JPS61146098A - Composite type ultrasonic wave transmission/reception device - Google Patents

Composite type ultrasonic wave transmission/reception device

Info

Publication number
JPS61146098A
JPS61146098A JP26976184A JP26976184A JPS61146098A JP S61146098 A JPS61146098 A JP S61146098A JP 26976184 A JP26976184 A JP 26976184A JP 26976184 A JP26976184 A JP 26976184A JP S61146098 A JPS61146098 A JP S61146098A
Authority
JP
Japan
Prior art keywords
electrode
divided
ultrasonic
electrodes
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26976184A
Other languages
Japanese (ja)
Inventor
Tsutomu Yano
屋野 勉
Masayuki Tone
利根 昌幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26976184A priority Critical patent/JPS61146098A/en
Publication of JPS61146098A publication Critical patent/JPS61146098A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Abstract

PURPOSE:To detect a curved surface with high accuracy by providing an electrode divided into >=3 on the rear side of a recessed oscillator which transmits/ receives ultrasonic waves and one electrode at the front side, and crossing the center axes, of ultrasonic beam sent from the divided electrodes. CONSTITUTION:An electrode 2 is divided into at least 3 and they are attached to the rear side of the recessed oscillator 1 which transmits/receives ultrasonic waves, and an electrode 3 is attached to the front side of oscillator, and an acoustic adjusting layer 5 covers over it. The divided electrodes are so located that the central axes of ultrasonic beam generated by them shall cross at the focal point of the recessed oscillator 1, and are electrically connected to a transmitter 8 and receiver by a lead wire 6 through a terminal 7. When the divided electrode is alternatively driven, the detection angle is enlarged, by facilitating the retrieval of the object having the curved surface. Also, when the transmitter/receiver is placed at a vertical position per to the object, and when the divided electrodes are parallelly driven, the beam radius becomes small, and the detection capacity is enhanced. This is most suitable for welding robots.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空中に超音波を送受波し、対象物までの距離、
或いは対象物の形状などを認識する超音波送受波器に関
するものである。
[Detailed description of the invention] Industrial application field The present invention transmits and receives ultrasonic waves in the air, and
Alternatively, it relates to an ultrasonic transducer that recognizes the shape of an object.

従来の技術 最近、超音波送受波器は測距器や近接センサの分野で盛
んに利用されるようになってきた。この超音波送受波器
は例えば単一の超音波振動子からなるものとしては、文
献山本美明゛ゞ音響認識″電子技術26巻6号PP52
−57にまとめているように圧電セラミック振動子のバ
イモルフ構造を利用したもの、或いは、コンデンサ型の
超音波振動子などが知られている。これらは数十KHz
から200 KHz程度までの超音波を送受波できるが
、超音波ビームの指向性が広く、極めて小さいもの、或
いは溶接線のような段差のあるものの段差を追従する超
音波センサとしては使用できない。
2. Description of the Related Art Recently, ultrasonic transducers have come to be widely used in the fields of range finders and proximity sensors. This ultrasonic transducer consists of a single ultrasonic transducer, for example, as described in Yoshiaki Yamamoto, "Acoustic Recognition," Electronic Technology Vol. 26, No. 6, PP52.
There are known ultrasonic vibrators that utilize the bimorph structure of piezoelectric ceramic vibrators, as summarized in No. 57, and capacitor-type ultrasonic vibrators. These are tens of KHz
However, the directivity of the ultrasonic beam is wide, and it cannot be used as an ultrasonic sensor for tracking extremely small objects or steps such as welding lines.

一方、複合型の超音波振動子としては、例えば医療用診
断装置に利用されているアニユラアレイ型探触子が知ら
れている。以下、第6図を用いて従来の複合型超音波送
受波器について説明する。
On the other hand, as a composite type ultrasonic transducer, for example, an annular array type probe used in medical diagnostic equipment is known. A conventional composite ultrasonic transducer will be described below with reference to FIG.

aは正面図、bは背面図を示す。第6図において1は凹
面振動子、2は凹面振動子の背面に同心円状に分割され
て設けられた分割電極、3は超音波振動子の正面側に設
けた電極、4は背面負荷、5は音響整合層、6はそれぞ
れの電極に接続されたリード線、7はそれぞれのリード
線6に接続された駆動端子である。分割電極2の設けら
れた凹面振動子の部分はそれぞれ独立した超音波送受波
器として動作することが可能であり、図示していない送
受信器によって被検体中に超音波を送受波する。
A shows a front view, and b shows a rear view. In Fig. 6, 1 is a concave transducer, 2 is a divided electrode provided concentrically on the back of the concave transducer, 3 is an electrode provided on the front side of the ultrasonic transducer, 4 is a back load, and 5 6 is an acoustic matching layer, 6 is a lead wire connected to each electrode, and 7 is a drive terminal connected to each lead wire 6. The portions of the concave transducer provided with the divided electrodes 2 can each operate as independent ultrasonic transducers, and transmit and receive ultrasonic waves into the subject using transceivers (not shown).

このような構成の複合型超音波送受波器を空中用として
用いると、個々の超音波送受波器から放射される超音波
ビームの中心軸は全て同一の直線上になる。一方、超音
波ビーム径は、それぞれの超音波送受波器によって変化
し、最も外側の部分からの超音波ビームが最も細くなる
When a composite ultrasonic transducer with such a configuration is used in the air, the central axes of the ultrasonic beams emitted from the individual ultrasonic transducers all lie on the same straight line. On the other hand, the ultrasonic beam diameter changes depending on each ultrasonic transducer, and the ultrasonic beam from the outermost portion is the narrowest.

一方、溶接ロボットなどにおいて、重ね溶接の場合の段
差部の自動検出用センサなどの要望も多い。この場合自
動検出を行うためのセンサに要求される条件は、例えば
対象物として平板型から三次元の曲面型のもの寸で考え
ると、次のような特性が検出器に要求される。
On the other hand, in welding robots and the like, there are many requests for sensors for automatically detecting steps in overlap welding. In this case, the conditions required of the sensor for automatic detection are, for example, considering the size of the object from a flat plate type to a three-dimensional curved surface type, the following characteristics are required of the detector.

(1)斜面部の検出も可能であること (2)段差部の検出精度は最終的には1趨以下の高精度
であること (3)検出速度が早いこと (2)の要望を満すためには超音波送受波器として超音
波周波数は1MHz程度で、かつフォーカス型振動子に
する必要がある。
(1) It is possible to detect sloped parts. (2) The detection accuracy of stepped parts must ultimately be as high as 1 trend or less. (3) The detection speed is fast. (2) In order to achieve this, the ultrasonic transducer must have an ultrasonic frequency of about 1 MHz and be a focus type vibrator.

発明が解決しようとする問題点 従来用いられていた数10KH2の単一型超音波振動子
ではこれらを複数用いて複合型超音波送受波器として用
いても、1H以下の高精度な検出能力は生じない。
Problems to be Solved by the Invention The conventionally used single type ultrasonic transducer of several tens of KH2 does not have a high precision detection ability of 1H or less even if a plurality of these are used as a composite ultrasonic transducer. Does not occur.

次に、第6図に示したような従来、医療用に用いている
複合型超音波送受波器を用いた場合も先と同様、検出精
度を出すためには1MHz程度の超音波周波数を送受波
することが必要である。PZT系圧電セラミック振動子
の場合に約21flI厚の凹面振動子を用い、直径20
ff、凹面の曲率半径601mのものを用いれば1fl
以下の超音波ビーム径が得られる。また独立の超音波送
受波器をそれぞれ遅延制御して、送受波するとフォーカ
ス点を制御することができる利点があるが、この場合送
信部。
Next, when using a conventional hybrid ultrasonic transducer used for medical purposes, as shown in Figure 6, in order to achieve detection accuracy, it is necessary to transmit and receive an ultrasonic frequency of about 1 MHz. It is necessary to wave. In the case of a PZT-based piezoelectric ceramic resonator, a concave resonator with a thickness of about 21flI is used, and a diameter of 20
ff, if a concave surface with a radius of curvature of 601 m is used, 1 fl
The following ultrasound beam diameters are obtained. There is also the advantage that the delay of each independent ultrasonic transducer can be controlled to control the focus point when transmitting and receiving waves; in this case, the transmitting section.

受信部の構成が複雑になる欠点がある。一方、このよう
な超音波送受波器を溶接ロボット用センサとして用い、
曲面を有する対象物の検出に用いると、検出可能な視野
角が立体角で約10°であるため、常に曲面に垂直に近
い位置に超音波送受波器を設定する必要があり、斜面の
検出が困難でロボットの動きが制約され、かつ、検出時
間が長くなる問題があった。
This has the disadvantage that the configuration of the receiving section is complicated. On the other hand, using such an ultrasonic transducer as a sensor for a welding robot,
When used to detect objects with curved surfaces, the detectable viewing angle is about 10 degrees in solid angle, so it is necessary to always set the ultrasonic transducer at a position close to perpendicular to the curved surface, making it difficult to detect slopes. This poses a problem in that the robot's movement is restricted, and the detection time becomes long.

本発明は上記問題を解決するもので、送信部。The present invention solves the above problem, and includes a transmitter.

受信部を簡単にし、斜面の検出を可能にし、かつ検出速
度を早くする複合型超音波送受波器を提供することを目
的とするものである。
It is an object of the present invention to provide a composite ultrasonic transducer that has a simple receiving section, enables detection of slopes, and increases detection speed.

問題点を解決するための手段 棧明は上記目的を達成するもので超音波を送受波する凹
面振動子と、前記凹面振動子の背面側に設けられた少な
くとも3個の分割電極と、前記凹面振動子の正面側に設
けられた電極と、前記各電極に接続されたリード線とを
具備し、前記分割電極部分より送受波される超音波ビー
ムの中心軸が互いに交差するように分割電極を配置した
ことを特徴とする複合型超音波送受波器を提供するもの
である。
The means for solving the problem is to achieve the above-mentioned object, and includes a concave transducer for transmitting and receiving ultrasonic waves, at least three divided electrodes provided on the back side of the concave transducer, and the concave transducer. The split electrodes are provided with electrodes provided on the front side of the vibrator and lead wires connected to each of the electrodes, and the split electrodes are arranged so that the central axes of the ultrasound beams transmitted and received from the split electrode portions intersect with each other. The present invention provides a composite ultrasonic transducer characterized in that:

作用 本発明は上記構成により、対象物の粗なセンシングの場
合には各分割電極を独立に駆動し、また検出分解能を高
める場合には同時に駆動することにより、複数方向から
のセンシングや斜面の検出を可能にし、かつ検出速度の
向上をはかることができる。
According to the above-mentioned structure, the present invention drives each divided electrode independently for rough sensing of an object, and simultaneously drives it for higher detection resolution, thereby enabling sensing from multiple directions and detecting slopes. This makes it possible to improve the detection speed.

実施例 以下、図面を参照しながら本発明の第1の実施例につい
て説明する。
EXAMPLE A first example of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例における複合型超音波送
受波器の側面断面図である。第1図において1は球面状
の凹面振動子であり例えばPZT系圧電セラミックから
なり、2は凹面振動子の背面側に設けた分割電極であシ
、分割方法は第2図に示す。3は凹面振動子の正面側に
設けた電極、4は背面負荷、6は音響整合層、6は分割
電極2と電極3に接続されたリード線であり入力端子7
を通して送信器8及び受信器9に電気的に接続されてい
る。10は空中に放射される超音波ビームである。第2
図は本実施例の分割電極を示すものであり、中心の分割
電極2aの上下左右に1つずつ計6個の分割電極21.
2b 、2c 、2d 。
FIG. 1 is a side sectional view of a composite ultrasonic transducer according to a first embodiment of the present invention. In FIG. 1, 1 is a spherical concave vibrator made of, for example, PZT-based piezoelectric ceramic, and 2 is a dividing electrode provided on the back side of the concave vibrator. The dividing method is shown in FIG. 3 is an electrode provided on the front side of the concave vibrator, 4 is a rear load, 6 is an acoustic matching layer, 6 is a lead wire connected to the split electrode 2 and electrode 3, and is an input terminal 7.
The transmitter 8 and the receiver 9 are electrically connected through the transmitter 8 and the receiver 9 . 10 is an ultrasonic beam radiated into the air. Second
The figure shows the divided electrodes of this embodiment, and there are a total of six divided electrodes 21.
2b, 2c, 2d.

2eから構成されている。It is composed of 2e.

以上のような構成において、以下その動作を説明する。The operation of the above configuration will be explained below.

まず、分割電極2a〜2eから順に駆動され、送受波さ
れる超音波ビーム1oの様子は第3図のようになる。こ
こで分割電極22L〜2eの部分から送受波される超音
波ビームの進行方向に沿った中心軸はそれぞれの分割電
極に対応して11a〜11elのように11′a−を中
心として四方から放射され、焦点12で交差する。これ
らの超音波ビームの焦点12でのビーム径ωは次式で求
められる。
First, the state of the ultrasonic beam 1o that is sequentially driven and transmitted and received from the divided electrodes 2a to 2e is as shown in FIG. Here, the central axis along the traveling direction of the ultrasonic beam transmitted and received from the divided electrodes 22L to 2e is radiated from four directions with 11'a- as the center, like 11a to 11el, corresponding to each divided electrode. and intersect at focal point 12. The beam diameter ω at the focal point 12 of these ultrasonic beams is determined by the following equation.

F拳■ −f ここでFは凹面振動子面から焦点12までの距離、Dは
電極の直径、■は空気中の音速、fは超音波周波数であ
る。これより、F二50mm、D=10wz、V=−3
4om/s 、f=1MHzとすると、超音波ビーム径
ωは1.7順となる。また中心軸11iaと11dの角
度は約21.8度となる。1つの超音波ビームで検出で
きる方位は立体角で約10°前後であるが、この複合型
超音波送受波器を用いると検出できる方位角は約300
に拡大され、曲面をもった対象物に対しても追従が容易
になる。
F fist ■ -f Here, F is the distance from the concave vibrator surface to the focal point 12, D is the diameter of the electrode, ■ is the speed of sound in air, and f is the ultrasonic frequency. From this, F2 50mm, D=10wz, V=-3
When 4 om/s and f=1 MHz, the ultrasonic beam diameter ω is in the order of 1.7. Further, the angle between the central axes 11ia and 11d is about 21.8 degrees. The azimuth that can be detected with one ultrasonic beam is approximately 10 degrees in solid angle, but when this composite ultrasonic transducer is used, the azimuth that can be detected is approximately 300 degrees.
This makes it easier to track objects with curved surfaces.

更に対象物の位置が求まり、複合型超音波送受波器が対
象物にほぼ垂直に設定されると個々の超音波送受波器を
電気的に並列に接続し、同時に駆動し、受波することに
よって、放射される超音波ビーム径を更に細く絞り検出
分解能を高めると共に、送受波感度を高めることも可能
になる。
Furthermore, once the position of the object is determined and the composite ultrasonic transducer is set almost perpendicular to the object, the individual ultrasonic transducers are electrically connected in parallel and driven and received simultaneously. This makes it possible to further narrow the diameter of the emitted ultrasonic beam and improve the aperture detection resolution, as well as to increase the wave transmission and reception sensitivity.

以上の説明から明らかなように本実施例によれば、一つ
の凹面振動子上に複数の超音波送受波器を電極分割で構
成し、独立の動作を可能にした構造であることから、検
出できる方位角を拡大でき、曲面をもった対象物の検出
をも可能にできる。また、同時に駆動することにより検
出精度を高めることも可能となり、1m以下の検出精度
にすることも容易である。
As is clear from the above description, according to this embodiment, multiple ultrasonic transducers are configured with divided electrodes on one concave transducer, and the structure enables independent operation, so detection is possible. The possible azimuth angles can be expanded, and it is also possible to detect objects with curved surfaces. Furthermore, by driving at the same time, it is possible to improve the detection accuracy, and it is easy to achieve a detection accuracy of 1 m or less.

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第4図は本発明の第2の実施例における複合型波 超音波送受)の概略の構成図である。第4図において、
第1図の構成と異なる点は、個々の超音波送受波器13
2L〜13Cを凹面振動子1の中心に対し、3個、回転
対称の位置に配し、かつ、残りの部分にも電極14を分
離して設けたことである。
FIG. 4 is a schematic diagram of a complex wave ultrasonic transmission/reception system according to a second embodiment of the present invention. In Figure 4,
The difference from the configuration in FIG. 1 is that each ultrasonic transducer 13
The three electrodes 2L to 13C are arranged in rotationally symmetrical positions with respect to the center of the concave vibrator 1, and the electrodes 14 are separately provided in the remaining parts.

上記構成において、以下その動作を説明する。The operation of the above configuration will be explained below.

個々の超音波送受波器の動作は第1の実施例と同じであ
り、3方向から順次、超音波を放射することによって視
野角の広い検出が可能になる。次に対象物の位置が求ま
った場合、残りの電極14をも含めて同時に送受波に用
いると、第1の実施例よりも高感度で、かつサイドロー
プの少ない超音波ビームが得られる。
The operation of each ultrasonic transducer is the same as in the first embodiment, and by sequentially emitting ultrasonic waves from three directions, detection with a wide viewing angle is possible. Next, when the position of the object is determined, if the remaining electrodes 14 are also used for wave transmission and reception at the same time, an ultrasonic beam with higher sensitivity and fewer side lobes than in the first embodiment can be obtained.

以上、本実施例によれは、第1の実施例と同様対象物が
曲面をもった場合にも視野角が広いために検出能力が高
くなり、かつ高感度、更には、サイドローブの少ないこ
とによるS/N比の良い信号が受信できる。
As described above, similar to the first embodiment, even when the object has a curved surface, the detection ability is high because the viewing angle is wide, the sensitivity is high, and there are fewer side lobes. A signal with a good S/N ratio can be received.

なお、以上の説明では球面の凹面振動子を用いているが
、こ扛は放物面など、他の形状の凹面振動子を用いても
よい。更に、電極面積も同じにするのでなく、例えば、
第1の実施例において、中心部の電極を大きクシ、周囲
の電極を小さくしてより視野角を広げてもよい。
Note that although a spherical concave vibrator is used in the above description, a concave vibrator of other shapes such as a paraboloid may also be used. Furthermore, instead of making the electrode area the same, for example,
In the first embodiment, the central electrode may be made larger and the surrounding electrodes may be made smaller to further widen the viewing angle.

発明の効果 以上のように本発明は、凹面振動子の背面側に複数の分
割電極を設けて独立した小さい超音波送受波器を構成し
、複数の方向から超音波を送受波することにより、視野
の広い検出が可能になり、曲面をもった対象物の検出を
も容易になる。更に検出精度も1jIM以下で行うこと
が可能であり高分解特性をもつ。このような複合型超音
波送受波器を溶接ロボットなどのセンサに用いた場合、
視野の広い検出が可能なため、対象物の探索時間が短縮
され、早い処理能力が得られ、その効果は大きい。
Effects of the Invention As described above, the present invention provides a plurality of divided electrodes on the back side of a concave transducer to constitute an independent small ultrasonic transducer, and transmits and receives ultrasonic waves from a plurality of directions. Detection with a wide field of view becomes possible, and it becomes easier to detect objects with curved surfaces. Furthermore, detection accuracy can be achieved at 1jIM or less, and it has high resolution characteristics. When such a composite ultrasonic transducer is used in a sensor such as a welding robot,
Since it is possible to detect a wide field of view, the search time for the target object is shortened, and fast processing capacity is obtained, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における複合型超音波送
受波器の断面図、第2図は前記複合型超音波送受波器の
凹面振動子背面の分割電極の配置図、第3図は前記複合
型超音波送受波器から放射される超音波ビームの中心軸
を示す図、第4図は本発明の第2の実施例における凹面
振動子背面の分割電極の配置図、第6図は従来の複合型
超音波送受波器の概略の構成図でaは背面図、bは平面
図である。 1・・・・・・凹面振動子、2.2N〜26,13゜1
3a〜13C・・・・・・分割電極、3・・・・・・電
極、4・・・・・・背面負荷、5・・・・・・音響整合
層、6・・・・・・リード線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓1
図 柿t@ 第4図 第5図 (a)(υ
FIG. 1 is a cross-sectional view of a composite ultrasonic transducer according to a first embodiment of the present invention, FIG. The figures show the central axis of the ultrasonic beam emitted from the composite ultrasonic transducer, FIG. The figure is a schematic configuration diagram of a conventional composite ultrasonic transducer, in which a is a rear view and b is a plan view. 1...Concave vibrator, 2.2N~26,13゜1
3a to 13C...divided electrode, 3...electrode, 4...back load, 5...acoustic matching layer, 6...lead line. Name of agent: Patent attorney Toshio Nakao and 1 other famous person 1
Figure 4 Figure 5 (a) (υ

Claims (2)

【特許請求の範囲】[Claims] (1)超音波を送受波する凹面振動子と、前記凹面振動
子の背面側に設けられた少なくとも3個の分割電極と、
前記凹面振動子の正面側に設けられた電極と、前記それ
ぞれの電極に接続されたリード線とを具備し、前記分割
電極部分より送受波される超音波ビームの中心軸が互い
に交差するように分割電極が配置されていることを特徴
とする複合型超音波送受波器。
(1) a concave vibrator that transmits and receives ultrasonic waves, and at least three divided electrodes provided on the back side of the concave vibrator;
It comprises an electrode provided on the front side of the concave transducer and a lead wire connected to each of the electrodes, so that the central axes of the ultrasonic beams transmitted and received from the divided electrode portions intersect with each other. A composite ultrasonic transducer characterized in that split electrodes are arranged.
(2)分割電極が凹面振動子の中心に対して回転対称の
位置になるよう配置されていることを特徴とする特許請
求の範囲第1項記載の複合型超音波送受波器。
(2) The composite ultrasonic transducer according to claim 1, wherein the divided electrodes are arranged at rotationally symmetrical positions with respect to the center of the concave transducer.
JP26976184A 1984-12-20 1984-12-20 Composite type ultrasonic wave transmission/reception device Pending JPS61146098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26976184A JPS61146098A (en) 1984-12-20 1984-12-20 Composite type ultrasonic wave transmission/reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26976184A JPS61146098A (en) 1984-12-20 1984-12-20 Composite type ultrasonic wave transmission/reception device

Publications (1)

Publication Number Publication Date
JPS61146098A true JPS61146098A (en) 1986-07-03

Family

ID=17476779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26976184A Pending JPS61146098A (en) 1984-12-20 1984-12-20 Composite type ultrasonic wave transmission/reception device

Country Status (1)

Country Link
JP (1) JPS61146098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099955A1 (en) 2012-12-21 2014-06-26 Volcano Corporation Focused rotational ivus transducer using single crystal composite material
WO2023162276A1 (en) * 2022-02-28 2023-08-31 本多電子株式会社 Ultrasonic transceiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099955A1 (en) 2012-12-21 2014-06-26 Volcano Corporation Focused rotational ivus transducer using single crystal composite material
EP2934337A4 (en) * 2012-12-21 2016-08-17 Volcano Corp Focused rotational ivus transducer using single crystal composite material
US11141134B2 (en) 2012-12-21 2021-10-12 Volcano Corporation Focused rotational IVUS transducer using single crystal composite material
WO2023162276A1 (en) * 2022-02-28 2023-08-31 本多電子株式会社 Ultrasonic transceiver

Similar Documents

Publication Publication Date Title
US4062237A (en) Crossed beam ultrasonic flowmeter
US5991239A (en) Confocal acoustic force generator
US4523471A (en) Composite transducer structure
US20090028002A1 (en) Ultrasonic sensor
JPS63121749A (en) Ultrasonic signal transmitter and receiver
JP2013525776A (en) Device for determining the distance to the object and the direction to the object
US4764905A (en) Ultrasonic transducer for the determination of the acoustic power of a focused ultrasonic field
WO1994011757A1 (en) High resolution phased array echo imager
JP2009058362A (en) Ultrasonic transmission method and device
JPS6024473A (en) Ultrasonic sensor
US5577006A (en) Adaptive acoustic signal target detection system
JPH08338869A (en) Ultrasonic sensor and detection method using said sensor
CN109715302A (en) Ultrasound transducer element array
EP0293803A2 (en) Fan-shape scanning ultrasonic flaw detecting apparatus
JPS61146098A (en) Composite type ultrasonic wave transmission/reception device
JPH069562B2 (en) Ultrasonic diagnostic equipment
EP0898175A1 (en) Multilobe ultrasonic scanning method
JP7367322B2 (en) Object position detection sensor
JP2791019B2 (en) Ultrasonic array sensor
Wykes et al. Ultrasound imaging in air
JPS6024045Y2 (en) ultrasonic transducer
JP2841781B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
JPH11118911A (en) Method for enhancement of detection of sound waves and for enhancement of positioning of small object
Wykes et al. Ultrasonic arrays for automatic vehicle guidance
Wykes et al. Ultrasonics arrays for automatic vehicle guidance