JPS61146760A - Heater of silicon carbide - Google Patents

Heater of silicon carbide

Info

Publication number
JPS61146760A
JPS61146760A JP59264509A JP26450984A JPS61146760A JP S61146760 A JPS61146760 A JP S61146760A JP 59264509 A JP59264509 A JP 59264509A JP 26450984 A JP26450984 A JP 26450984A JP S61146760 A JPS61146760 A JP S61146760A
Authority
JP
Japan
Prior art keywords
silicon carbide
heating element
weight
carbide heating
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59264509A
Other languages
Japanese (ja)
Inventor
幸文 酒井
広志 田代
玉水 照康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP59264509A priority Critical patent/JPS61146760A/en
Priority to GB8529882A priority patent/GB2170511B/en
Priority to DE19853543708 priority patent/DE3543708A1/en
Priority to FR8518584A priority patent/FR2575458B1/en
Publication of JPS61146760A publication Critical patent/JPS61146760A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 の この発明は、通常の抵抗発熱体および高周波加熱用発熱
体としても使用可能な炭化ケイ素発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a silicon carbide heating element that can be used both as a regular resistance heating element and as a heating element for high frequency heating.

従if良蓋− 従来、炭化ケイ素発熱体は、通常1400℃の抵抗発熱
体として使用されている。炭化ケイ素発熱体の製造は、
炭化ケイ素粉とシリカ、炭素などを2400℃に達する
温度でケイ化させることで行なわれていて、孟の気孔率
は20%以上であり、常温での比抵抗は約0.5ΩC園
である。
Conventionally, silicon carbide heating elements have been used as resistance heating elements, usually at 1400°C. The production of silicon carbide heating elements is
It is made by silicifying silicon carbide powder, silica, carbon, etc. at temperatures reaching 2,400°C, and its porosity is over 20%, and its specific resistance at room temperature is about 0.5ΩC.

し    と ところが、気孔率が約20%であることから、高温空気
中での酸化が速く劣化しやすい。
However, since the porosity is about 20%, it is easily oxidized and deteriorated in high-temperature air.

即ち、粒子間の結合力が弱く粒界部分が酸化しやすく、
電気絶縁性の二酸化ケイ素が生成する。高温において、
二酸化ケイ素は炭化ケイ素と反応し揮発するため、発熱
体の性能は著しく低下する。
In other words, the bonding force between particles is weak, and grain boundary areas are easily oxidized.
Electrically insulating silicon dioxide is produced. At high temperatures,
Since silicon dioxide reacts with silicon carbide and volatizes, the performance of the heating element is significantly reduced.

また、従来の炭化ケイ素発熱体は、比抵抗が1000℃
において、0.1ΩC1であって、この比抵抗を任意の
ものに変更することは不可能である。
In addition, the conventional silicon carbide heating element has a specific resistance of 1000°C.
, it is 0.1ΩC1, and it is impossible to change this specific resistance to any value.

さらに、たとえば第3図に示すように従来の炭化ケイ素
の発熱体1により、被焼成物である断面円形状のパイプ
2などを炉芯管3に通して焼成する場合には、棒状の発
熱体1を組立てて、しかも各発熱体1の間隔などを調整
しなければ、均一な温度によりバイブ2を焼成すること
ができず、焼成作業が大変面倒である。
Furthermore, as shown in FIG. 3, for example, when a conventional silicon carbide heating element 1 is used to fire an object to be fired, such as a pipe 2 with a circular cross section, through a furnace core tube 3, a rod-shaped heating element 1 is used. Unless the vibrator 1 is assembled and the intervals between the heating elements 1 are adjusted, the vibrator 2 cannot be fired at a uniform temperature, making the firing process very troublesome.

■m1口凱 口の発明は、化学的に安定であり高強度で薄肉にして軽
量化が図れ、耐熱性に優れ高温部材に適し、高周波ある
いは直接通電により発熱させて焼成作業を容易にできる
炭化ケイ素発熱体を提供することを目的とする。。
■The invention of the m1 mouth is chemically stable, has high strength, can be made thin and lightweight, has excellent heat resistance and is suitable for high-temperature parts, and can be carbonized to make firing work easier by generating heat with high frequency or direct energization. The purpose is to provide a silicon heating element. .

11へ」[ この目的を達成するためにこの発明は、炭化ケイ素60
〜94重量%、窒化アルミニウム1〜20重量%、炭素
2〜20重量%の組成からなることを特徴とする炭化ケ
イ素発熱体を要旨としている。
11” [To achieve this objective, the present invention utilizes silicon carbide 60
The gist of the invention is a silicon carbide heating element characterized by having a composition of ~94% by weight, 1-20% by weight of aluminum nitride, and 2-20% by weight of carbon.

°     た  の この発明の炭化ケイ素発熱体は、炭化ケイ素、窒化アル
ミニウムおよび炭素の組成を考慮して、炭化ケイ素を主
成分にすることで化学的に安定にでき、かつ窒化アルミ
ニウムと炭素を添加することで、高強度でありさらに耐
熱性に優れており、高周波あるいは直接通電により発熱
させることができるようにしたものである。
° Considering the composition of silicon carbide, aluminum nitride, and carbon, the silicon carbide heating element of this invention can be made chemically stable by making silicon carbide the main component, and can be made chemically stable by adding aluminum nitride and carbon. As a result, it has high strength and excellent heat resistance, and can be generated by high frequency or direct energization.

突」11 窒化アルミニウム(liN)は、電気絶縁性の物質であ
るが、この窒化アルミニウムを炭化ケイ素(SiC)に
添加することにより、炭化ケイ素発熱体を作り、炭化ケ
イ素を焼結させて発熱体として使用可能な材質にできる
11 Aluminum nitride (liN) is an electrically insulating substance. By adding this aluminum nitride to silicon carbide (SiC), a silicon carbide heating element is made, and by sintering silicon carbide, a heating element is made. It can be made into a material that can be used as

表1に示す実施例1〜4は、炭素量の添加量を5重量%
に設定した時に、窒化アルミニウムの添加量の変化によ
る炭化ケイ素発熱体の諸特性の影響を示したものである
In Examples 1 to 4 shown in Table 1, the amount of carbon added was 5% by weight.
This figure shows the influence of changes in the amount of aluminum nitride added on various properties of the silicon carbide heating element when the temperature is set to .

表1から明らかなように、窒化アルミニウムの添加量が
1重量%以下であれば、炭化ケイ素発熱体はち密化が阻
害されて密度が小さく本発明の目的である強い結合力が
得られず、くり返し使用による炭化ケイ素発熱体の劣化
が著しい。
As is clear from Table 1, if the amount of aluminum nitride added is 1% by weight or less, the densification of the silicon carbide heating element is inhibited, the density is small, and the strong bonding force that is the objective of the present invention cannot be obtained. The silicon carbide heating element deteriorates significantly due to repeated use.

また、窒化アルミニウムの添加量が、20rii、m%
以上であれば、炭化ケイ素発熱体の比抵抗が大きく発熱
しないばかりでなく、炭化ケイ素の焼結が進まない。
In addition, the amount of aluminum nitride added was 20rii, m%
If this is the case, not only will the specific resistance of the silicon carbide heating element be large enough to prevent heat generation, but also the sintering of the silicon carbide will not proceed.

したがって、窒化アルミニウムの添加量の範囲は1〜2
0重量%が適切であり、この範囲では、炭化ケイ素発熱
体は密度を大きく比抵抗を小さくできる。
Therefore, the range of the amount of aluminum nitride added is 1 to 2
0% by weight is appropriate, and within this range, the silicon carbide heating element can have a high density and a low specific resistance.

(2)  の  について 炭素は導電性の物質であり、焼結後に黒鉛として存在し
、炭化ケイ素発熱体の比抵抗を低下させることができる
Regarding (2), carbon is a conductive substance, exists as graphite after sintering, and can lower the specific resistance of the silicon carbide heating element.

表2に示す実施例5〜9は、窒化アルミニウムの添加量
を5重量%に設定した時に、炭素添加量の変化による炭
化ケイ素発熱体の諸特性の影響を示したものである。な
お、比較例10を記載しである。
Examples 5 to 9 shown in Table 2 show the effects of changes in the amount of carbon added on various properties of silicon carbide heating elements when the amount of aluminum nitride added was set at 5% by weight. In addition, Comparative Example 10 is described.

表2に示すように、炭素添加量が1重量%以下であると
、ち密な自焼結炭化ケイ素の組織となるが、比抵抗が1
03Ωcm以上と高くなり、発熱体として不適当である
As shown in Table 2, when the amount of carbon added is 1% by weight or less, a dense self-sintering silicon carbide structure is formed, but the specific resistance is 1%.
The value is as high as 0.03 Ωcm or more, making it unsuitable as a heating element.

炭素添加量が20重量%以上になれば、比抵抗は小さく
なるが密度が小さくて結合力が弱く、炭化ケイ素の焼結
が阻害され、かつ遊離黒鉛が多く、耐酸化特性が低下す
るので発熱体として不適当である。
If the amount of carbon added exceeds 20% by weight, the resistivity will decrease, but the density will be low and the bonding strength will be weak, inhibiting the sintering of silicon carbide, and there will be a large amount of free graphite, which will reduce the oxidation resistance and generate heat. Physically unsuitable.

したがって、炭素の添加量の範囲は、2〜20重量%が
適切であり、この範囲において炭化ケイ素発熱体は密度
を大きく比抵抗を小さくできる。
Therefore, the appropriate range of the amount of carbon added is 2 to 20% by weight, and within this range, the silicon carbide heating element can have a high density and low specific resistance.

上述した(1)(2)から明らかなように、炭化ケイ素
に対する窒化アルミニウムと炭素の添加量を制御するこ
とにより、焼結体の組織を調整し、炭化ケイ素60〜9
4!l量%に対して窒化アルミニウムは1〜20重量%
、炭素は2〜20重量%の組成からなる発熱体として好
適な特性を有する炭化ケイ素発熱体が得られ、常温での
比抵抗は、0.01〜10Ωcmの範囲で任意に設定で
きる。
As is clear from (1) and (2) above, by controlling the amounts of aluminum nitride and carbon added to silicon carbide, the structure of the sintered body can be adjusted and silicon carbide 60-9
4! Aluminum nitride is 1 to 20% by weight relative to 1% by weight.
A silicon carbide heating element having properties suitable as a heating element is obtained having a composition of 2 to 20% by weight of carbon, and the specific resistance at room temperature can be arbitrarily set in the range of 0.01 to 10 Ωcm.

そして、炭化ケイ素の理論密度は3.21g/C13で
ある。したがって、好適な炭化ケイ素発熱体は、その実
際の密度を理論密度の70〜95%に設定できるととも
に、窒化アルミニウムには酸窒化アルミニウム(AQ 
−〇−N)を含む。
The theoretical density of silicon carbide is 3.21 g/C13. Therefore, a suitable silicon carbide heating element can have its actual density set at 70-95% of the theoretical density, and aluminum nitride has aluminum oxynitride (AQ
-〇-N).

さらに、強度実験の結果、曲げ強さは、300〜550
 spaにおよぶことが判明している。
Furthermore, as a result of strength experiments, the bending strength was 300 to 550.
It has been found that it extends to spas.

表3は、高周波による誘導発熱試験に使用された実施例
11〜13と比較例14を示している。
Table 3 shows Examples 11 to 13 and Comparative Example 14 that were used in the induction heating test using high frequency.

高周波発熱試験の結果は第1図に示してあり、第1図は
温度に対する消費電力を示している。これから明らかな
ように、本発明の炭化ケイ素発熱体の実施例12.13
が高周波発熱体として適し高温域で使用できることがわ
かる。
The results of the high frequency heat generation test are shown in FIG. 1, which shows power consumption versus temperature. As is clear from this, Examples 12.13 of the silicon carbide heating element of the present invention
It can be seen that it is suitable as a high frequency heating element and can be used in a high temperature range.

ところで、炭化ケイ素発熱体を高周波発熱体として使用
する例を第2図に示す。21は石英炉芯管22の外周に
巻かれた高周波コイルであり、石英炉芯管22内には円
筒形に成形された本発明の炭化ケイ素発熱体23が内挿
されている。この炭化ケイ素発熱体23は、高周波によ
り加熱できるので円筒形が好ましい。炭化ケイ素発熱体
23には、被焼成物であるバイブ2が内挿されている。
By the way, FIG. 2 shows an example in which a silicon carbide heating element is used as a high frequency heating element. Reference numeral 21 denotes a high frequency coil wound around the outer periphery of a quartz furnace core tube 22, and a cylindrical silicon carbide heating element 23 of the present invention is inserted into the quartz furnace core tube 22. This silicon carbide heating element 23 preferably has a cylindrical shape because it can be heated by high frequency. A vibrator 2, which is an object to be fired, is inserted into the silicon carbide heating element 23.

このような構成において、高周波コイル21に電流を流
すと、炭化ケイ素発熱体23が従来と異なり連続的に発
熱するため、パイプ2を均一な温度で焼成でき、パイプ
2に焼きムラはない。
In such a configuration, when a current is passed through the high-frequency coil 21, the silicon carbide heating element 23 continuously generates heat, unlike the conventional method, so that the pipe 2 can be fired at a uniform temperature, and there is no uneven firing of the pipe 2.

また、バイブ2が長尺物であっても、炭化ケイ素発熱体
23がパイプ状なので、バイブ2を移動させることによ
り、パイプ2を完全に焼成することができる。
Furthermore, even if the vibrator 2 is long, the pipe 2 can be completely fired by moving the vibrator 2 because the silicon carbide heating element 23 is pipe-shaped.

このように、従来の発熱体を組み立てて焼成作業してい
たのに比べて、本発明の炭化ケイ素発熱体を用いること
により発熱体の形状を連続した一体物にでき、作業が容
易でかつ均一な温度で完全に焼成できる。
In this way, compared to the conventional heating elements that were assembled and fired, by using the silicon carbide heating element of the present invention, the shape of the heating element can be made into a continuous, integrated piece, making the work easier and more uniform. It can be fired completely at a temperature of

ところで、本発明の炭化ケイ素発熱体は、直接通電によ
る通常の抵抗発熱体としても使用できるのは勿論である
By the way, it goes without saying that the silicon carbide heating element of the present invention can also be used as a normal resistance heating element by direct energization.

L 以上説明したようにこの発明によれば、炭素が主成分で
あるため化学的に安定にでき、窒化アルミニウムと炭素
を適量添加することにより、結合力が強(高強度であり
、実際に用いる場合その分薄肉化して軽量化がはがれ、
耐熱性にも優れていることがら高温部材に適し、高周波
あるいは直接通電により発熱させて従来より焼成作業を
容易にできる優れた効果がある。
L As explained above, according to this invention, since carbon is the main component, it can be made chemically stable, and by adding appropriate amounts of aluminum nitride and carbon, the bonding force is strong (high strength, and it can be used in actual use). In this case, the wall becomes thinner and the weight is removed,
It also has excellent heat resistance, making it suitable for high-temperature components, and has the excellent effect of making firing work easier than before by generating heat through high frequency or direct energization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の炭化ケイ素発熱体の温度に対する消
費電力を示す図、第2図はこの発明の炭化ケイ素発熱体
を用いて焼成作業する場合を示す斜視図、第3図は従来
の炭化ケイ素発熱体を用いて焼成作業する場合を示す斜
視図である。 21・・・高周波コイル 23・・・炭化ケイ素発熱体 2・・・・被焼成物としてのパイプ 第1図 シー(度  [℃コ 第2図 第3図 手続補正書(自発) 昭和60年4月22日
Fig. 1 is a diagram showing the power consumption versus temperature of the silicon carbide heating element of the present invention, Fig. 2 is a perspective view showing the case of firing using the silicon carbide heating element of the invention, and Fig. 3 is a diagram showing the power consumption of the silicon carbide heating element of the present invention. FIG. 3 is a perspective view showing a case where a firing operation is performed using a silicon heating element. 21...High frequency coil 23...Silicon carbide heating element 2...Pipe as an object to be fired Figure 1 Sea (°C Figure 2 Figure 3 procedural amendment (voluntary) April 1985 22nd of the month

Claims (4)

【特許請求の範囲】[Claims] (1)炭化ケイ素60〜94重量%、窒化アルミニウム
1〜20重量%、炭素2〜20重量%の組成からなるこ
とを特徴とする炭化ケイ素の発熱体。
(1) A silicon carbide heating element characterized by having a composition of 60 to 94% by weight of silicon carbide, 1 to 20% by weight of aluminum nitride, and 2 to 20% by weight of carbon.
(2)実際の密度は、理論密度の70〜95%を有する
特許請求の範囲第1項記載の炭化ケイ素の発熱体。
(2) The silicon carbide heating element according to claim 1, wherein the actual density is 70 to 95% of the theoretical density.
(3)常温での比抵抗は、0.01〜10Ωcmである
特許請求の範囲第1項記載の炭化ケイ素の発熱体。
(3) The silicon carbide heating element according to claim 1, which has a specific resistance at room temperature of 0.01 to 10 Ωcm.
(4)前記窒化アルミニウムには、酸窒化アルミニウム
を含む特許請求の範囲第1項記載の炭化ケイ素の発熱体
(4) The silicon carbide heating element according to claim 1, wherein the aluminum nitride includes aluminum oxynitride.
JP59264509A 1984-12-17 1984-12-17 Heater of silicon carbide Pending JPS61146760A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59264509A JPS61146760A (en) 1984-12-17 1984-12-17 Heater of silicon carbide
GB8529882A GB2170511B (en) 1984-12-17 1985-12-04 Sintered body of silicon carbide
DE19853543708 DE3543708A1 (en) 1984-12-17 1985-12-11 Sintered body based on silicon carbide
FR8518584A FR2575458B1 (en) 1984-12-17 1985-12-16 COMPACT SINTERED SILICON CARBIDE BODY, HEATING ELEMENT FORMED BY SUCH A BODY, AND HEATING APPARATUS CONTAINING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264509A JPS61146760A (en) 1984-12-17 1984-12-17 Heater of silicon carbide

Publications (1)

Publication Number Publication Date
JPS61146760A true JPS61146760A (en) 1986-07-04

Family

ID=17404227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264509A Pending JPS61146760A (en) 1984-12-17 1984-12-17 Heater of silicon carbide

Country Status (1)

Country Link
JP (1) JPS61146760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160023509A (en) * 2014-08-23 2016-03-03 주식회사 유엔아이텍 Exothermic glaze and vessel sped it on the surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553396A (en) * 1978-06-15 1980-01-11 Carborundum Co Silicon carbideealuminum nitride sintered product and its manugacture
JPS5919903A (en) * 1982-07-27 1984-02-01 Nippon Hikari Fiber Kk Optical fiber cable
JPS59107975A (en) * 1982-12-08 1984-06-22 旭硝子株式会社 Silicon carbide sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553396A (en) * 1978-06-15 1980-01-11 Carborundum Co Silicon carbideealuminum nitride sintered product and its manugacture
JPS5919903A (en) * 1982-07-27 1984-02-01 Nippon Hikari Fiber Kk Optical fiber cable
JPS59107975A (en) * 1982-12-08 1984-06-22 旭硝子株式会社 Silicon carbide sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160023509A (en) * 2014-08-23 2016-03-03 주식회사 유엔아이텍 Exothermic glaze and vessel sped it on the surface

Similar Documents

Publication Publication Date Title
KR910000069B1 (en) Electrically conductive sintered ceramics and ceramic heaters
WO1997028409A1 (en) Electric furnace
US5086210A (en) Mo5 Si3 C ceramic material and glow plug heating element made of the same
JPS6138144B2 (en)
EP0180928B1 (en) Refractory composition and products resulting therefrom
JPS61146760A (en) Heater of silicon carbide
JPH08268760A (en) Ceramic heater and its production
JP3498989B2 (en) Silicon carbide based composite material and method for producing the same
JPS632916B2 (en)
JPS61146758A (en) Heater of silicon carbide
JPH01289089A (en) Ceramics heating body
JPH0760730B2 (en) Ceramic heater
JP4783489B2 (en) Silver sintered body manufacturing method and simple furnace
US6903313B2 (en) Resistance heating element for extreme temperatures
JPS60131783A (en) Method of producing carbon heater
JP4253444B2 (en) Ceramic glow plug
JPH05343162A (en) Manufacture of ceramic heating element
JPH05148511A (en) Manufacture of ferrous metal powder sintering metal mold
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JP3918019B2 (en) SiC-MoSi2 composite heater
JP3009166B2 (en) Surface treatment method for ceramics
JPH0657876B2 (en) Method for manufacturing graphite electrode for electric furnace
JP3277295B2 (en) Method for producing high-temperature silicon carbide heating element
JPH10189226A (en) Ceramic heater and manufacture thereof
JP4587135B2 (en) Silicon carbide heating element