流特性図である。 1・・・・・・絶縁性基板、2・・・・・・第1の電極
、3・・・・・・固体電解質膜、4・・・・・・第2の
電極、6・・・・・・開口部、6・・・・・・酸素拡散
抵抗体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 f・・・鰍、呼4シ()1童J二」−千5穫3ξ2・・
・’4tのt槽 3・・ T!54/E5シナ償月莫2 4・・・#、2のt楊 5・−・藺υ郁 t・・・藪ム肱散物机牌
FIG. 1 is a sectional view of a thin film oxygen sensor according to an embodiment of the present invention;
Figure 2 shows the oxygen concentration and limiting current characteristics, and the third electrogram shows the voltage and limiting current characteristics. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... First electrode, 3... Solid electrolyte membrane, 4... Second electrode, 6... ...Opening, 6...Oxygen diffusion resistor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure f...Saltfish, call 4shi ()1 child J2'' - 1,500 harvests 3ξ2...
・'4t tank 3... T! 54/E5 China redemption moon mo 2 4... #, 2's t Yang 5... - 藺υ郁t... Yabumuji sanmono tile

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性基板上に第1の電極膜を形成し、その第1
の電極膜上に少なくとも一部が接するように固体電解質
膜を形成し、その固体電解質膜を介して上記第1の電極
膜に少なくとも一部が対向する第2の電極膜を形成し、
上記絶縁性基板の上記固体電解質膜を形成した部分の少
なくとも一部を除去するとともに、その除去部分を覆う
酸素拡散抵抗体を設けた薄膜酸素センサ。
(1) Form a first electrode film on an insulating substrate, and
forming a solid electrolyte membrane so as to be at least partially in contact with the electrode membrane, and forming a second electrode membrane at least partially facing the first electrode membrane via the solid electrolyte membrane;
A thin film oxygen sensor, wherein at least a portion of the solid electrolyte membrane of the insulating substrate is removed, and an oxygen diffusion resistor is provided to cover the removed portion.
(2)固体電解質膜を1〜20μmの薄膜化構成とした
特許請求の範囲第1項記載の薄膜酸素センサ。
(2) The thin film oxygen sensor according to claim 1, wherein the solid electrolyte membrane is thinned to a thickness of 1 to 20 μm.
(3)固体電解質膜は、酸化ジルコニウム(ZrO_2
)に酸化イットリウム(Y_2O_5)、あるいは酸化
カルシウム(CaO)や酸化マグネシウム(MgO)等
を固溶させ、スパッタリングで400℃以上の温度で薄
膜形成してなる特許請求の範囲第1項記載の薄膜酸素セ
ンサ。
(3) The solid electrolyte membrane is made of zirconium oxide (ZrO_2
) with yttrium oxide (Y_2O_5), calcium oxide (CaO), magnesium oxide (MgO), etc. as a solid solution, and formed into a thin film by sputtering at a temperature of 400°C or higher. sensor.
JP59269769A 1984-12-20 1984-12-20 Thin-film oxygen sensor Pending JPS61147154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59269769A JPS61147154A (en) 1984-12-20 1984-12-20 Thin-film oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59269769A JPS61147154A (en) 1984-12-20 1984-12-20 Thin-film oxygen sensor

Publications (1)

Publication Number Publication Date
JPS61147154A true JPS61147154A (en) 1986-07-04

Family

ID=17476889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59269769A Pending JPS61147154A (en) 1984-12-20 1984-12-20 Thin-film oxygen sensor

Country Status (1)

Country Link
JP (1) JPS61147154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116250A (en) * 1985-11-15 1987-05-27 Sharp Corp Preparation of oxygen concentration detecting element
JPS62134551A (en) * 1985-12-06 1987-06-17 Sharp Corp Preparation of oxygen concentration detection element
JPS63259459A (en) * 1987-04-17 1988-10-26 Toshiba Corp Limiting current type gas sensor
JPH05157729A (en) * 1991-12-07 1993-06-25 Mitsuteru Kimura Oxygen sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116250A (en) * 1985-11-15 1987-05-27 Sharp Corp Preparation of oxygen concentration detecting element
JPS62134551A (en) * 1985-12-06 1987-06-17 Sharp Corp Preparation of oxygen concentration detection element
JPS63259459A (en) * 1987-04-17 1988-10-26 Toshiba Corp Limiting current type gas sensor
JPH05157729A (en) * 1991-12-07 1993-06-25 Mitsuteru Kimura Oxygen sensor

Similar Documents

Publication Publication Date Title
US4500412A (en) Oxygen sensor with heater
JPH04345762A (en) Gas separating film type fuel cell
JP3656882B2 (en) Method for producing electrochemical element
JPS61147154A (en) Thin-film oxygen sensor
KR0165651B1 (en) Electrochemical device
JP3831320B2 (en) Limit current type oxygen sensor
JPS6311847A (en) Air/fuel ratio detecting element
JP3106971B2 (en) Oxygen sensor
JPS62144063A (en) Threshold current type oxygen sensor
JP2948124B2 (en) Oxygen sensor
JPH0353578B2 (en)
JPH1010085A (en) Manufacture of electrochemical device
JP3051220B2 (en) Oxygen sensor element and manufacturing method thereof
JPH02269948A (en) Sensor for combustion control
JPH02147853A (en) Sensor for detecting concentration of gas
JP2926912B2 (en) Oxygen sensor
JPH08220035A (en) Gas sensor
JP3424455B2 (en) Oxygen sensor
Takeuchi et al. Oxygen Sensors A/F Control
Oh et al. Planar-type, gas diffusion-controlled oxygen sensor fabricated by the plasma spray method
KR20040108051A (en) Carbon dioxide gas sensor and fabrication method for the same
JPS61241652A (en) Method for discriminating activation of oxygen concentration sensor
JPH01102354A (en) Sensor for controlling combustion
JP2004198075A (en) Combustion system using limiting current type oxygen sensor element, sensor element manufacturing method or heating and driving method of sensor element used therefor
JPS59136651A (en) Air-fuel ratio meter for automobile