JPS61147147A - Waste gas sensor - Google Patents
Waste gas sensorInfo
- Publication number
- JPS61147147A JPS61147147A JP27025384A JP27025384A JPS61147147A JP S61147147 A JPS61147147 A JP S61147147A JP 27025384 A JP27025384 A JP 27025384A JP 27025384 A JP27025384 A JP 27025384A JP S61147147 A JPS61147147 A JP S61147147A
- Authority
- JP
- Japan
- Prior art keywords
- delta
- atio3
- compd
- mol
- gas sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の利用分野]
この発明は、ペロブスカイト化合物の抵抗値の変化を用
いた排ガスセンサに関し、特にその酸素感度の改善に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an exhaust gas sensor that uses a change in the resistance value of a perovskite compound, and particularly relates to improving its oxygen sensitivity.
この発明の排ガスセンサは、自動車エンジン、ボイラー
、加熱炉等の空燃比の制御や、ストーブの不完全燃焼の
防止等に用いる。The exhaust gas sensor of the present invention is used to control the air-fuel ratio of automobile engines, boilers, heating furnaces, etc., and to prevent incomplete combustion in stoves.
特開昭56−54340は、5rTio8.を用いた排
ガスセンサを開示している。それによると、5ETjO
a−a はn形金属酸化物半導体で、^く1の領域でも
、λ〉1の領域でも、空燃比λの増大により高抵抗化す
る。つぎに酸素感度を示す量として、半導体の抵抗値(
Rs )を、
n
R5=に、Po2
と整理した際のnの値を酸素勾配と定義する。JP-A-56-54340 discloses 5rTio8. discloses an exhaust gas sensor using According to it, 5ETjO
a-a is an n-type metal oxide semiconductor, and the resistance becomes high as the air-fuel ratio λ increases both in the region where ^1 and in the region where λ>1. Next, the resistance value of the semiconductor (
Rs) is rearranged as nR5= and Po2, and the value of n is defined as the oxygen gradient.
特開昭56−54840号によれば、8rTi08゜の
酸素勾配の絶対値は、P形半導体のLaC1003゜の
酸素勾配、700°Cで約0.11、とほぼ等しい。According to JP-A-56-54840, the absolute value of the oxygen gradient in 8rTi08° is approximately equal to the oxygen gradient in P-type semiconductor LaC1003°, which is approximately 0.11 at 700°C.
また特開昭56−54840は、8rTi03.の焼結
剤に、OaO64%、B20826%、SiO□10%
の高融点ガラスを用いることを開示している。Moreover, Japanese Patent Application Laid-Open No. 56-54840 discloses 8rTi03. Sintering agent: OaO64%, B20826%, SiO□10%
discloses the use of a high melting point glass.
この発明の課題は、排ガスセンサ材料として用いる8r
TiO8,やcaTio3.等の化合物の、酸素感度を
向上させることに有る。The problem of this invention is to use 8r as an exhaust gas sensor material.
TiO8, and caTio3. The aim is to improve the oxygen sensitivity of compounds such as.
この発明の排ガスセンサでは、ペロブスカイト化合物A
Ti03=3 、 コこにAは、Ca 、 Br 、
Ba 。In the exhaust gas sensor of this invention, perovskite compound A
Ti03=3, here A is Ca, Br,
Ba.
Raからなる群の少くとも一員の元素を、δは非化学量
論的パラメータを現す、の抵抗値から排ガス組成の変化
を検出する。Changes in exhaust gas composition are detected from the resistance value of at least one member of the group consisting of Ra, where δ represents a non-stoichiometric parameter.
化合物Ar1o8.には、その1モル当り1〜20モル
%の、SiO2,Ge09.HfO2,zrO2゜Th
O2からなる群の少くとも一員の物質を添加し、酸素感
度を改善させる。加える5io2やGeO2等は、非晶
質、非ガラス質のものに限られる。Compound Ar1o8. contains 1 to 20 mol% of SiO2, Ge09. HfO2,zrO2゜Th
At least a member of the group consisting of O2 is added to improve oxygen sensitivity. The 5io2, GeO2, etc. to be added are limited to amorphous and non-vitreous materials.
caTio3.や5rrio8−、の抵抗値は、空燃比
λの変化に対し特異な挙動を示す。リーンバーン領域(
λ〉1の領域)では、抵抗値は人の増加により減少しP
形性を示す。これに対しλを1以上から1未満に変化さ
せた際の、抵抗値の変化はわずかで有り、当量点付近で
の抵抗値のクリティカルな変化が得られない。このこと
は純学術的には、caTio3.や8rTi08−、は
、当量点付近ではP形ともn形ともつかない半導体で有
る、または当量点付近での雰囲気変化への応答が測定不
能な程度に遅いことを、示唆する。caTio3. The resistance values of and 5rrio8- exhibit a peculiar behavior with respect to changes in the air-fuel ratio λ. Lean burn area (
In the region (λ〉1), the resistance value decreases as the number of people increases, and P
Shows form. On the other hand, when λ is changed from 1 or more to less than 1, the change in resistance value is slight, and a critical change in resistance value near the equivalence point cannot be obtained. Purely academically, this means that caTio3. and 8rTi08- suggests that it is a semiconductor that is neither P-type nor N-type near the equivalence point, or that the response to atmospheric changes near the equivalence point is unmeasurably slow.
caTio3.や5rrio3.のリーンバーン領域で
の酸素勾配は、例えば700’Cで約0.21となる。caTio3. Ya5rrio3. The oxygen gradient in the lean burn region is, for example, about 0.21 at 700'C.
これに対して、LaCOO8,−、や8rFe08.(
7)700℃テノ酸素勾配は約0.11で、5rrio
3Bの約172で有る。このように酸素感度が極めて高
いという点に、c aTi o や5rrio3.
の特a−δ
異性が有る。On the other hand, LaCOO8,-, 8rFe08. (
7) The teno-oxygen gradient at 700°C is approximately 0.11 and 5 rrio
It is about 172 of 3B. In this way, caTi o and 5rrio3.
There is a-δ isomerism.
BaTi0 やRaTiO3,の場合は、完全なB
3−δ
形金属酸化物半導体で、その酸素勾配は700°Cで−
0,11程度となる。In the case of BaTi0 and RaTiO3, complete B
It is a 3-δ type metal oxide semiconductor whose oxygen gradient is − at 700°C.
It will be about 0.11.
これらの化合物に、5モル%程度のSiO2を加えると
700°Cでの酸素勾配は、caTio3.や5rTi
o8.の場合は0.21から0.23に、BaTi0
やRaTiO3−、の場合は−0,11から8−δ
−0,13へ、それぞれ絶対値で0.02程度増大する
。酸素勾配の上限は、絶対値で1/4、または1/6と
考えられ(例えば特開昭57−179654)、0.0
2の増加は大きなものと言える。When approximately 5 mol% of SiO2 is added to these compounds, the oxygen gradient at 700°C becomes caTio3. Ya5rTi
o8. from 0.21 to 0.23 for BaTi0
and RaTiO3-, the absolute value increases by about 0.02 from -0.11 to 8-δ -0.13, respectively. The upper limit of the oxygen gradient is considered to be 1/4 or 1/6 in absolute value (for example, JP-A-57-179654), and 0.0
An increase of 2 can be said to be significant.
酸素勾配の増加は、SiO2でのみ得られるのではなく
、GeO2,HfO2,zrO□、ThO2でも得るこ
とができる。しかし類似の4価の金属酸化物で有る、T
iO2では酸素勾配は改善されなかった。An increase in oxygen gradient is not only obtained with SiO2, but also with GeO2, HfO2, zrO□, and ThO2. However, a similar tetravalent metal oxide, T
iO2 did not improve the oxygen gradient.
SiO2やGeO3等の存在形態は、非晶質かつ非ガラ
ス質のゲルに限られる。石英微結晶やホウケイ酸ガラス
等の添加では、酸素勾配は改善されなかった。The existing form of SiO2, GeO3, etc. is limited to an amorphous and non-vitreous gel. Addition of quartz microcrystals, borosilicate glass, etc. did not improve the oxygen gradient.
8102やGeO□等の添加量は、化合物ATiO3゜
1モル当り1〜20モル%、より好ましくは4〜12モ
ル%とする。0.5モル%の添加には効果がなく、2モ
ル%では顕著な効果が有り、5モル%以上の添加で効果
は飽和する。これ以上の添加はセンサの高抵抗化をもた
らし、添加量の上限を20モル%、より好ましくは12
モル%とする。The amount of addition of 8102, GeO□, etc. is 1 to 20 mol%, more preferably 4 to 12 mol%, per 1 mol of compound ATiO3. Addition of 0.5 mol% has no effect, 2 mol% has a significant effect, and addition of 5 mol% or more saturates the effect. Adding more than this will result in high resistance of the sensor, and the upper limit of the amount added should be 20 mol%, more preferably 12
expressed as mol%.
(化合物の調整)
CaCO3,8rO03,BaCO3,RaCO3ある
いはそれらの混合物を等モル量のTiO2と混合し、空
気中で1時間1100°C−1400℃で仮焼した。(Preparation of compound) CaCO3, 8rO03, BaCO3, RaCO3 or a mixture thereof was mixed with an equimolar amount of TiO2 and calcined in air at 1100°C-1400°C for 1 hour.
この過程でペロブスカイト化合物ATiO3−、が生ず
る。なお以下では、非化学量論的パラメータlを除いて
、化合物を表記する。In this process, a perovskite compound ATiO3- is produced. In addition, below, a compound is described except for the non-stoichiometric parameter l.
これとは別に、アルカリ金属フリーのシリカコロイドを
用意し、その1部にSio。1モル当りNaOH換算で
1,000モルppm、および5モ)し%のNaOHを
加えた。またアルカリ金属フリーのシリカのキセロゲル
(比表面積150m/lを用意した。Separately, alkali metal-free silica colloid was prepared, and part of it contained Sio. 1,000 mol ppm (calculated as NaOH per mol) and 5% NaOH were added. In addition, an alkali metal-free silica xerogel (specific surface area: 150 m/l) was prepared.
Ge(OC2H5)4の無水エタノール溶液に、水冷下
で水とエタノールの等モル溶液をかくはんしつつ添加す
る。Ge(OC2H5)4は加水分解されて、コロイド
状のGeO3に転化する。An equimolar solution of water and ethanol is added to an anhydrous ethanol solution of Ge(OC2H5)4 with stirring while cooling with water. Ge(OC2H5)4 is hydrolyzed and converted to colloidal GeO3.
zr(S04)2.Hf(SO4)2.Th(SO4)
2の水溶液を80°Cに加温しつつ、皿、水を加えて加
水分解を行う。反応液を80°Cに12時間保温し、メ
タジルコン酸(zrO2)や、HfO2,Th021等
のコロイドを得る。zr(S04)2. Hf(SO4)2. Th(SO4)
While heating the aqueous solution in step 2 to 80°C, add a plate and water to perform hydrolysis. The reaction solution is kept at 80°C for 12 hours to obtain colloids such as metazirconic acid (zrO2), HfO2, and Th021.
仮焼後のATiO3を粉砕し、上記のコロイドやゲルを
加え、第4図のガス検出片と温度検出片の形状に成型し
、空気中で1時間焼成する。The calcined ATiO3 is pulverized, the above-mentioned colloids and gels are added thereto, it is molded into the shapes of the gas detection piece and temperature detection piece shown in FIG. 4, and it is baked in air for 1 hour.
ATiO3は極めて焼結性の良い物質で、焼成源)
度を仮焼温度より300°C以上高くすると
、完全に緻密質化しサーミスタ化する。そこで1100
°Cで仮焼し、1400°Cで焼結したものを温度検出
片とした。また温度検出片については、SiO2等は無
添加とした。ATiO3 is a material with extremely good sinterability, and is used as a sintering source)
When the temperature is 300°C or more higher than the calcination temperature, it becomes completely dense and becomes a thermistor. So 1100
A temperature sensing piece was calcined at 1400°C and sintered at 1400°C. Furthermore, no SiO2 or the like was added to the temperature detection piece.
ガス検出片に必要な多孔性を得るには、限定の意味では
なく、焼成温度と仮焼温度との差を100°C以下とす
ることが必要で、1200°Cで仮焼し1200°Cま
たは1300°Cで焼成したものと、仮焼温度と焼成温
度とをいずれも1300°Cとしたものを中心に以下の
測定を行った。In order to obtain the porosity required for the gas detection piece, it is necessary, not in the sense of limitation, that the difference between the firing temperature and the calcination temperature be 100°C or less. Alternatively, the following measurements were performed mainly on those fired at 1300°C and those whose calcination temperature and firing temperature were both 1300°C.
センサ中での5io2等の形態は非晶質・非ガラス質の
ゲルで有り、X線回折を行うとブロードなピークが得ら
れた。最も鋭いピークを示したzrO2の場合でも、ピ
ークより求めた平均結晶子径は約6OAであった。また
5モル%のNaOHを加えたSiOコロイドでは、81
0゜はガラス化し酸素感度も失われた。The form of 5io2 and the like in the sensor was an amorphous, non-vitreous gel, and when X-ray diffraction was performed, a broad peak was obtained. Even in the case of zrO2, which showed the sharpest peak, the average crystallite diameter determined from the peak was about 6OA. In addition, in SiO colloid with 5 mol% NaOH added, 81
At 0°, it becomes vitrified and loses its oxygen sensitivity.
比較例として、同様の工程で以下の物質を加えたガス検
出片を作成した。(1)Tio□(ルチル相。As a comparative example, a gas detection piece was created using the same process to which the following substances were added. (1) Tio□ (rutile phase).
粒径約1μ)、(2)石英粉(粒径約1μ)、(3)ホ
ウケイ酸ガラス粉(810280wt%、B20818
wt%、Na204wt%、他はAl2O3とに20)
、(4)高融点カルシウム系ガラス粉(CaO64wt
%。(particle size: approx. 1μ), (2) quartz powder (particle size: approx. 1μ), (3) borosilicate glass powder (810280wt%, B20818)
wt%, Na204wt%, others are Al2O3 and 20)
, (4) High melting point calcium glass powder (CaO64wt
%.
B20326wt%、 8t0210 wt%)。添加
量はそれぞれ、ATiO31F/当り50ダで有る。B20326 wt%, 8t0210 wt%). The amount added was 50 da per ATiO31F/.
他の比較例として、1200°Cで仮焼したTi02(
ルチル相)に、1モル当り5モル%のNaフリーのSi
O2コロイドを加え、1300°Cで焼成したガス検出
片を作成した。As another comparative example, Ti02 calcined at 1200°C (
rutile phase) with 5 mol% of Na-free Si per 1 mol.
A gas detection piece was prepared by adding O2 colloid and firing at 1300°C.
(保護コーティング)
得られた温度検出片やガス検出片の表面を、厚さ100
μ程度の多孔質セラミックス膜で覆い、保護コーティン
グ層とする。この材料としては、用いたゲルと同種のも
の、あるいはスピネル(MgA60)、ムライト(A4
Si201B )、コーディエライト(Mg2AI!4
8150□8)等の、任意の多孔質セラミックスを用い
得る。(Protective coating) The surface of the obtained temperature detection piece or gas detection piece is coated with a thickness of 100 mm.
Cover with a microporous ceramic membrane to form a protective coating layer. This material may be the same type as the gel used, spinel (MgA60), mullite (A4
Si201B), cordierite (Mg2AI!4
Any porous ceramic may be used, such as 8150□8).
化合物ATiO3の可燃性ガス感度は、元々極めて小さ
く、未反応の可燃性ガスの共存による検出誤差は小さい
。しかしこのわずかな誤差を除くため、ガス検出片の保
護コーティング層には、コーティング材料ty当り30
qの貴金属触媒、ここではPt1を担持させる。担持量
の好ましい範囲は、コーティング層材料1f当り3〜5
0qで有る。触媒の担持により排ガス中の未反応の可燃
性ガスが除去され、未反応の可燃性ガス成分の共存によ
る検出誤差が防止される。The combustible gas sensitivity of the compound ATiO3 is originally extremely low, and the detection error due to the coexistence of unreacted combustible gas is small. However, in order to eliminate this slight error, the protective coating layer of the gas detection piece is
q noble metal catalyst, here Pt1, is supported. The preferred range of supported amount is 3 to 5 per 1f of coating layer material.
It is 0q. By supporting the catalyst, unreacted combustible gas in the exhaust gas is removed, and detection errors due to the coexistence of unreacted combustible gas components are prevented.
(酸素感度)
第1図、第2図に、SiO2の添加による5rTio
の酸素感度の変化を示す。各図にお3−δ
いて、5rTio3は1200”Cで仮焼し、1800
°Cで本焼成したもので、SiO3はNaフリーのコロ
イダルシリカとして加えたもので有る。またR3はガス
検出片の抵抗値、nは酸素勾配を現し酸素濃度を1から
10%へ変化させて求める(以下同じ)。(Oxygen sensitivity) Figures 1 and 2 show that 5rTio due to the addition of SiO2
shows changes in oxygen sensitivity. In each figure, 5rTio3 is calcined at 1200"C and heated to 1800"C.
It was fired at °C, and SiO3 was added as Na-free colloidal silica. Further, R3 represents the resistance value of the gas detection piece, and n represents the oxygen gradient, which is determined by changing the oxygen concentration from 1 to 10% (the same applies hereinafter).
第1図から、5.0モル%のSiO2の添加により酸素
勾配は0.02増し、0.5モル%の添加では効果は小
さいが、2.0モル%の添加では既に顕著な効果が得ら
れることがわかる。また5IO2添加量とともに半導体
は高抵抗化する。つぎに600°Cでの酸素勾配の変化
と、700°Cでの変化とは酷似する。また800″C
での結果は700°Cでのものとほとんど同一で有った
ので図示を省略する。From Figure 1, the addition of 5.0 mol% SiO2 increases the oxygen gradient by 0.02, the addition of 0.5 mol% has a small effect, but the addition of 2.0 mol% already has a significant effect. I know that it will happen. Furthermore, the resistance of the semiconductor increases as the amount of 5IO2 added increases. Next, the change in oxygen gradient at 600°C and the change at 700°C are very similar. Also 800″C
The results at 700°C were almost the same as those at 700°C, so illustration is omitted.
すなわち酸素勾配の改善は、広い温度範囲で生ずる効果
で有る。In other words, the improvement of the oxygen gradient is an effect that occurs over a wide temperature range.
第2図に移ると、半導体の抵抗値(R3)は、R5=
K−Po (ni酸素勾配)により現わせることが
わかる。Moving on to Figure 2, the resistance value (R3) of the semiconductor is R5=
It can be seen that this can be expressed by K-Po (ni oxygen gradient).
SiO2の添加効果の概要を表1に示す。Table 1 shows a summary of the effect of adding SiO2.
表1から以下のことがわかる。The following can be seen from Table 1.
(1) sio をTiO2や石英粉に代えると、
酸素感度は改善されない。(1) If sio is replaced with TiO2 or quartz powder,
Oxygen sensitivity is not improved.
(2) ホウケイ酸ガラス等のガラスや、SiO2コ
ロイドに多量のNaを加えガラス化させたものでは、酸
素感度はむしろ低下する。(2) In the case of glasses such as borosilicate glass or those made by adding a large amount of Na to SiO2 colloid and vitrifying them, the oxygen sensitivity is rather reduced.
(3) rio に810□を加えても、酸素感度
は改善されない。(3) Adding 810□ to rio does not improve oxygen sensitivity.
(4)酸素感度の改善は、CaTiO3やBaTio3
゜RaTiO3に対しても得ることができる。(4) Improvement of oxygen sensitivity is caused by CaTiO3 and BaTio3.
It can also be obtained for ゜RaTiO3.
酸素勾配の改善は、SiO3でのみ得られるのではなく
、GeO2やZrO2,■fO□、ThO2でも得るこ
とができる(表2)。ただし得られる効果は、8i0
〜GeO−ZrO>Hf02−zTh02)となる。Improvement in oxygen gradient can be obtained not only with SiO3 but also with GeO2, ZrO2, fO□, and ThO2 (Table 2). However, the effect obtained is 8i0
~GeO-ZrO>Hf02-zTh02).
(当量点付近の特性)
第3図に、各3秒ずつ6秒周期で雰囲気をλ=0.99
の排ガスと1.01の排ガスに切り替えた際の抵抗値の
変化を示す。用いた半導体は1200°Cで仮焼し13
00°Cで焼成したSrTiO3で、5モル%のSio
。を加えて有る。(Characteristics near the equivalence point) In Figure 3, the atmosphere is changed to λ = 0.99 with a period of 6 seconds for each 3 seconds.
It shows the change in resistance value when switching between 1.01 and 1.01 exhaust gas. The semiconductor used was calcined at 1200°C13
SrTiO3 calcined at 00°C with 5 mol% Sio
. In addition, there is
リーンバーン領域での強いP形性とは対照的に、λ=1
近傍での抵抗値の変化は極く小さl/A0このことは定
性的には、CaTlo 3でも同様で、また焼成条件を
変えても同様で有る。In contrast to the strong P-morphism in the lean burn region, λ = 1
The change in resistance value in the vicinity is extremely small l/A0. Qualitatively, this is the same for CaTlo 3, and the same holds true even when the firing conditions are changed.
BaTi0 やRaT s Oaはn形半導体で、人
を0.99から1.01へ増すと抵抗値は100〜10
00倍程度増大した。BaTi0 and RaT s Oa are n-type semiconductors, and when increasing the number of people from 0.99 to 1.01, the resistance value increases from 100 to 10.
It increased about 00 times.
(センサの構造)
第4図と第5図とにより、センサの構造を説明する。図
において(2)はアルミナ製の6大管基体で、その先端
にはヒータ内蔵のセラミックス管(4)が取り付けであ
る。このセラミックス管(4)は、内部にタングステン
や白金等の膜ヒータ(6)を設けたもので、ガス検出片
(8)や温度検出片00を一部潟度に加熱するためのも
ので有る。なおヒータについては、図示の膜ヒータ(6
)以外にも種々のものを用い得る。(Structure of sensor) The structure of the sensor will be explained with reference to FIGS. 4 and 5. In the figure, (2) is a six-large tube base made of alumina, and a ceramic tube (4) with a built-in heater is attached to its tip. This ceramic tube (4) is equipped with a membrane heater (6) made of tungsten, platinum, etc. inside, and is used to partially heat the gas detection piece (8) and temperature detection piece 00 to 100 degrees. . Regarding the heater, please refer to the membrane heater (6) shown in the figure.
), various other types can be used.
基体(2)とセラミックス管(4)との間のくぼみ部に
は、しきい部(2)を介してガス検出片(8)と温度検
出片α1とを設ける。このガス検出片(8)が上記の測
定に用いたもので有る。一方温度検出片00は、ガス検
出片と同種の半導体を緻密に焼結してサーミスタ化した
もので有る。A gas detection piece (8) and a temperature detection piece α1 are provided in the recess between the base body (2) and the ceramic tube (4) via the threshold portion (2). This gas detection piece (8) was used for the above measurements. On the other hand, the temperature detection piece 00 is a thermistor made by densely sintering the same type of semiconductor as the gas detection piece.
ここで第6図により、ガス検出片(8)の構造をより詳
細に説明する。化合物ATiO3,の焼結体α→中に、
一対の貴金属電極0Q、α印を埋設し、全体を厚さ10
0μ程度の保護コーティング層翰で覆って、ガス検出片
(8)とする。Here, the structure of the gas detection piece (8) will be explained in more detail with reference to FIG. In the sintered body α of the compound ATiO3,
A pair of noble metal electrodes 0Q, α mark are buried, and the whole thickness is 10
It is covered with a protective coating layer of about 0 μm to form a gas detection piece (8).
なお温度検出片(10についても、ガス検出片(8)と
、緻密さの点を除き同様に構成すれが良い。Note that the temperature detection piece (10) may be constructed in the same manner as the gas detection piece (8) except for the point of denseness.
第4図、第5図にもどって、(イ)はセンサを自動車エ
ンジンの排気管やストーブやボイラー等の燃焼室等に取
り付けるための金具である。また(ハ)。Returning to FIGS. 4 and 5, (a) is a metal fitting for attaching the sensor to the exhaust pipe of an automobile engine or the combustion chamber of a stove, boiler, or the like. Again (c).
燐は膜ヒータ(6)に接続したリードピン、(ハ)、(
ト)はガス検出片(8)に接続したリードピン、Oa、
弼は濡度検出片00に接続したリードビンで有る。Phosphorus is the lead pin connected to the membrane heater (6), (c), (
g) is the lead pin connected to the gas detection piece (8), Oa,
弼 is a lead bottle connected to the wetness detection piece 00.
(補足)
一般にペロブスカイト化合物の特性は、置換に鈍感で有
り、ATiO3,についてもへ元素やTi元素を10モ
ル%程度他の元素で置換しても良い。(Supplementary note) Generally, the characteristics of perovskite compounds are that they are insensitive to substitution, and for ATiO3, about 10 mol % of the element or Ti element may be substituted with other elements.
[発明の効果]
この発明では、排ガスセンサの酸素感度を増し、検出精
度を向上させることができる。[Effects of the Invention] According to the present invention, the oxygen sensitivity of the exhaust gas sensor can be increased and the detection accuracy can be improved.
第1図〜第3図は実施例の排ガスセンサの特性図、第4
図は実施例の排ガスセンサの部分切り欠き部付き斜視図
、第5図はその長手方向断面図、第6図は実施例に用い
るガス検出片の断面図である。
(2)・・・基体、(4)・・・セラミックス管、(6
)・・・膜ヒータ、 (8)・・・ガス検出片、α
Q・・・温度検出片。
第1図
005 2.0 5.01011
015sio2’r6
第2図
“1
02 (”/J
手続補正書(自発)
昭和59年12月28日Figures 1 to 3 are characteristic diagrams of the exhaust gas sensor of the example, and Figure 4
The figure is a perspective view with a partial cutout of the exhaust gas sensor of the embodiment, FIG. 5 is a longitudinal sectional view thereof, and FIG. 6 is a sectional view of a gas detection piece used in the embodiment. (2)... Base body, (4)... Ceramic tube, (6
)...Membrane heater, (8)...Gas detection piece, α
Q...Temperature detection piece. Figure 1 005 2.0 5.01011 015sio2'r6 Figure 2 “1 02 (”/J Procedural amendment (voluntary) December 28, 1982
Claims (4)
こにAはCa、Sr、Ba、Raからなる群の少くとも
一員の元素を、δは非化学量論的パラメータを現す、の
抵抗値の変化を用いた排ガスセンサにおいて、 化合物ATiO_3_−_δにはその1モル当り1〜2
0モル%の、SiO_2、GeO_2、ZrO_2、H
fO_2、ThO_2からなる群の少くとも一員の非晶
質・非ガラス質ゲルを添加したことを特徴とする排ガス
センサ。(1) Using the change in resistance of the perovskite compound ATiO_3_-_δ, where A is at least a member of the group consisting of Ca, Sr, Ba, and Ra, and δ represents a non-stoichiometric parameter. In the exhaust gas sensor, the compound ATiO_3_-_δ contains 1 to 2 per mole of the compound ATiO_3_-_δ.
0 mol% of SiO_2, GeO_2, ZrO_2, H
An exhaust gas sensor characterized in that an amorphous/non-vitreous gel that is at least a member of the group consisting of fO_2 and ThO_2 is added.
て、 化合物ATiO_3_−_δのA元素は、CaおよびS
rからなる群の少くとも一員の元素で有ることを特徴と
する排ガスセンサ。(2) In the exhaust gas sensor according to claim 1, the A element of the compound ATiO_3_-_δ is Ca and S.
An exhaust gas sensor characterized by being an element that is at least a member of the group consisting of r.
センサにおいて、 添加ゲルはSiO_2ゲルで有ることを特徴とする排ガ
スセンサ。(3) The exhaust gas sensor according to claim 1 or 2, wherein the added gel is SiO_2 gel.
センサにおいて、 前記ゲルの添加量は、化合物ATiO_3_−_δ1モ
ル当り4〜12モル%で有ることを特徴とする排ガスセ
ンサ。(4) The exhaust gas sensor according to claim 2 or 3, wherein the amount of the gel added is 4 to 12 mol % per 1 mol of the compound ATiO_3_-_δ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27025384A JPS61147147A (en) | 1984-12-20 | 1984-12-20 | Waste gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27025384A JPS61147147A (en) | 1984-12-20 | 1984-12-20 | Waste gas sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61147147A true JPS61147147A (en) | 1986-07-04 |
Family
ID=17483667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27025384A Pending JPS61147147A (en) | 1984-12-20 | 1984-12-20 | Waste gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61147147A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389340A (en) * | 1989-12-28 | 1995-02-14 | Tokuyama Corporation | Module and device for detecting NOX gas |
GB2503231A (en) * | 2012-06-19 | 2013-12-25 | Crowcon Detection Instr Ltd | Flameproof barrier for a gas detector |
-
1984
- 1984-12-20 JP JP27025384A patent/JPS61147147A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389340A (en) * | 1989-12-28 | 1995-02-14 | Tokuyama Corporation | Module and device for detecting NOX gas |
GB2503231A (en) * | 2012-06-19 | 2013-12-25 | Crowcon Detection Instr Ltd | Flameproof barrier for a gas detector |
GB2503231B (en) * | 2012-06-19 | 2017-07-12 | Crowcon Detection Instr Ltd | Flameproof barrier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61147146A (en) | Lambda sensor | |
JPS61147147A (en) | Waste gas sensor | |
EP0180646B1 (en) | Composition | |
JPH03102801A (en) | Thermistor | |
JPS63200055A (en) | Oxygen sensor element and its manufacture | |
JPS6152421B2 (en) | ||
JP2595123B2 (en) | Carbon monoxide gas sensor | |
JPS61147148A (en) | Waste gas sensor | |
JPS61155745A (en) | Exhaust gas sensor | |
JPH0513102B2 (en) | ||
JPH053901B2 (en) | ||
JPH05256816A (en) | Oxygen sensor and its manufacture | |
JPH051902B2 (en) | ||
JPS61147150A (en) | Waste gas sensor | |
Chintalapalle et al. | Smart Sensors for Integration into Transportation Systems | |
JPH053898B2 (en) | ||
JPS61155746A (en) | Exhaust gas sensor | |
KR940011793B1 (en) | Ceramic humidity sensor | |
Chintalapalle et al. | Smart Sensors to Reduce Pollutant Emissions in Transportation | |
JPS5998501A (en) | Thermistor for high temperature and method of producing same | |
JPS61155945A (en) | Oxygen sensor | |
JPH03223191A (en) | Surface-treatment of ceramics | |
JPS62106356A (en) | Sensor for controlling combustion | |
JPS59231442A (en) | Oxygen sensor and manufacture thereof | |
JPS63136501A (en) | High temperature sensor |